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Abstract

This paper presents a newclient-drivenpointer analysis algorithm that automatically ad-
justs its precision in response to the needs of client analyses. Using five significant error
detection problems as clients, we evaluate our algorithm on18 real C programs. We com-
pare the accuracy and performance of our algorithm against several commonly-used fixed-
precision algorithms. We find that the client-driven approach effectively balances cost and
precision, often producing results as accurate as fixed-precision algorithms that are many
times more costly. Our algorithm works because many client problems only need a small
amount of extra precision applied to selected portions of each input program.

1 Introduction

Pointer analysis is critical for effectively analyzing programs written in languages
such as C, C++, and Java, which make heavy use of pointers and pointer-based data
structures. The goal of pointer analysis is to disambiguateindirect memory refer-
ences so that subsequent compiler passes have a more accurate view of program
behavior. In this sense, pointer analysis is not a stand-alone task: its purpose is to
provide pointer information to otherclient analyses.

Existing pointer analysis algorithms differ considerablyin their precision. Previous
research has generally agreed that more precise algorithmsare often significantly
more costly to compute, but previous work has disagreed on whether more pre-
cise algorithms yield more accurate results and whether these results are worth the
additional cost [30,28,19,10,26]. In fact, a recent surveyby Hind claims that the
choice of pointer analysis algorithm should be dictated by the needs of the client
analyses [18].? This work is supported by NSF grants CCR-0085792, EIA-0303609, ACI-0313263,
ACI-9984660, DARPA Contract #F30602-97-1-0150, and an IBMFaculty Partnership
Award.
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p = safe_string_copy("Good"); char * safe_string_copy(char * s)
q = safe_string_copy("Bad"); {
r = safe_string_copy("Ugly"); if (s != 0) return strdup(s);

else return 0;
}

Fig. 1. Context-insensitive pointer analysis hurts accuracy, but whether or not that matters
depends on the client analysis.

In this paper we present a newclient-drivenpointer analysis algorithm that ad-
dresses this viewpoint directly: it automatically adjustsits precision to match the
needs of the client. The key idea is to discover where precision is needed by run-
ning a fast initial pass of the client. The pointer and clientanalyses run together in
an integrated framework, allowing the client to provide feedback about the qual-
ity of the pointer information that it receives. Using theseinitial results, our algo-
rithm constructs a precision policy customized to the needsof the client and input
program. This approach is related to demand-driven analysis [20,17] but solves a
different problem: while demand-driven algorithms determine which parts of the
analysis need to be computed, client-driven analysis determines which parts need
to be computed using more precision.

As an example of how different clients require different amounts of precision, con-
sider a context-insensitive analysis of the string copyingroutine in Figure 1: the
pointer parameters merges information from all the possible input strings and
transfers it to the output string. For a client that associates dataflow facts with string
buffers, this could severely hurt accuracy—the appropriate action is to treat the rou-
tine context-sensitively. However, for a client that is notconcerned with strings, the
imprecision is irrelevant.

We evaluate our algorithm using five security and error detection problems as
clients. These clients are demanding analysis problems that stress the capabilities
of the pointer analyzer, but with adequate pointer analysissupport they can detect
significant and complex program defects. We compare our algorithm against four
fixed-precision algorithms on a suite of 18 real C programs. We measure the cost in
terms of time and space, and we measure the client’s accuracysimply as the num-
ber of errors reported: the analysis is conservative, so fewer error reports always
indicates fewer false positives.

This paper, which is an extended version of earlier work [16], makes the following
contributions. (1) We present a client-driven pointer analysis algorithm that adapts
its precision policy to the needs of client analyses. For ourfive error detection
clients, this algorithm effectively discovers where to apply more analysis effort
to reduce the number of false positives. (2) We present empirical evidence that
different analysis clients benefit from different kinds of precision—flow-sensitivity,
context-sensitivity, or both. In most cases only a small part of each input program
needs such precision; our algorithm works because it automatically identifies these
parts. (3) Our results show that whole-program dataflow analysis is an accurate and
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efficient tool for error detection when it is given adequate pointer information.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 describes the implementation of our framework, and Section 4 presents our
client-driven algorithm. Section 5 describes our experimental methodology. Sec-
tion 6 presents our results, and we conclude in Section 7.

2 Related Work

Previous work in program analysis, including pointer analysis, has explored ways
to reduce the cost of analysis while still producing an accurate result. In this section,
we compare our client-driven algorithm with this previous work. We also describe
recent related work in error detection, focusing on the roleof pointer analysis.

