
Static Detection of Asymptotic Performance
Bugs in Collection Traversals

Oswaldo Olivo
University of Texas at Austin

olivo@cs.utexas.edu

Isil Dillig
University of Texas at Austin

isil@cs.utexas.edu

Calvin Lin
University of Texas at Austin

lin@cs.utexas.edu

Abstract
This paper identifies and formalizes a prevalent class of asymptotic
performance bugs called redundant traversal bugs and presents a
novel static analysis for automatically detecting them. We evalu-
ate our technique by implementing it in a tool called CLARITY and
applying it to widely-used software packages such as the Google
Core Collections Library, the Apache Common Collections, and
the Apache Ant build tool. Across 1.6M lines of Java code, CLAR-
ITY finds 92 instances of redundant traversal bugs, including 72 that
have never been previously reported, with just 5 false positives. To
evaluate the performance impact of these bugs, we manually repair
these programs and find that for an input size of 50,000, all repaired
programs are at least 2.45× faster than their original code.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; C.4 [Performance of Sys-
tems]: Analysis

General Terms Program analysis, Performance Bugs, Experi-
mentation

1. Introduction
A functionality bug occurs when a piece of software crashes or pro-
duces an incorrect result. Fortunately, research in program anal-
ysis has produced significant advances in the automated detec-
tion of such bugs [1, 4–6, 22]. By contrast, a performance bug
arises when a program produces the correct result but a simple
functionality-preserving change can provide a substantial perfor-
mance improvement [25]. Performance bugs are significant be-
cause they can render a program unusable; they can also be ex-
ploited by malicious users to create denial-of-service attacks. Un-
fortunately, performance bugs are more difficult to detect than func-
tionality bugs for several reasons:

• First, it is difficult to know whether a program’s performance
can be expected to improve, since it depends on user inputs, on
the many details of the program’s execution environment, and
on some notion of how a “good” solution should perform.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.
PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

1. public boolean render(Graphics2D g2, Rectangle2D
2. dataArea, int index, ...) {
3. ...
4. XYDataset dataset = getDataset(index);
5. XYItemRenderer renderer = getRenderer(index);
6. ...
7. int sCount = dataset.getSeriesCount();
8. int series;
9. for (series=sCount-1; series >= 0; series--) {
10. int first = 0;
11. int last = dataset.getItemCount(series) - 1;
12. ...
13. for (item=first; item <= last; item++) {
14. renderer.drawItem(dataset, series, item,...);
15. }
16. ...
17. }
18. ...
19. }
20. public void drawItem(XYDataSet dataset,
21. int series, int item, ...) {
22. ...
23. OHLCDataset highLowData = (OHLCDataset)dataset;
24. itemCount = highLowData.getItemCount(series);
25. double xxWidth = dataArea.getWidth();
26. for(int i=0; i< itemCount; i++) {
27. ...
28. if(last != -1) {
29. xxWidth=Math.min(xxWidth,Math.abs(pos-last));
30. }
31. }
32. }

Figure 1. A previously unknown performance bug in the
JFreeChart application that was identified by CLARITY.

• Second, while functionality bugs can be tested using assertions
or various automated testing tools [6, 18, 33], the detection of
performance bugs typically requires a human to monitor the
program and make a judgment call on its performance.

• Third, performance bugs often manifest themselves only with
large inputs, so the small input hypothesis [29], which forms the
basis of most software testing methodologies, does not hold.

For these reasons, performance bugs remain a nebulous and evasive
problem, and most existing tools for detecting performance prob-
lems either rely on rule-based pattern matching of syntactic pro-
gram constructs or on some degree of runtime analysis and human
intervention.

This paper presents a new static analysis—and its implemen-
tation in a tool called CLARITY—for automatically detecting an
important class of asymptotic performance bugs. We say that a

code snippet has an asymptotic performance bug if its computa-
tional complexity is O(f(n)) but the same functionality can be
implemented by code with complexity O(g(n)) such that g(n) is
O(f(n)) but f(n) is not O(g(n)). Although the detection of ar-
bitrary asymptotic performance bugs is beyond the scope of pro-
gram analysis1, we have identified a restricted but prevalent class
of asymptotic performance bugs that we call redundant traversal
bugs. A redundant traversal bug arises if a program fragment re-
peatedly iterates over a data structure, such as an array or list, that
has not been modified between successive traversals of the data
structure. Since such computation can be memoized and re-used
across loop iterations, redundant traversal bugs typically result in
at least an O(n) performance degradation, where n is the size of
the data structure. Furthermore, such performance bugs are typi-
cally easy to fix and often only require the addition of a parameter
to a method, the addition of a field to an object, or the use of a
slightly different data structure.

Motivating Example. As an example of a redundant traversal
bug, consider the program snippet shown in Figure 1. This code is
taken from version 1.0.17 of the JFreeChart software and exhibits
a previously unknown performance bug uncovered by CLARITY.
In particular, the render method (lines 1–19) plots a series of data
items in the form (x, y) and invokes the drawItem method on line
14 to draw a single point within a given series. Here, the method
invocation on line 14 is a virtual call with many possible targets,
one of which is the drawItem method of CandlestickRenderer
(lines 20–32).

The performance problem in this example arises because the
drawItem method iterates over all points within the series in order
to draw a single data point. In particular, the code traverses all data
points to compute a value called xxWidth, which corresponds to
the minimum gap between adjacent x-coordinates in the series.
However, since the data set is not modified between successive
calls to drawItem, the recomputation of xxWidth in each call
to drawItem is redundant and needlessly traverses a potentially
large list of data items many times. Hence, this code fragment
exhibits a serious performance bug that can be fixed either by
passing xxWidth as an argument to drawItem or by storing it as a
field. Not only does such a fix result in a theoretical asymptotic
performance improvement of O(n), but it produces an order of
magnitude performance improvement in practice.2

While it may seem surprising that such a blatant performance
bug exists in a mature software project like JFreeChart, there are
several reasons why this bug could be missed during development
and testing. First, the impact of this performance bug is propor-
tional to the size of the data series and requires data points to be
drawn in the shape of candlesticks. Hence, test cases that either use
small data series or render objects in a different shape, such as a
square, will not reveal the performance bug. Second, the heavy-use
of object oriented abstractions obscures the performance bug, mak-
ing it difficult to spot the problem during manual code inspection.
In particular, observe that the drawItem() method is virtual, and
the performance bug only occurs in the CandlestickRenderer
implementation. Similarly, the collection that is traversed is hidden
behind an interface, so to identify the exact data structure, another
virtual method call must be resolved. Finally, there is a function
call depth of three between the loop that traverses the data structure
and the access of the actual item in the data structure.

1 Observe that identifying arbitrary asymptotic performance bugs requires
knowing a “best” algorithm for implementing a given functionality.
2 For example, using the existing test harnesses from SourceForge, we ob-
serve speedups of 8× to 11× when we fix this performance bug and modify
the test harness to render each data item in the shape of a candlestick.

boolean containsAny1(HashSet<Foo> mySet,
ArrayList<Foo> myList) {

for(Foo f: mySet)
if(myList.contains(f))

return true;
return false;

}

Figure 2. Check if myList contains an element from mySet

Contributions. This paper makes the following contributions:

• We introduce and formalize the notion of redundant traversal
bugs, which result in serious performance problems even in
mature and well-tested software.

