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This paper reports on our efforts to develop a machine-independent solution to sparse
Cholesky factorization that performs well across all general-purpose MIMD computers.
We present results for a diverse set of machines and a diverse set of algorithmic techniques.
In particular we show results for the Kendall Square KSR-1, Sequent Symmetry and Intel
iPSC/2, and we compare supernodal and nodal techniques, fan-in and fan-out algorithms,
and shared and non-shared memory programming models.

1. INTRODUCTION

Software portability is an important means of reducing program development costs.
Here, a “portable” program is one that achieves good performance across some desired
set of parallel computers. In particular, a portable — or machine-independent — program
achieves performance that is competitive with the best machine-dependent programs.?
Previous studies have suggested that the non-shared memory programming model leads
to more portable programs than the shared memory model because of advantages in
improved locality of reference [1-3]. These studies, however, focus on applications that
are fairly regular in their data access patterns. Here, we report on efforts to find a
machine-independent solution to a very irregular problem: sparse Cholesky factorization.

In some sense direct sparse Cholesky methods represent the ultimate challenge in par-
allel portability. The sparse, data-dependent nature of the problem can lead to poor
locality of reference and, for static partitionings, significant load imbalance. These char-
acteristics would seem to favor shared memory solutions, but because shared memory
machine architectures may not scale as well as non-shared memory machines, efficient
non-shared memory implementations are desirable. Furthermore, Cholesky factorization
plays an important role in many scientific applications. Examples include finite element
methods, structural analysis, and various VLSI circuit simulators. Finally, unlike dense
matrix computations, sparse matrix computations can scale to sizes that would invite
massively parallel implementations.

Previous work in the parallel solution of sparse matrix factorization have generally been
machine-specific [4-10]. Thus, for example, because distributed memory approaches were
only studied on distributed memory machines, it was not clear whether the resulting
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performance numbers were due to the programming model or to characteristics of the
actual machines. By comparing both shared and non-shared memory implementations on
shared memory machines, we can decouple the influence of the programming model from
the influence of the underlying hardware. We can thus determine the extent to which the
various programming models affect performance.

This paper experimentally explores four dimensions of the space of possible solutions
to sparse Cholesky factorization. This study is not exhaustive- for example, multi-frontal
techniques [11] are not considered— but will move us closer to a machine-independent
solution. We show results for both shared and non-shared memory machines, namely, the
Kendall Square KSR-1, the Sequent Symmetry, and the Intel iPSC/2. We consider fan-in
and fan-out algorithms; shared and non-shared memory programming models; nodal and
supernodal techniques; as well as the effects of various mapping and reordering functions.

This paper is organized as follows. Section 2 provides background by describing the
different aspects and variations of sparse Cholesky factorization. Section 3 describes our
experimental results, and we conclude in Section 4.

2. BACKGROUND

2.1. Sparse Cholesky Factorization

Sparse Cholesky factorization can be used to solve a system of linear equations, Az = b,
whenever A is a symmetric, positive definite matrix. We can solve for @ by factoring the
A matrix into a lower triangular matrix, L, such that A = LLT. To zero out all entries
above the diagonal, multiples of one column are added to the values of another column.
Such column modifications are performed once for each column to compute the L matrix
in a process known as numeric factorization.

For sparse matrices the overall solution involves four steps. First, the A matrix i1s or-
dered to reduce fill. Fill refers to the non-zero elements that are introduced in the process
of numeric factorization and represents unnecessary work. The second step, symbolic fac-
torization, computes the structure of the eventual factor matrix. The third step is numeric
factorization, and the final step is the triangular solve where the factor matrix is used to
compute the value of z. Because numeric factorization is the most time consuming step
we will not consider steps 2 or 4 in this paper. The first step, though computationally
inexpensive, is significant in that it can affect the performance of numeric factorization.

2.2. Experimental Parameters

Our experiments compare fan-in and fan-out approaches, shared memory and non-
shared memory approaches, and nodal and supernodal approaches. This section briefly
introduces these terms.