2.1 Precision versus cost of analysis

Iterative flow analysis [25] is an algorithm that adjusts itsprecision automatically
in response to the quality of the results. Plevyak and Chien use this algorithm to
determine the concrete types of objects in programs writtenusing the Concurrent
Aggregates object-oriented language. When imprecision inthe analysis causes a
type conflict, the algorithm can performfunction splitting, which provides context-
sensitivity, ordata splitting, which divides object creation sites so that a single
site can generate objects of different types. Brylow and Palsberg use a compara-
ble algorithm to control the level of context-sensitivity for deadline analysis of
real-time, interrupt-driven software [3]. The basic mechanism behind both of these
approaches is similar to ours, but it differs in important ways. First, since the type
of an object cannot change, iterative flow analysis does not include flow-sensitivity.
By contrast, our approach supports a larger class of client analyses, known astype-
stateproblems [32], which include flow-sensitive problems. Moresignificantly, our
algorithm manages the precision of both the client and the pointer analysis, allow-
ing it to detect when pointer aliasing is the cause of information loss.

Demand-driven pointer analysis [17] addresses the cost of pointer analysis by com-
puting just enough information to determine the points-to sets for a specific subset
of the program variables. Client-driven pointer analysis is similar in the sense that
it is driven by a specific query into the results. However, thetwo algorithms use this
information to manage different aspects of the algorithm. Demand-driven pointer
analysis is a fixed-precision analysis that computes only the necessary part of the
solution. Client-driven analysis dynamically varies precision but always computes
an exhaustive solution. The two ideas are complementary andcould be combined
to obtain the benefits of both.
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Demand interprocedural dataflow analysis [20] also avoids the cost of exhaustive
program analysis by focusing on the computation of specific dataflow facts. This
algorithm produces precise results in polynomial time for aclass of dataflow anal-
yses problems called IFDS—interprocedural, finite, distributive, subset problems.
However, this class does not include pointer analysis, particularly when it supports
strong updates, which removes the distributive property.

Combined pointer analysis [36] uses different pointer algorithms on different parts
of the program. This technique divides the assignments in a program into classes
and uses a heuristic to choose different pointer analysis algorithms for the different
classes. Zhang et al. evaluate this algorithm by measuring the number of possible
objects accessed or modified at pointer dereferences. Instead of using a heuristic,
client-driven pointer analysis is guided by feedback: it determines the need for
precision dynamically by monitoring the analysis.

A number of previous papers have compared different pointeranalysis algorithms,
using both direct measurements (sizes of computed points-to sets) and indirect
measurements (transitive effects on subsequent analyses). We find that the aver-
age points-to set size is not a good measure of the analysis because it treats all
pointers as equals. For example, one algorithm might be moreaccurate than an-
other by reducing the points-to set of a single variable by one pointer. While the
overall measure is hardly affected, that one variable couldbe the critical distinc-
tion for the client. We also find that error detection is more demanding than the
clients used in previous studies: the transitive benefits ofhigher precision are more
apparent for our clients.

2.2 Pointer analysis for error detection

One of the major challenges in analyzing C programs is to construct a model of
the store that is precise enough to support accurate error detection. Previous work
has generally settled for a low-cost fixed-policy pointer analysis, which computes
minimal store information without overwhelming the cost oferror detection analy-
sis [27,2,11]. Unfortunately, this store information often proves inadequate. Expe-
riences with the ESP system [7] illustrate this problem: while its dataflow analysis
engine is more powerful and more efficient than ours, the imprecision of its under-
lying pointer analysis can block program verification. The authors solve this prob-
lem by manually cloning procedures in the application in order to mimic context-
sensitivity. By contrast, our solution instead automatically identifies these proce-
dures that require context-sensitivity. Our algorithm detects when imprecision in
the store model hampers the client, and our algorithm automatically increases pre-
cision in the parts of the program where it’s needed.

More recent work has focused on developing a pointer analysis specifically for error
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detection [24], using the format string vulnerability as a basis for evaluation. The
internal representation used for this analysis, calledIPSSA, is very similar to our
interprocedural factored def-use chains (see Section 3). Nevertheless, the approach
differs from ours in several ways. First, the analysis algorithm is fixed precision: the
authors improve performance by making ana priori decision about which parts of
the application programs need more precision (the so-called hot locations). Second,
it uses unsound assumptions to reduce the number of false positives. Our algorithm
is sound (within the limitations described later), which makes it applicable to other
clients, such as optimization, which cannot tolerate falsenegatives. Furthermore,
sound analysis allows us to validate programs as bug-free. Finally, we show later in
this paper that detecting format string vulnerabilities isnot a problem that requires
very precise analysis: almost perfect results are producedby context-insensitive
analysis.