• We show that the detection of redundant traversal bugs is a
non-trivial static analysis problem, and we present a novel and
sound static analysis for automatically detecting this class of
performance bugs.

• We implement the proposed analysis in a tool called CLARITY
and experimentally demonstrate its effectiveness on nine open
source Java code bases. Our tool is able to find 92 redundant
traversal bugs, 72 of which were previously unknown. We also
show that these performance bugs have significant impact in
terms of program performance. For example, for an input size
of 50,000, the repaired versions of these programs are at least
2.45× faster than the original code.

Organization. The remainder of this paper is organized as fol-
lows. Section 2 formally defines redundant traversal bugs and
presents the core ideas for detecting such problems. After describ-
ing our algorithm for statically detecting redundant traversal bugs
in Section 3, we briefly describe our implementation in Section 4
and present our empirical evaluation in Section 5. Before conclud-
ing, we compare our approach to previous work in Section 6.

2. Conceptual Foundations
This section defines the notion of redundant traversal bugs and
explains the core ideas underlying our static analysis.

2.1 Defining Redundant Traversal Bugs
DEFINITION 1. (Traversal) We say that a code snippet S traverses
a data structure δ if it performs a computation whose average-
case complexity is at least Ω(n), where n denotes the number of
elements in δ.

For instance, consider the contains methods provided by var-
ious data structures in the Java Collections Framework. Accord-
ing to Definition 1, the contains method of ArrayList performs
a traversal of the data structure, as its average-case complexity is
O(n). On the other hand, while HashSet’s contains method has
worst-case complexity O(n), it is not considered a traversal be-
cause its average-case complexity is O(1).

DEFINITION 2. (Traversal Footprint) The traversal footprint of
a code snippet S, written TraversalFP(S), is the set of data
structures traversed by S.

DEFINITION 3. (Write Footprint) The write footprint of code S,
written WriteFP(S), is the set of data structures that S modifies.

DEFINITION 4. (Redundant Traversal Bug) A loop L exhibits a
redundant traversal bug if there exists a data structure δ such that:

1. δ ∈ TraversalFP(L) and δ 6∈WriteFP(L)

boolean containsAny2(HashSet<Foo> mySet,
ArrayList<Foo> myList) {

for(int i=0; i < myList.size(); i++) {
Foo elem = myList.get(i);
if(mySet.contains(elem))

return true;
}
return false;

}

Figure 3. Different implementation of code in Figure 2.

2. δ is traversed Ω(m) times in L, wherem is the number of times
that L executes

In other words, a redundant traversal bug arises if a loop-
invariant data structure is traversed a linear number of times within
the loop. We believe that this definition captures the intuitive notion
of redundancy, as the computation that is performed by traversing
the data structure can be done once and re-used across all loop
iterations.

EXAMPLE 1. Figures 2 and 3 show the implementation of two
methods called containsAny1 and containsAny2 that deter-
mine if the intersection of myList and mySet is non-empty. While
containsAny1 and containsAny2 are functionally equivalent,
containsAny1 has a performance bug according to Definition 4
while containsAny2 does not. In particular, since the contains
method of ArrayList traverses the data structure, myList is part
of the traversal footprint of the loop. By contrast, the contains
method of HashSet does not perform a traversal; so, the traversal
footprint of the loop from Figure 3 is empty. Thus, containsAny1
contains an asymptotic performance bug because its average-case
complexity is O(n · m), whereas the average-case complexity of
containsAny2 is O(n) for a list of size n and set of size m.

The need for the second condition of Definition 4 is illustrated
by the following example.

EXAMPLE 2. Consider the following code snippet, where the
computeAvg method traverses its input:

int calculate(ArrayList<ArrayList<int>> a) {
int avgSum = 0;
for(int i=0; i < a.size(); i++)

avgSum += computeAvg(a.get(i));
return avgSum;

}

Here, condition (1) of Definition 4 is satisfied because each element
of a is part of the traversal footprint but not the write footprint
of the loop. However, this code does not have a performance bug
because a different element of a is traversed in each loop iteration.
Hence, condition (2) is violated.

2.2 Core Ideas for Detecting Redundant Traversals
This section explains the key challenges underlying the static detec-
tion of redundant traversal bugs and outlines the core ideas behind
our static analysis.

First, based on condition (1) of Definition 4, we see that a sound
static analysis for detecting redundant data structure traversals must
be able to perform the following task:

Given code snippet S, overapproximate the emptiness
of the set θ ≡ TraversalFP(S)−WriteFP(S)

Since θ is defined to be the difference of TraversalFP(S)
and WriteFP(S), a sound static analysis for detecting redundant

traversal bugs must overapproximate the traversal footprint but un-
derapproximate the write footprint. Furthermore, since our analysis
will track data structures in terms of program expressions, we need
over- and under-approximating preconditions of program expres-
sions with respect to a given program fragment. For this purpose,
we define the following notions of necessary and sufficient precon-
ditions:

DEFINITION 5. (Necessary precondition) A set of expressions
{e1, . . . , en} is called a necessary precondition of an expression
e with respect to a code snippet S, written pre+(e, S), if, for any
constant c, the following Hoare triple is valid:

{e1 6= c ∧ . . . ∧ en 6= c} S {e 6= c}

In other words, for e to have value c after S, it is necessary that
some element in pre+(e, S) has value c before S; hence, we refer
to the set {e1, . . . , en} as a necessary precondition of ewith respect
to S. Now, we also define a dual notion of sufficient preconditions:

DEFINITION 6. (Sufficient precondition) A set of expressions E
is called a sufficient precondition of expression e with respect to
code S, written pre−(e, S), if, for all constants c and all e′ ∈ E,
the following Hoare triple is valid:

{e′ = c} S {e = c}

In other words, for e to have value c after S, it is sufficient that
elements in pre−(e, S) have value c before S. Thus, sufficient con-
ditions underapproximate the weakest precondition of an expres-
sion e with respect to code S.

EXAMPLE 3. Consider the following code snippet S:

if(*) x := y else x := z;

Here, we have pre+(x, S) = {y, z} and pre−(x, S) = ∅. In
particular, for x to be equal to a certain value c after S, it is
necessary that either y or z have value c before S. However, the
sufficient precondition for x is ∅ because neither y = c nor z = c
before S guarantees that x = c after S.

Now, given a statement S and a sub-statement π nested inside
S, we will use the notation S−[π] to denote the code that comes
before π in S. For instance, if S is the code:

x:=y; if(x>10) x++; y--; else x := 0

and π is the statement y--, then S−[π] is:

x:=y; assume(x>10); x++;

The following theorem explains why necessary and sufficient
preconditions are useful for checking condition (1) of Definition 4.