Two general approaches to computing the Cholesky factorization are the left-looking
and right-looking approaches. These sequential algorithms differ in their memory access
patterns and the order in which column modifications are performed. The left-looking
algorithm leads to the fan-in parallel algorithm, while the right-looking algorithm leads
to the fan-out algorithm. The fan-in approach is synchronous and demand driven, while
the fan-out approach is asynchronous and data driven. We show results comparing the
fan-in and fan-out approaches. We do not implement any fan-in algorithms in the shared
memory programming model because we found no such algorithm in the literature.



Our shared memory implementation of sparse Cholesky factorization comes from the
SPLASH suite of benchmarks. This program uses a work queue execution model that
yields good load balance. By contrast, our non-shared memory implementations statically
partition the data into disjoint sets and assign each set to a different processor. Qur
implementations of the shared and non-shared memory models result in almost identical
amounts of communication. We do not produce a shared memory implementation for the
iPSC/2 because we have no way to emulate shared memory on this machine.

Supernodal techniques exploit the structure of the non-zero elements to increase granu-
larity and improve locality of reference [10]. Consecutive columns with non-zero elements
in the same rows below the diagonal are combined and treated as a unit, allowing mul-
tiple column modifications to be performed at once. When supernodes are restricted to
contain a single column, the result is a nodal technique. Supernodes reduce execution
time for the best sequential implementations, but nodal techniques have the potential
for greater parallelism. Our implementation of supernodes comes from the Rothberg and
Gupta implementation in which supernode size is controlled based on cache size [10].

Finally, non-shared memory implementations must consider two additional factors: re-
ordering and mapping. The load balance of the numeric factorization step depends on the
partitioning of the nodes or supernodes, which in turn is dependent on the order in which
the columns are modified. In sequential implementations, the goal of the ordering step is
simply to reduce the amount of fill. For parallel solutions, this ordering step can also be
used to balance the load. If the factorization process is viewed as a logical tree with arcs
representing data dependencies, orderings that produced short balanced trees will lead to
balanced loads. Mapping refers to the mapping of nodes to processors. A good mapping
will minimize communication costs and give good load balance.

In the reordering step we employ the multiple minimum degree (MMD) [7] ordering
heuristic followed by Jess and Kees tree height minimization technique. The MMD re-
ordering arranges the columns to minimize fill in the factor matrix.

Weimplement three different mapping algorithms. The simplest load balancing strategy
1s a cyclic, round-robin assignment of nodes to processors, but this leads to excessive
communication volume [7]. At the other extreme, the subtree-to-subcube mapping reduces
communication but leads to poor load balance for unbalanced work trees [7]. We introduce
a new algorithm that attempts to balance the load as well as reduce communication. In
this algorithm the elimination tree is traversed in depth-first order until a subtree is found
with less than or equal to & percent of the total work (P is the number of processors),
plus some tolerance. This user-specified tolerance determines how far the mapping may
deviate from the optimal mapping. In general, we found the new algorithm to yield the
best performance.

2.3. Hardware

We describe experiments on a 20 processor Sequent Symmetry A, a 56 processor Kendall
Square KSR-1, and a 32 processor Intel iPSC/2. The 20 processors of the Sequent are
connected to main memory by a shared bus. Each processor has a 64K coherent cache
for both data and instructions. Our KSR-1 has 56 processors organized as a ring of rings.
The KSR’s shared main memory is viewed as a large coherent cache that allows data
to migrate on demand. Finally, our Intel iPSC/2 is a hypercube connected distributed



memory machine. Each node consists of a processor and 4MB of local memory. Processors
communicate via message passing.

3. RESULTS

3.1. Methodology

We wish to compare the aspects of sparse Cholesky factorization outlined above. Un-
fortunately, these different aspects interact. That is, the various experimental parameters
are not independent. Thus, for example, we cannot make a general statement comparing
all fan-in and fan-out algorithms without first limiting our discussion to either nodal or
supernodal approaches. Qur methodology is to search for the best solutions along each of
the three dimensions mentioned above. Thus, we will find the best fan-in implementation
independently of the best fan-out implementation, and then compare the two results.