3 Analysis Framework

Our analysis framework is part of the Broadway compiler system, which supports
high-level analysis and optimization of C programs [15,13]. In this section we de-
scribe the details of this framework, including the overallarchitecture, the repre-
sentation of pointer information, and the analysis algorithm. Our framework has
two enabling features that are critical to our client-driven analysis algorithm. First,
it solves both the pointer and client analysis problems simultaneously, which al-
lows it to monitor and control their interaction. Second, itallows precision to be
specified at a fine grain: context-sensitivity can be controlled on a per-procedure
basis, and flow-sensitivity can be controlled on a per-memory-location basis. The
client-driven algorithm supplies theprecision policy that decides which procedures
to make context-sensitive and which memory locations to make flow-sensitive.

Table 1 summarizes the design dimensions of our analysis framework. It brings
together several commonly-used algorithms for pointer anddataflow analysis, each
with its own cost and precision characteristics [1,5,9,12,22]. The main contribution
of this paper is not a new addition to these algorithms, but rather a mechanism for
combining different algorithms during analysis and a policy for choosing which
algorithm to use on which parts of the input programs.

We use a lightweight annotation language to specify the client analysis problems [14].
The error checking clients that we present in Section 5 are all designed to detect
improper or unsafe use of system library calls in application programs. The lan-
guage is designed to extend compiler support to software libraries; it is not used to
describe the application programs themselves. The language allows us to concisely
summarize the pointer behavior of library routines, and it provides a way to define
new library-specific dataflow analysis problems.
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Feature Setting
Representation Points-to sets using storage shape graph
Flow-sensitivity Configurable—on a per-object basis
Context-sensitivity Configurable—on a per-procedure basis
Assignments Uni-directional (subset-based)
Strong updates Yes–when applicable (see discussion)
Flow dependences Factored use/def chains
Struct/union fields Optional—turned on by default
Program scope Whole-program, interprocedural
Heap object naming By allocation site (see discussion)
Pointer arithmetic Limited to pointers within an object
Arrays All elements represented by a single node

Table 1
Specific features of our pointer analysis framework.

The remainder of this section describes our analysis framework, which provides the
underlying analysis mechanisms. The framework consists ofthe following major
components:� Program representation: a traditional intermediate representation consisting of

simple statements organized into a control-flow graph.� Memory representation: a storage shape graph in which the vertices represent
memory locations (variables and heap objects), and the edges represent points-to
relationships.� Analysis algorithm: an iterative dataflow analysis algorithm that simultaneously
computes pointer information and solves client dataflow analysis problems.

3.1 Program representation

Our internal program representation supports the analysisframework in three ways:
(1) it represents C code in a canonical form that consists of sequences of simple op-
erations organized into a control-flow graph, (2) it enableswhole-program analysis
by bringing together all the procedures in a program (even across multiple source
files) and organizing them into a call graph, (3) it provides per-procedure context
sensitivity through procedure cloning.

Our compiler accepts as input a set of C source files, which it processes in several
ways in preparation for analysis. In particular, it dismantles the code into a medium-
level intermediate representation. This IR consists of simple assignment statements,
similar to three-address instructions, organized into basic blocks, which are in turn
organized into a control-flow graph. This representation preserves some of the high-
level constructs of C, such asstruct types andunion types, and array indexing.

Our system implements per-procedure context sensitivity by altering the program
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Fig. 2. Our framework implements context sensitivity by cloning. (a) Context insensitivity
allows unrealizable paths: information generated atfoo() (1) is merged at the shared
procedureyadda() (2) and flows to the call site inbar() (3). (b) With cloning(4), the
two paths are kept separate.

representation to make each calling context explicit. To apply context sensitivity to
a procedure our compiler creates a logical clone of the procedure for each of its call
sites. Figure 2 shows an example of this cloning process on a program’s call graph.
In the figure theyadda() procedure is used at two different call sites. Cloning
the procedure provides a separate copy for each call site. This approach provides a
uniform view of the program structure, independent of context sensitivity. Specif-
ically, since our analysis algorithm associates dataflow facts with program points,
cloning a procedure provides a separate set of program points, thereby keeping
dataflow facts from the different calling contexts separate. Recent research has pro-
duced more efficient methods of implementing context-sensitivity [23,34,35], but
we show in Section 6 that the amount of context-sensitivity needed is typically
small.