THEOREM 1. Let S be a code snippet containing two sets of state-
ments Π1 and Π2 such that:

1. Each statement πi ∈ Π1 traverses a data structure referred to
by program expression ei

2. Each π′j ∈ Π2 modifies a data structure referred to by e′j

Then, TraversalFP(S)−WriteFP(S) = ∅ if:

(
⋃

πi∈Π1

pre+(ei, S
−[πi])−

⋃
π′
j∈Π2

pre−(e′j , S
−[π′j])) = ∅ (∗)

PROOF 1. Suppose TraversalFP(S) − WriteFP(S) 6= ∅ but
(∗) holds. Then there must be some statement π that traverses a
data structure δ that is referred to by expression e and δ is not

modified in S. Let pre+(e, S−[π]) = {e1, . . . , en}. By definition
of necessary precondition, this implies that e1 = δ ∨ . . . ∨ ek = δ
before S. Now, since condition (∗) holds, every ei is in the set
pre−(e′j , S

−[π′j]) for some statement π′j modifying data structure
referred to by expression e′j . By definition of sufficient precondition,
this means that {ei = δ} S−[π′j] {e′j = δ}. But this implies that δ
must also be modified, i.e., a contradiction.

Theorem 1 is useful because it provides a method for statically
checking condition (1) of Definition 4. In particular, to determine
whether TraversalFP(S)−WriteFP(S) may be empty, we com-
pute necessary preconditions E of all program expressions that are
traversed and sufficient preconditions E′ of all expressions that are
modified. If E − E′ is empty, then Theorem 4 implies that all ex-
pressions that are traversed are also modified; hence, we can rule
out a potential redundant traversal bug. This is a key insight under-
lying our static analysis, and we will compute necessary precondi-
tions of data structures that are traversed and sufficient precondi-
tions for expressions that are modified in Section 3.

We now turn to the problem of statically checking condition
(2) from Definition 4. That is, given a loop-invariant data structure
δ that is traversed within the loop, is δ traversed at least a linear
number of times? In our analysis, we will check this linearity
requirement by over-approximating the following slightly stronger
condition:

Given a loop L and a data structure δ, is δ traversed
in all iterations of L?

The above criterion is stronger than checking whether δ is tra-
versed Ω(m) times in the loop. However, since our static analysis
is path-insensitive, soundly answering the above question overap-
proximates condition (2) of Definition 4 for all practical purposes.

EXAMPLE 4. Consider the following code snippet, where n is a
positive integer and traverse performs list traversal:

for(i=0; i<n; i++) {if(i%2 == 0) traverse(myList);}

Here, myList is not traversed in all iterations, but it is traversed
Ω(n) times. However, a sound static analysis that treats the test i%2
== 0 as a non-deterministic choice will conclude that myList may
be traversed in all iterations.

The following theorem is useful in determining whether a data
structure δ may be traversed in all loop iterations:

THEOREM 2. Let e be a program expression, and let E be a nec-
essary precondition of e with respect to code snippet S. Then, the
following Hoare triple is valid for any constant c:

{e = c ∧
∧
ei∈E

e 6= ei} S {e 6= c}

PROOF 2. First, note that the following implication is valid:

e = c ∧ (
∧
ei∈E

e 6= ei)⇒ (
∧
ei∈E

ei 6= c)

Now, by definition of necessary precondition, we have:

{(
∧
ei∈E

ei 6= c)} S {e 6= c}

Hence, the theorem holds by precondition strengthening.

Simply put, this theorem states that the value of an expression
e has different values before and after executing S provided that
e is distinct from every ei ∈ pre+(e, S). To see the relevance of
this theorem, suppose that e is a program expression that may be
traversed in the loop. Now, if the value of e changes between any

Program P := τ1 v1; . . . τn vn; S
Type τ := Int | Collection〈τ1, τ2〉
Statement S := skip | v := e | v.traverse()

| v1 := v2.get(v3) | v1.putρ(v2, v3)
| S1;S2 | if(?) then S1 else S2

| while(?) doρ S
Expression e := int | v | e1 ⊕ e2 (⊕ ∈ {+,−,×})

Figure 4. Language used for formal development.

two consecutive loop iterations, then two different data structures
δ and δ′ are traversed; hence, δ is not traversed in all loop itera-
tions. Thus, the key question to answer is whether the value of e
can change between different loop iterations. Fortunately, we can
answer this question using Theorem 2. Specifically, let E be the
necessary precondition of e with respect to the loop body S. Based
on Theorem 2, if we can prove that e is distinct from every ei ∈ E,
then we know that the same data structure is not traversed in all
loop iterations.

EXAMPLE 5. Consider again the code from Example 2, where
computeAvg traverses the input array. Here, the loop traverses
program expression a[i], but the necessary precondition of a[i]
with respect to the loop body is {a[i+1]}. Thus, assuming a[i]
and a[i+1] do not alias, we can determine that condition (2) of
Definition 4 is violated.

3. Static Analysis
We now use the ideas introduced in Section 2 to describe our static
analysis for detecting performance bugs.

3.1 Language
To formally describe our analysis, we use the small imperative
language shown in Figure 4. This language contains two types
of variables, namely, scalars of type Int and references of type
Collection. We model collections as key-value stores that support
insertion and retrieval of values associated with a given key. Hence,
a variable of type Collection〈τ1, τ2〉 models a key-value store
where keys are of type τ1 and values are of types τ2. Observe that
both keys and values may be of type Collection; hence, it is possible
to nest an arbitrary number of data structures within another one.

In the language shown in Figure 4, statements include skip,
assignments of the form v := e, and the following three collection-
manipulating operations:

• A statement v.traverse() traverses collection v, where traversal
encompasses any operation that is consistent with Definition 1.

• A statement v1 := v2.get(v3) retrieves the value v1 of key v3

in the data structure pointed to by variable v2.
• A statement v1.putρ(v2, v3), where ρ denotes a program point,

associates value v3 with key v2 in the data structure referenced
by variable v1.

In addition, statements also include sequences S1;S2, if state-
ments, and while loops. Since our analysis does not interpret con-
ditionals (i.e., is path-insensitive), we model conditionals using
non-deterministic choices indicated as ? in Figure 4. Furthermore,
we assume that while loops are annotated with a program point ρ
which denotes the program location right before the first instruction
in the loop body.

To simplify the formalization of our analysis, we omit function
calls from this language and assume that the only way to traverse a
data structure is by calling v.traverse(). In Section 4, we explain

Symbolic exp π := c | v | π1〈π2〉
Read footprint Φ := 2π

Write footprint Ψ := 2π

Alias environment E := ρ× π → (2π, 2π)

Figure 5. Summary of notation used in formalization

the inference of methods that traverse data structures as well as our
interprocedural analysis.

3.2 Computing Traversal and Write Footprints
We now describe our static analysis for over- and under-approximating
each statement’s traversal and write footprints. Our analysis is a
backwards dataflow analysis and is presented in Figure 6 using
judgments of the form:

E ,Φ,Ψ ` S : Φ′,Ψ′

This judgment means that under the aliasing relations given by en-
vironment E , if Φ and Ψ denote the traversal and write footprints
after statement S, then Φ′ and Ψ′ over- and under-approximate the
traversal and write footprints before S respectively. That is, assum-
ing the correctness of E ,Φ and Ψ, the set Φ′ over-approximates
all collections that are traversed in or after S in terms of program
expressions before S. Similarly, the set Φ′ under-approximates all
collections that must be modified in terms of program expressions
before S.