3.2. Interpretation
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Figure 1. Best performance on each machine.

We first show the best algorithm for machine. (See Figure 1.) On the two shared
memory machines where we could directly compare the shared and non-shared memory
models, the supernodal fan-out shared memory program outperforms our statically par-
titioned programs. The success of the shared memory programs is due to superior load
balance and lower overhead.

On our machines, both implementations of the fan-out algorithm consistently outper-
form the fan-in algorithm. Figure 2 shows results for the Sequent Symmetry, KSR-1 and
the Intel iPSC/2. The poor performance of the fan-in algorithm can be attributed to
the implementation’s synchronous nature, its lack of locality and its buffered updates.



To understand these effects, we must describe our algorithm in more detail. We use the
fan-in algorithm described by Ashcraft et al. [4]. which is synchronous because a process
performing a column modification must wait for all data to arrive before computing a
modification. This synchronization leads to idle time. The locality and buffering effects
can also be explained. Abstractly, each column modification is computed in a distributed
fashion and requires the merging of multiple partial modifications, where each partial
modification is computed by a different process. When the granularity is large and each
process owns several columns, these partial modifications are advantageous because they
trade reduced communication cost for increased local computation. When the granularity
decreases, however, the savings in communication goes to zero while the extra compu-
tation becomes strictly overhead. Note that modifications to the algorithm might avoid
some of these problems, but at the expense of added complexity. For example, idle time
can be reduced by allowing a process to asynchronously work on one column modification
while it awaits the arrival of other partial modifications.
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Figure 2. Best fan-in vs. best fan-out.

In comparing nodes versus supernodes, we observe a scaling effect where supernodes are
superior for small numbers of processors but inferior for large numbers of processors. This
cross-over occurs because although supernodes improve locality and decrease overhead,
they also increase granularity and limit parallelism. Figure 3 shows results for the Sym-
metry where the cross-over point is at eight processors. A solution to this scaling problem
is to limit the size of the supernodes. Current schemes place upper bounds on the size of
supernodes based on the target machine’s cache size [10], but do not consider the amount
of physical parallelism. We believe that supernodal techniques can scale better if the size
of supernodes is based on the number of processors, and the latency and communication
startup costs of the underlying machine.
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Figure 3. Best nodal vs. best supernodal.
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Figure 5. Percent of SM-NSM performance gap due to overhead.

In comparing the influence of programming models, we observe a performance advan-
tage for the shared memory model. (See Figure 4.) The difference in performance can
be explained by the load imbalance and the overhead suffered by the non-shared memory
program. The static partitioning necessarily forces the non-shared memory program to
do extra work. Through several pointer de-references and arithmetic calculations, each
processor determines the next column to be updated. With the static partitioning, this
work is useless if the column belongs to another processor. The shared memory imple-
mentation has no such overhead. Figure 5 shows the significance of this overhead on the
KSR-1. The overhead is conservatively calculated as the percentage of time spent execut-
ing the code to determine a non-local column with respect to the difference in execution
time of the two memory models. We instrumented the code to count the number of times
this overhead code was executed and then measured the amount of time to execute one
instance of this code. The performance difference becomes very small for machines like
the KSR where locality is extremely important.

4. CONCLUSION

We have compared various aspects of sparse Cholesky factorization on a variety of par-
allel computers. Three observations are noteworthy. First, for this application the shared
memory programming model performs better than the non-shared memory programming
model. A significant portion of this performance gap stems from additional overhead that
exists in the non-shared memory approach. Thus, we have identified one circumstance
where the ability to share a single address space fundamentally affects performance. We
contrast this with many other applications where the single address space is primarily a
programming convenience. The second observation is that the supernodal technique can



inhibit performance as the number of processors grows. As mentioned earlier, sophisti-
cated techniques for limiting supernode sizes should lead to better scalability. Finally,
the best fan-out implementations perform better than the best fan-in implementations.
From these observations we conclude that a machine-independent supernodal fan-out im-
plementation can eventually be found. The issues of load-imbalance and supernode size
must first be addressed before this ultimate goal is reached.
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