To analyze a context-insensitive procedure we create a single instantiation and
merge the information from all of its call sites. Since our analysis is interprocedu-
ral, we still visit all of the calling contexts. However, when no changes occur to the
input flow values, the analyzer can often skip over a context-insensitive procedure
call, which helps the analysis converge quickly. The main drawback of context-
insensitive analysis is that it suffers from the unrealizable paths problem [35]: anal-
ysis information from one call site flows back to all the othercall sites. Figure 2
shows how this problem can affect dataflow analysis. Withoutcontext sensitivity,
dataflow information merges at the shared procedureyadda() and flows back to
all call sites. As a result dataflow information fromfoo() flows tobar(), an un-
realizable path. Cloning the shared procedure keeps separate the information from
the two callers.
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3.2 Memory representation

Our representation of the objects in a program is based on thestorage shape graph [4],
adapted for C programs, and it includes a number of improvements developed in
more recent work [9,22,35]. The memory representation plays two important roles
in the analysis: (1) it manages the memory abstraction, including the granularity of
the memory model and the mapping from abstract memory locations to concrete
memory locations, and (2) it provides per-object flow sensitivity by managing how
flow values are associated with objects. For flow-sensitive objects the system builds
factored def-use chains and associates a separate flow valuewith each def; for flow-
insensitive objects the system only maintains a single flow value and does not need
to compute reaching definitions.

The nodes of our storage shape graph represent all addressable objects in memory,
including variables, structures, arrays, and heap allocated memory. We decompose
complex objects into finer structures in order to more accurately model their be-
havior. For example, each field of a structure is representedby a separate node, and
each instantiation of a structure includes a full set of these field nodes. We represent
all the elements of an array with a single node.

The nodes that represent program variables (local and global) are indexed by their
declarations. This scheme produces the expected behavior for context-sensitive pro-
cedures: each clone of the procedure has its own set of local variables, and thus its
own set of nodes, thereby keeping the analysis information separate in each calling
context.

We index heap-allocated memory according the program location of the allocation—
typically, a call tomalloc() orcalloc(). By using the program location as the
index, we obtain the same naming behavior for heap allocatedmemory as for local
variables: in the context-insensitive case, our system generates one node for each
static call tomalloc(), while in the context-sensitive case, it generates one node
for each call tomalloc() in each procedure clone.

void main() void foo(int * p)
{ {

int x; if (some_condition)
int y; (*p) = 6;

else
foo(&x); (*p) = 7;
foo(&y); // -- Phi function: merge x or y ?

} }

Fig. 3. Our variation of SSA form separates� functions that occur in different contexts.

For flow-sensitive objects our framework records their usesand defs and organizes
them into factored use-def chains [31]. This data structureis similar in spirit to SSA
form [6], and it is well-suited for efficient dataflow analysis, especially for sparse
problems, such as pointer analysis, constant propagation,and many kinds of error
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checking. The analyzer associates dataflow facts, such as points-to sets and client
lattice flow values, with each def of an object in memory (nodein the storage shape
graph). At a use of the object, the analysis can quickly retrieve the current values
by following the use-def chain.

Our representation of factored use-def chains differs fromtraditional SSA form
because it is designed to overcome some of the limitations ofSSA form. These
limitations become apparent when performing interprocedural analysis in the pres-
ence of pointers. The example code in Figure 3 shows the two ofthese problems.
The procedurefoo modifies a variable indirectly through a pointer, but since the
modification occurs in a conditional branch, SSA form requires a� function at the
confluence point to merge the flow values. The first problem is that the procedure is
called in two places, with two different input values forp, address ofx and address
of y. However, the mergepoint infoo only merges one of the variables, depend-
ing on the calling context. The second problem is that the analyzer only discovers
the need for these mergepoints during the pointer analysis.Therefore, we cannot
separate the computation of use-def chains from the pointeranalysis.

Previous work addresses this problem by creating a synthetic name for the target
of the pointerp and adding a mergepoint for that synthetic variable [35]. Using
this approach, the analyzer must compute a binding between actual arguments and
synthetics arguments at each call site. Our approach is simpler and more flexible:
we store the use-def chains in a separate data structure and avoid modifying the
program at all. The analyzer represents the use-def chains for each variable as a
directed graph consisting of use nodes and def nodes, each ofwhich is associated
with a program location. For the example in Figure 3, our analyzer creates a sepa-
rate set of use-def chains forx andy. In addition, it creates these use-def chains on
the fly, as it discovers each calling context and set of input arguments.