As summarized in Figure 5, our analysis tracks traversal and
write footprints using sets of symbolic expressions π. Symbolic
expressions π can be constants c, variables v, or expressions of the
form π1〈π2〉, which represents the value associated with key π2 in
a data structure represented by expression π1. For example, if the
traversal footprint Φ of some statement S includes an expression
v〈3〉, then the data structure stored at index 3 of the collection
referenced by variable v may be traversed by statement S.

Since variables of type Collection are references in our lan-
guage, our analysis must take possible aliasing relations into ac-
count if it is to soundly compute traversal and write footprints.
Thus, our analysis rules utilize an aliasing environment E which
maps each expression to its set of aliases. However, since our goal
is to under-approximate write footprints, we need must alias facts
as well as may alias information, so the aliasing environment E has
signature ρ × π → (2π, 2π), which maps each expression π and
program point ρ to π’s may- and must-aliases at program point ρ.
In what follows, we will assume that such an aliasing environment
E has been computed by performing may- and must-alias analyses
prior to our footprint computation.

Let us now consider the analysis rules shown in Figure 6. In
particular, rule (2) describes the analysis of assignments of the
form v := e. Here, we replace any variable v used in Φ and
Ψ by expression e because e is both a necessary and sufficient
precondition for v with respect to statement S. For instance, for
a statement v1 := v2, traversal footprint Φ = {v1, y} and write
footprint Ψ = {x〈v1〉}, our analysis computes Φ′ = {v2, y} and
Ψ′ = {x〈v2〉}.

Rule (3) describes the analysis of traversals of the form v.traverse.
In this case, we simply add variable v to the traversal footprint Φ;
the write footprint Ψ remains unchanged.

Rule (4) describes the analysis of retrieval (i.e., load) operations
of the form v1 := v2.get(v3). Similar to the assignment rule, we
replace variable v1 in the traversal and write footprints with the
expression v2〈v3〉, which denotes the value associated with key
v3 in the collection referenced by v2. Observe that v2〈v3〉 is both
a necessary and sufficient precondition for v1 with respect to the
statement v1 := v2.get(v3): In particular, the value of v1 is equal

(1) E ,Φ,Ψ ` skip : Φ,Ψ

(2)
Φ′ = Φ[e/v] Ψ′ = Ψ[e/v]

E ,Φ,Ψ ` v := e : Φ′,Ψ′

(3)
Φ′ = Φ ∪ {v}

E ,Φ,Ψ ` v.traverse() : Φ′,Ψ

(4)

Φ′ = Φ[v2〈v3〉/v1]
Ψ′ = Ψ[v2〈v3〉/v1]

E ,Φ,Ψ ` v1 := v2.get(v3) : Φ′,Ψ′

(5)

E(ρ, v1) = (A+
1 ,A

−
1) E(ρ, v2) = (A+

2 ,A
−
2)

Φ′ = Φ[v3/A+
1 〈A

+
2 〉] ∪ (Φ	A−1 〈A

−
2 〉)

Ψ′ = Ψ[v3/A−1 〈A
−
2 〉] ∪ (Φ	A+

1 〈A
+
2 〉)

E ,Φ,Ψ ` v1.putρ(v2, v3) : Φ′,Ψ′ ∪ {v1}

(6)

E ,Φ,Ψ ` S2 : Φ′,Ψ′

E ,Φ′,Ψ′ ` S1 : Φ′′,Ψ′′

E ,Φ,Ψ ` S1;S2 : Φ′′,Ψ′′

(7)

E ,Φ,Ψ ` S1 : Φ1,Ψ1

E ,Φ,Ψ ` S2 : Φ2,Ψ2

E ,Φ,Ψ ` if(?) then S1 else S2 : Φ1 ∪ Φ2,Ψ1 ∩Ψ2

(8)

Φ′ ⊇ Φ Ψ ⊇ Ψ′

E ,Φ′,Ψ′ ` S̃ : Φ′,Ψ′

E ,Φ,Ψ ` while(?) do S : Φ′,Ψ′

Figure 6. Analysis rules for computing traversal and write foot-
prints. The notations A1〈A2〉 and Φ[v/A] are defined in Equa-
tions 1 and 2, and operator 	 is defined in Equation 3.

to constant c after this statement if and only if v2〈v3〉 = c before
executing v1 := v2.get(v3).

The most involved part of the analysis is Rule (5) for ana-
lyzing insertion (i.e., store) operations. To build intuition, let us
first consider the statement S = v1.put(v2, v3) and an expression
x〈y〉 ∈ Φ. There are two cases to consider:

• If x must alias v1 and y must alias3 v2, then the necessary pre-
condition for x〈y〉 is just {v3} since, for any value c, condition
v3 6= c before S guarantees x〈y〉 6= c after S.

• On the other hand, if x may alias v1 and y may alias v2

(but either may-alias relation is not also a must-alias relation),
then the necessary precondition for x〈y〉 is the set {x〈y〉, v3}.
Observe that neither condition x〈y〉 6= c nor v3 6= c before S
on its own guarantees x〈y〉 6= c after S, as the value of x〈y〉
may—but does not have to– be affected by S. However, if we
know x〈y〉 6= c ∧ v3 6= c before S, we can guarantee that
x〈y〉 6= c after S.

Now, let us also consider the analogous case where x〈y〉 ∈ Ψ.
Again, there are two cases to consider:

• If x must alias v1 and y must alias v2, then the sufficient pre-
condition for x〈y〉 is just {v3} since, for any value c, condition
v3 = c before S guarantees x〈y〉 = c after S.

3 Here, since y and v2 may be scalars, we overload the term “alias” to also
mean equality for scalars.

• Otherwise, if x may alias v1 and y may alias v2, then the
sufficient precondition for x〈y〉 is the empty set, as there is no
program expression whose value before S is guaranteed to be
the same as the value of x〈y〉 after S.

As this example illustrates, the computation of traversal and
write footprints for store operations requires aliasing information
for pointers (and equality information for scalars). With this intu-
ition in mind, we now explain Rule (5) from Figure 6. As expected,
we first need to look up the set of may- and must-aliases (A+

1 ,A
−
1)

of v1 as well as those of v2 (A+
2 ,A

−
2). Now, any expression of

the form x〈y〉 may be affected by the statement v1.put(v2, v3) if
x is an alias of v1 and y is an alias of v2. Given set of symbolic
expressions A and A′, we use the notation A〈A′〉 to represent:

JA〈A′〉K =
⋃
π∈A

⋃
π′∈A′

π〈π′〉 (1)

Hence, in Rule (5), A+
1 〈A

+
2 〉 yields the set of expressions that

may be affected by the update, while A−1 〈A
−
2 〉 represents expres-

sions that must be overwritten.
Now, let us focus on the computation of the traversal footprint

Φ′ in the second line of Rule (5). Here, for a setA = {π1, . . . , πn},
we use the notation Φ[v/A] as shorthand for:

Φ[v/{π1, . . . , πn}] = Φ[v/π1, . . . , v/πn] (2)
Hence, the set Φ[v3/A+

1 〈A
+
2 〉] is the same as Φ except that

every (sub-) expression that may correspond to v1〈v2〉 has been
replaced with v3. However, since we want to over-approximate
the footprint, Φ′ must also contain any expression π such that (i)
π ∈ Φ and (ii) no prefix of π is in the set A−1 〈A

−
2 〉, because

such an expression π is not guaranteed to be killed by the store
operation. To capture all expressions in Φ that are preserved by the
statement v1.put(v2, v3), we define an 	 operation on expression
sets as follows:

π ∈ (A1 	A2)⇔ π ∈ A1 ∧ ∀π′ ∈ A2.(π
′ 6= prefix(π)) (3)

In other words, A1 	 A2 preserves exactly those expressions
π in A1 where π is not an extension of some expression in A2.
Hence, the overall effect is two-fold:

• Φ′ contains v3 if Φ contains some expression x〈y〉 where x and
y may alias v1 and v2 respectively

• Φ′ contains any expression π ∈ Φ such that π is not guaranteed
to be modified by the statement v1.put(v2, v3)

We now explain the computation of the write footprint Ψ′,
which is described in the third line of Rule (5). First, observe that
Ψ′ contains v3 iff there exists some x〈y〉 ∈ Ψ such that x and y
must alias v1 and v2. Furthermore, we kill all expressions in Ψ of
the form x′〈y′〉 where x′ and y′ may alias v1 and v2, respectively.
Finally, since the statement v1.put(v2, v3) modifies collection v1,
the write footprint before this statement includes variable v1.

EXAMPLE 6. Consider the following code snippet where x and y
are variables of type Collection〈Int,Collection〈Int〉〉 and z, w
are variables of type Collection〈Int, Int〉:

1. y.put(0, w); Φ1 = {x〈0〉, w} Ψ1 = {y, w}
2. z := x.get(0); Φ2 = {x〈0〉} Ψ2 = {w}
3. w.put(2, 5); Φ3 = {z} Ψ3 = {w}
4. z.traverse(); Φ4 = {z} Ψ4 = ∅

The annotations Φi and Ψi show the traversal and write footprints
right before statement Si under the assumption that x and y may
alias (but are not guaranteed to).

We now consider the last two rules in Figure 6. When analyzing
if statements in Rule (7), we take the union of the traversal foot-
prints Φ1 and Φ2 obtained from the two branches. On the other
hand, since we need to underapproximate the write footprint, we
take the intersection of Ψ1 and Ψ2. rather than their union.

The final rule (8) describes the analysis of while loops4. In this
rule, we use the notation S̃ to denote the resulting statement when
all traversal statements in S are replaced by skip. In particular, to
avoid reporting the same warning for both inner and outer loops,
our analysis ignores traversals in nested loops when computing the
traversal footprint associated with an outer loop.

Now, continuing with rule (8), the traversal and write footprints
Φ′ and Ψ′ must satisfy the following properties:

• Φ′ must be a superset of Φ since any expression that is traversed
after the loop may also be traversed before the loop (observe
that the loop may execute zero times).

• Ψ′ must be a subset of Ψ since only those expressions that are
modified after the loop are guaranteed to be modified before the
loop.

• Φ′ and Ψ′ must be inductive with respect to loop body S̃.

EXAMPLE 7. Consider the following code snippet:

1. while(?) do i = i+ 1; if(?) then a = b else b = a;
2. a.traverse(); b.put(2, 5);

Right before line 2, we have the traversal and write footprints
Φ2 = {a},Ψ2 = {b}. On the other hand, the traversal and write
footprints before line 1 are Φ1 = {a, b} and Ψ1 = ∅.

3.3 Detecting Redundant Traversal Bugs
We now explain how the computed traversal and write footprints
are used to detect redundant traversal bugs. Figure 7 summarizes
our performance bug detection algorithm using the judgments from
Figure 6. As expected, our analysis only reports warnings when
analyzing loops. Specifically, as shown on the first line of the
ERR rule, we first compute the traversal and write footprints Φ,Ψ
associated with the loop body. Now recall from Section 2 that the
loop contains a redundant traversal bug if there exists a π ∈ Φ
such that (i) π is traversed in all loop iterations, and (ii) π is loop
invariant (i.e., is not modified within the loop).

To determine if condition (i) holds, we use Theorem 2 from
Section 2 to check whether π is distinct from every expression π′ ∈
pre+(π, S). More specifically, in the ALL rule,NC corresponds to
pre+(π, S), and the check A+ ∩ NC = ∅ stipulates that π does
not alias any expression in pre+(π, S). Hence, by Theorem 2, if
the predicate traversal all(Sρ, π) evaluates to true, then π may be
traversed in all loop iterations.

Now, we still need to check that π is not modified within the
loop. For this purpose, we use the INV rule, which checks if some
must-alias of π is in the write footprint Ψ. If not (i.e.,A+∩Ψ = ∅),
this implies that π may be loop invariant, so our analysis reports a
potential performance bug.

EXAMPLE 8. Consider the following code snippet:

while(?) do t := a.get(i); t.traverse(); i := i+ 1;

Here, the traversal footprint Φ for the loop body is {a〈i〉}, and the
write footprint Ψ is ∅. Since the necessary precondition of a〈i〉 is
Φ′ = {a〈i+ 1〉}, the ALL rule fails (assuming a〈i〉 and a〈i+ 1〉
do not alias), so our analysis does not report a performance bug.

4 This rule is only needed when detecting performance bugs in loops that
contain at least one nested loop.

E , {π}, ` S̃ : NC,
E ` (ρ, π) : (A+,A−)
A+ ∩NC 6= ∅

E ` traverse all(Sρ, π)
(ALL)

E ` (ρ, π) : (A+,A−)
A− ∩Ψ = ∅

E ,Ψ ` loop inv(Sρ, π)
(INV)

E , ∅, ∅ ` S : Φ,Ψ
π ∈ Φ

E ` traverse all(Sρ, π)
E ,Ψ ` loop inv(Sρ, π)

E ` while(?) doρ S ERROR
(ERR)

Figure 7. Summary of performance bug detection. As before, S̃
denotes traverse statements in S replaced by skip.

EXAMPLE 9. Consider the following code snippet:

1. if(?) then b := a; else skip;
2. while(?) do a.traverse(); b.put(2, 4);

Here, we have Φ = {a} and Ψ = {b}. The necessary precondi-
tion of a with respect to the loop body is {a}, so using the ALL
rule, we determine that a may be traversed in all loop iterations.
Furthermore, since a and b are not guaranteed to alias, the INV
rule succeeds, so our analysis reports a redundant traversal bug.
However, if we changed line 1 to b := a, then our analysis would
not report a performance bug, since a and b are now guaranteed to
alias.

4. Implementation
We have implemented our proposed analysis in a tool called CLAR-
ITY, which is written in Java and consists of approximately 8,000
lines of code. CLARITY is implemented in the Soot compiler frame-
work [39] and uses the Jimple intermediate representation. CLAR-
ITY relies on Soot for CFG and callgraph construction and issues
a warning if any possible target of a virtual method call contains a
performance bug. We have also implemented our own summary-
based pointer analysis for computing may and must aliases by
adapting the ideas described by Dillig et al. [14].

In this section, we focus on two important aspects of the imple-
mentation: (1) the identification of data structure traversals and (2)
interprocedural analysis.

Identifying Data Structure Traversals. Our implementation uses
a combination of automatic inference and a small amount of man-
ual annotations to identify data structure traversals. In particular,
we manually annotate 28 methods that (a) are implemented by the
Java collections library and (b) have average-case complexity that
is at least linear in the size of the data structure.5 For instance, as we
saw in Section 2, the contains method of ArrayList is annotated
as a traversal, while HashSet’s contains method is not.

In addition to such manual annotations, CLARITY performs au-
tomated inference to identify code snippets that traverse data struc-
tures through iterators or loops. However, our current implementa-
tion does not detect data structure traversals in recursive functions.
Hence, CLARITY is not able to detect performance bugs involving
recursive data structures.

To detect data structures that are traversed in loops, our static
analysis also maintains a so-called read footprint. In particular, a

5 The annotated methods represent a tiny fraction of the analyzed methods.

data structure δ is added to the read footprint for code snippet S if
S may access δ. For instance, using the notation from Section 3,
if a code snippet accesses an element of array a, we simply add
a to the read footprint R and compute R’s necessary precondition
during our backwards analysis. When we encounter a loop, we then
check whether an element a ∈ R is accessed multiple times using
Theorem 2. This analysis is similar to the check that tests whether
a data structure is traversed multiple times (see the ALL rule in
Figure 7). If a given data structure may be accessed in multiple loop
iterations, we then add it to the traversal footprint Φ. The following
example illustrates this analysis:

EXAMPLE 10. Consider the following code snippet:

while(?) do t := l.get(i); sum := sum + t; i := i+ 1;

While analyzing the loop body, we add variable l toR. Then, when
analyzing the while loop, we check whether l may be accessed in all
loop iterations by testing whether the necessary precondition for l
includes itself. Since it does in this case, l is added to the traversal
footprint Φ of the while loop.

Interprocedural Analysis. Since the key idea underlying our
technique is to compute traversal and write footprints, our analysis
is amenable to modular reasoning. In particular, our interprocedu-
ral analysis computes a procedure summary for each method that
tracks its read, traversal, and write footprints as well as transfer
functions that give the necessary and sufficient preconditions for
each data structure used in that method.

When we encounter a call to method m, we simply retrieve m’s
summary and instantiate its read, write, and traversal footprints by
applying the appropriate formal-to-actual mapping. The instanti-
ated callee footprints are then added to the corresponding footprints
of the caller. In addition, the summary for each procedure also
contains transfer functions that describe side effects of the callee.
These transfer functions correspond to necessary and sufficient pre-
conditions of program expressions with respect to the callee’s body.
Hence, for each expression e in the caller’s read, write, and traver-
sal footprints, we apply the appropriate transfer function to obtain
the new footprints before the method call.

5. Experimental Evaluation
We evaluate CLARITY by applying it to nine mature and widely-
used open source code bases (see Table 1). We conduct our exper-
iments on an x86 64 Ubuntu 12.04 desktop machine with 8 GB of
RAM and a dual-core 3 GHz processor. We evaluate our approach
using the following metrics: (1) the number of performance bugs
detected by CLARITY, (2) the number of false positives reported,
and (3) the impact of fixing these bugs.

Table 1 summarizes the results of our experimental evaluation,
with the benchmarks listed in order of increasing code size. Our
benchmarks range from 21,396 to 226,623 lines of Java source
code and contain between 715 and 12,338 methods (including
external library calls). Since CLARITY also analyzes the external
libraries called by each application, the actual number of lines of
code analyzed by the tool can be much larger (see third column
of Table 1). We see that even though CLARITY performs a non-
trivial interprocedural static analysis, the running time of the tool is
quite reasonable, with LWJGL taking the longest at 26.4 minutes.
These times include the time to perform pointer analysis, as well as
the time required to analyze the libraries for which the benchmarks
depend on.

Most significantly, we see that CLARITY reports a total of 92
performance bugs, with only five of these being false positives.
Furthermore, among the 92 true positives, 72 are previously unre-
ported according to the SourceForge development logs. The num-
bers in this table include only unique performance bugs; that is,

Name LoC LoC w/ Number of Analysis Reported Previously False
libraries Methods Time (sec) Bugs Unknown Bugs Positives

Charts4j 21,396 28,667 715 122 0 0 0
Janino 39,832 305,660 7,149 556 3 3 0
Apache Collections 58,186 58,186 3,759 180 19 10 4
Ode4J 83,207 83,207 4,048 128 0 0 0
Java3D 115,859 146,376 1,875 335 0 0 0
Guava (Google Core) 129,745 129,745 12,338 338 55 44 1
LWJGL (Game Library) 202,902 267,248 10,740 1,584 10 10 0
Apache Ant 205,371 265,828 10,029 1,325 2 2 0
JFreeChart 226,623 362,584 9,162 602 3 3 0
Total 1,083,121 1,647,501 59,815 5,470 92 72 5

Table 1. Experimental results: Performance Bugs Detected.

performance bugs that are inherited by a sub-class are not counted
multiple times.

Finally, to evaluate CLARITY’s performance impact, we repair
each of the identified performance bugs, for example, by adding
additional fields to classes, passing extra parameters to methods,
or transforming data structures (e.g., lists into sets). We then com-
pare the execution time of the original and repaired programs on
input sizes ranging from a few thousand to a few hundred thou-
sand elements. In this evaluation, we observe speedups in the range
2.5-548.2× on inputs sizes of 50,000 and speedups between 6.6-
3,350× on input sizes of 100,000. This empirical comparison be-
tween the original and modified programs confirms that the redun-
dant traversals identified by CLARITY indeed correspond to asymp-
totic performance problems.

5.1 Discussion
We now explain the most commonly reported performance bugs
and share some observations about the nature of the performance
bugs detected by CLARITY.

RetainAll Performance Bug. The RetainAll bug occurs in code
that removes all elements in a collection A that are not also present
in another collection B (often passed as a parameter). The ineffi-
ciency occurs when B has a slow containment checking method
that is invoked a linear number of times. This bug can typically
be fixed by converting the parameter collection B to a set, either
within the algorithm or at its call site, or by more complicated
means such as keeping an iterator on the parameter collection and
advancing it accordingly to avoid redundant checks. In addition to
appearing in doubly-nested loops, this bug can also appear in other
ways, such as the pruning of multi-maps, removal of data points
from a plot, and intersection of build resources while compiling a
Java application. In fact, we observe some variant of the RetainAll
bug in four code bases, namely, Apache Ant, Guava, JFreeChart,
and Apache Collections.

ContainsAll Performance Bug. The ContainsAll bug is similar
to RetainAll and occurs in code that checks whether a collection
contains all the elements in some other collection, which is often
a method parameter. As in the RetainAll bug, we see that the
flexibility of generic types for collection parameters can lead to
severe performance degradation. We found several instances of this
performance bug in Guava and Apache Collections.

FilterPredicate Bug. This bug occurs when a containment predi-
cateP is attached to a collectionC, and elements can only be added
to C if they satisfy P . Typically, the root cause of the performance
problem is an inefficient data structure used in the implementation
of the predicate. We see several instances of this bug in the Guava
libraries.

TransformPredicate Bug. This type of performance bug is simi-
lar to the FilterPredicate bug. It appears when an inefficient pred-
icate is used to identify elements that should be removed from a
collection. Again, we find several occurrences of this type of per-
formance bug in the Guava libraries.

ExtremeVal Bug. The ExtremeVal performance bug occurs when
the maximum or minimum value of a list of elements is computed
multiple times, even though the list does not change. An instance
of this type of bug is the JFreeChart example from Figure 1.

PatternMatching Bug. This bug occurs when checking a set of
elements against a set of patterns. The redundant traversals could
be avoided by combining the set of patterns into one pattern, sim-
plifying it, and then checking the elements against this pattern. An
instance of this bug arises in Apache Ant when testing if files in a
directory satisfy a regular expression describing an include-path.

False Positives. Four of the false positives in our experiment arise
from imprecise virtual method call resolution. For example, in
some cases, CLARITY believes that the target of a virtual method
call may be LinkedList::contains even though it can only be
HashMap::contains. The fifth false positive arises when CLAR-
ITY believes that a data structure is traversed multiple times in a
loop that can be traversed only once. In this case, the code has a
non-trivial loop invariant that CLARITY cannot reason about.

Nature of Performance Bugs. We conclude this section with
some observations about the nature of performance bugs uncovered
by CLARITY.

First, while the majority of the bugs detected by CLARITY are
conceptually quite simple, they are not easily identifiable through
either manual code review or simple static analysis. Due to the
heavy use of abstraction in Java, the collection that is traversed is
often hidden behind an interface, so identifying data structures that
are accessed requires virtual method call resolution. Furthermore,
the loop where the performance bug arises is typically defined in
a different class or method from the code that actually traverses
the data structure. Hence, the detection of such bugs requires fairly
sophisticated interprocedural static analysis.

Second, even though there are conceptual similarities be-
tween the performance bugs identified by CLARITY, different
code snippets exhibiting conceptually similar bugs can be syn-
tactically very different. For example, a performance bug that is
classified in the RetainAll category appears in a method called
createConsolidatedPieDataset, which tries to create a new
dataset with keys above a certain threshold. Meanwhile, another
instance of the RetainAll bug appears in the Apache collections
in a method called retainAll and looks very different from the
JFreeChart instance of the RetainAll bug. Thus, despite conceptual
similarities among various performance bugs detected by CLAR-

ITY, these bugs cannot be detected by performing syntactic pattern
matching on program constructs.

Finally, our empirical evaluation sheds light on the difficulty
of detecting these performance bugs during testing. First, several
performance bugs identified by CLARITY arise in rarely executed
program paths. For instance, recall the performance bug from Fig-
ure 1, which is triggered when the user renders items in the shape
of a candlestick. Since this shape is unlikely to be a popular choice,
it is unlikely to be triggered during testing. Second, as observed
in our empirical performance comparison between the original and
repaired programs, the true cost of a performance bug may not be
apparent unless tested with large inputs. Since most test suites are
designed with the small input hypothesis in mind, they are unlikely
to reveal these performance problems.

6. Related Work
Automated Performance Bug Detection. Several recent projects
use program analysis to automatically detect performance bugs.
Some of these detect wasteful use of temporary objects [16, 35, 43,
44], others focus on inefficient or incorrect usage of collection data
structures [34, 41, 42], and some use dynamic profiling to identify
expensive computation that can be memoized [31].

The Toddler tool [32] uses dynamic instrumentation to iden-
tify “likely redundant” computation by monitoring repetitive and
partially-similar memory access patterns. Like Toddler, our work
builds on the observation that repetitive traversal of collections
likely constitutes a performance bug. Unlike Toddler, our method is
purely static, so it incurs no run-time overhead and does not require
that the programmer provide representative performance tests.

The PerfChecker tool [28] statically analyzes Android applica-
tions to identify common performance bugs. Unlike CLARITY, Per-
fChecker detects performance bugs related to GUI lagging, energy
leaks, and memory bloat.

The X-ray tool [3] helps users diagnose performance problems
related to configuration settings. X-ray uses a technique called per-
formance summarization, which couples performance costs with
dynamic information flow analysis. Unlike CLARITY, X-ray per-
forms dynamic analysis and focuses on performance problems
caused by user rather than developer error.

Trace analysis is a technique for identifying root causes of per-
formance anomalies [15, 45]. For example, the TraceAnalyzer
tool [15] constructs performance traces that capture the time-
varying performance of program runs. Another approach [45] per-
forms impact and causality analysis on traces to discover patterns
that are correlated with performance problems. These techniques
can shed light on a wide variety of performance anomalies, but they
are not fully automated.

Classification and Impact of Performance Bugs. Jin et al.
present a comprehensive study of performance bugs and propose a
variety of rules to detect and repair likely performance bugs [25].
These rules, which are inspired from existing patches, perform
pattern-matching over syntactic program constructs and require
domain-specific knowledge about the classes of performance bugs
that exist in a given application. A pattern-matching technique is
also proposed in the context of databases [8].

Song and Lu use five open-source applications to study the
use of statistical debugging for finding performance bugs [36].
They find that two kinds of statistical models involving branch
predicates can help pinpoint root causes of performance problems.
The idea is to use existing bug reports to gather similar efficient
and inefficient computations and compute statistically significant
predicates. While quite general, this approach relies on existing bug
reports and on user-provided test parameters.

Zaman et al. find that, for Mozilla Firefox and Google Chrome,
developers typically spend more time fixing performance bugs than
functionality bugs [46].

Loop-Invariant Code Motion. The removal of redundant traver-
sal bugs bears some similarity to loop invariant code motion
(LICM), but the problems are quite different. LICM is typically
applied to individual assignment statements, and it uses a low-level
notion of loop-invariance that is based on reaching definitions.
Thus, LICM is not capable of identifying redundant data structure
traversals that are detected by our analysis. Of course, LICM also
performs the actual optimization, rather than simply detecting the
inefficiency.

Techniques for Estimating Computational Complexity. Recent
work uses sophisticated static analyses to automatically esti-
mate worst-case resource usage—such as running time—of pro-
grams [20, 21, 23, 26], and the TrendProfiler tool uses profiling
and dynamic analysis to estimate empirical computational com-
plexity [19]. While these approaches can help programmers debug
and understand performance problems, they do not automatically
pinpoint them.

Necessary and Sufficient Preconditions. To detect redundant
traversal bugs, our algorithm constructs dual over- and under-
approximations of the program. Other static analyses that involve
negation (or set complement) also make simultaneous use of neces-
sary and sufficient conditions. In particular, the interplay between
over- and under-approximations has been explored in path-sensitive
static analysis [11], in precise reasoning for unbounded data struc-
tures [12, 13], in the construction of method summaries [9], for
analysis of confidentiality properties [7], and in typestate analy-
sis [17].

May and Must Alias Analysis. May alias analysis [10, 27, 37,
38, 40] underlies almost any compiler optimization, bug detection,
and verification technique. While not quite as common as may-
alias analysis, must-alias analysis is also considered in several
papers [2, 24, 30]. Our work simply utilizes may- and must-alias
information and does not make contributions in this area.

7. Conclusions
Modern software is written in languages such as Java and C#
and makes heavy use of abstractions that allow difficult-to-detect
performance bugs to creep into mature code bases. While modern
compilers perform many types of sophisticated optimizations, they
are ill-equipped to deal with performance bugs that cross many
procedure and abstraction boundaries.

In this paper, we have introduced CLARITY, a purely static tool
that effectively detects redundant traversal bugs. Our application of
CLARITY to nine open source Java code bases identifies a large
number of previously unknown performance bugs with a small
number of false alarms. Once CLARITY identifies a redundant
traversal bug, the repair is typically straightforward. Furthermore,
as confirmed by our empirical evaluation, the repaired programs
enjoy a significant performance benefit over the original programs.

Although CLARITY targets a restricted class of performance
problems, it is nonetheless a significant step towards automated
static detection of performance bugs. In future work, we plan to
expand the class of performance bugs that can be automatically
detected. We also plan to explore techniques for automatically
repairing the performance bugs identified by CLARITY.

Acknowledgments. We thank Thomas Dillig and Jia Chen for
their valuable comments on early versions of this paper. This work
was supported by NSF grants CNS-1138506 and DRL-1441009,
and Air Force Research Laboratory under agreement number
FA8750-12-2-0020

References
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins.

An overview of the Saturn Project. In PASTE, pages 43–48, 2007.

[2] R. Z. Altucher and W. Landi. An extended form of must alias analysis
for dynamic allocation. In PLDI, pages 74–84. ACM, 1995.

[3] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In OSDI,
pages 307–320, 2012.

[4] T. Ball and S. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL, pages 1–3, 2002.

[5] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding
dynamic programming errors. Software: Practice and Experience, 30
(7):775–802, 2000.

[6] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams. In OSDI, volume 8, pages 209–224, 2008.

[7] P. Černỳ and R. Alur. Automated analysis of Java methods for confi-
dentiality. In CAV, pages 173–187. Springer, 2009.

[8] T. Chen, W. Shang, Z. Jiang, A. Hassan, M. Nasser, and P. Flora.
Detecting performance anti-patterns for applications developed using
object-relational mapping. In ICSE, pages 1013–1024. ACM, 2014.

[9] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic
inference of necessary preconditions. In Verification, Model Checking,
and Abstract Interpretation, pages 128–148. Springer, 2013.

[10] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In PLDI, pages 230–241. ACM, 1994.

[11] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-
sensitive analysis. In PLDI, volume 43, pages 270–280, 2008.

[12] I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs.
weak updates. In ESOP, pages 246–266. 2010.

[13] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using
containers. In ACM SIGPLAN Notices, volume 46, pages 187–200.
ACM, 2011.

[14] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact
modular procedure summaries for heap manipulating programs. In
PLDI, pages 567–577. ACM, 2011.

[15] A. Diwan, M. Hauswirth, T. Mytkowicz, and P. F. Sweeney. Traceana-
lyzer: a system for processing performance traces. Software: Practice
and Experience, 41(3):267–282, 2011.

[16] B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable technique for
characterizing the usage of temporaries in framework-intensive Java
applications. In FSE, pages 59–70, 2008.

[17] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. ACM Transactions
on Software Engineering and Methodology (TOSEM), 17(2):9, 2008.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In ACM SIGPLAN Notices, volume 40, pages 213–
223. ACM, 2005.

[19] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson. Measuring empir-
ical computational complexity. In FSE, pages 395–404, 2007.

[20] S. Gulwani. Speed: Symbolic complexity bound analysis. In Com-
puter Aided Verification, pages 51–62. Springer, 2009.

[21] S. Gulwani, K. K. Mehra, and T. Chilimbi. Speed: precise and effi-
cient static estimation of program computational complexity. In ACM
SIGPLAN Notices, volume 44, pages 127–139. ACM, 2009.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with BLAST. In Model Checking Software, pages 235–
239. Springer, 2003.

[23] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized
resource analysis. In ACM SIGPLAN Notices, volume 46, pages 357–
370. ACM, 2011.

[24] S. Jagannathan, P. Thiemann, S. Weeks, and A. Wright. Single and
loving it: Must-alias analysis for higher-order languages. In PLDI,
pages 329–341. ACM, 1998.

[25] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. ACM SIGPLAN Notices, 47
(6):77–88, 2012.

[26] J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic loop bound com-
putation for WCET analysis. In Perspectives of Systems Informatics,
pages 227–242. Springer, 2012.

[27] W. Landi and B. G. Ryder. A safe approximate algorithm for interpro-
cedural aliasing. ACM SIGPLAN Notices, 27(7):235–248, 1992.

[28] Y. Liu, C. Xu, and S. Cheung. Characterizing and detecting perfor-
mance bugs for smartphone applications. In ICSE, pages 1013–1024,
2014.

[29] D. Marinov and S. Khurshid. TestEra: a novel framework for auto-
mated testing of Java programs. In 16th IEEE Conference on Auto-
mated Software Engineering, page 22, 2001.

[30] M. Naik and A. Aiken. Conditional must not aliasing for static race
detection. ACM SIGPLAN Notices, 42(1):327–338, 2007.

[31] K. Nguyen and G. Xu. Cachetor: Detecting cacheable data to remove
bloat. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 268–278. ACM, 2013.

[32] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: Detecting perfor-
mance problems via similar memory-access patterns. In ICSE, pages
562–571. IEEE, 2013.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing en-
gine for c. In Proceedings of the 10th European Software Engineering
Conference, pages 263–272, 2005.

[34] O. Shacham, M. Vechev, and E. Yahav. Chameleon: adaptive selection
of collections. In ACM SIGPLAN Notices, volume 44, pages 408–418.
ACM, 2009.

[35] A. Shankar, M. Arnold, and R. Bodik. Jolt: lightweight dynamic
analysis and removal of object churn. In ACM SIGPLAN Notices,
volume 43, pages 127–142. ACM, 2008.

[36] L. Song and S. Lu. Statistical debugging for real-world performance
problems. In OOPSLA, NY, USA, 2014. ACM.

[37] M. Sridharan and R. Bodı́k. Refinement-based context-sensitive
points-to analysis for Java. ACM SIGPLAN Notices, 41(6):387–400,
2006.

[38] B. Steensgaard. Points-to analysis in almost linear time. In PLDI,
pages 32–41. ACM, 1996.

[39] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot-a Java bytecode optimization framework. In Proceedings of
the 1999 Conference of the Centre for Advanced Studies on Collabo-
rative research, page 13. IBM Press, 1999.

[40] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer
analysis for c programs. ACM SIGPLAN Notices, 30(6):1–12, 1995.

[41] G. Xu. CoCo: sound and adaptive replacement of Java collections. In
ECOOP 2013–Object-Oriented Programming, pages 1–26. Springer,
2013.

[42] G. Xu and A. Rountev. Detecting inefficiently-used containers to avoid
bloat. ACM SIGPLAN Notices, 45(6):160–173, 2010.

[43] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky. Go with
the flow: profiling copies to find runtime bloat. In ACM SIGPLAN
Notices, volume 44, pages 419–430. ACM, 2009.

[44] G. Xu, M. Arnold, A. Rountev, and G. Sevitsky. Finding low utility
data structures. In PLDI, pages 174–186. ACM, 2010.

[45] X. Yu, S. Han, D. Zhang, and T. Xie. Comprehending performance
from real-world execution traces: A device-driver case. In ASPLOS,
pages 193–206. ACM, 2014.

[46] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on
performance bugs. In Mining Software Repositories. ACM, 2012.