For flow-insensitive objects our framework only maintains asingle flow value and
simply accumulates updates into that value. Flow insensitivity significantly reduces
the cost of analysis because there is no need to compute reaching definitions for
these objects. This savings is particularly significant forglobal variables and heap-
allocated memory, whose reaching definitions can span many procedures. For ex-
ample, a frequently modified global variable might have a complex web of use-def
chains that wind throughout the whole program.

// Traditional Our implementation
p = &x; // p -> {x} p -> {x}
q = p; // q -> {x} q -> {x}
p = &y; // p -> {x,y}, q -> {x,y} p -> {x,y}, q -> {x}

Fig. 4. Our implementation of flow-insensitive analysis is more precise than the traditional
definition because we respect the ordering of the statements.

Our implementation of flow insensitivity deviates from the traditional definition
of flow insensitivity because we still visit statements in program order. As a result,
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our flow-insensitive analysis can be more precise than an analysis that computes the
same result independent of the order in which it visits statements. Figure 4 shows
an example that highlights the difference in our algorithm.In a traditional flow-
insensitive analysis, the presence of an assignment, such asq = p, forces the two
variables to always be equal. In our implementation, we takeadvantage of the fact
that the second assignment top occurs after the assignmentq = p, and therefore
it cannot affect the value ofq. Note that we continue to use iterative analysis even
for flow-insensitive variables, which ensures correctnessin loops.

For each flow-sensitive object we store its defs in a list thatis ordered so that we can
quickly find reaching definitions at any program location [35]: a def is never pre-
ceded in the list by another def that dominates it. We can find the nearest reaching
def by searching the list linearly: the first def that dominates the current program
location is the nearest reaching definition. We use the same algorithm to insert new
defs in the list. This approach is not as fast, asymptotically, as the dominator skele-
ton tree proposed by Chase et al. [4], but it works well in practice.

3.3 Analysis algorithm

The analysis algorithm performs two main tasks. First, it analyzes statements in the
program and builds our modified SSA form, which represents data dependences
for the various nodes in the program, including pointers. Second, it manages client
dataflow analysis problems through a series of hooks. Overall convergence of the
analysis occurs when all of the individual analyses converge.

Our framework solves both the pointer analysis and client analyses using the it-
erative dataflow analysis algorithm introduced by Kildall [21]. We extend the al-
gorithm in a straightforward way to interprocedural analysis: when the analyzer
encounters a procedure call, it immediately begins analyzing the body of the callee
procedure. The analysis framework computes dataflow facts by evaluating each
statement in program order, looking up flow values for the uses of variables, and
updating flow values for defs of variables. It manages this process using a worklist
of basic blocks for each procedure.

Flow values come in two varieties: points-to sets (for pointer analysis) and client
flow values. Points-to sets are simply sets of nodes in the storage shape graph. For
points-to sets the latticemeetfunction, denoted by theu operator, is the set union
operation. Client flow values are named types, organized into an explicit lattice
structure. For example, we could model colors using a simplelattice consisting of
“Red”, “Green”, and “Blue”, and the pairwise combinations “Yellow”, “Purple”,
“Aqua”. The meet function would specify, for example, that “Red” u “Blue” =
“Purple”. This information is specified using our annotation language, which we
describe in Section 5.2.
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The analysis algorithm includes many engineering details,but for the purposes of
describing the client-driven analysis algorithm we only need to describe two parts
in detail: assignments and procedure calls. These two components use the lattice
meet function to implement flow insensitivity and context insensitivity, respec-
tively. Later in the paper, we show how the client-driven algorithm monitors these
components and adjusts precision to avoid using the meet function.

We can divide assignments into two general categories: assignments that derefer-
ence a pointer and assignments through a pointer. There are many other assignment
forms, but we can handle them as special cases of, or combinations of these two cat-
egories. In addition, there are other operators, such as field accesses and arithmetic
operators, which our algorithm handles properly but that donot bear on the preci-
sion of the analysis. During this process we also record whendataflow information
changes and update the worklists accordingly.

We evaluate an assignment of the formx = *p using the following steps:

(1) Dereferencep. If p is a flow-sensitive variable, then we find the points-to
set forp by following the use-def chain to its nearest reaching definition and
retrieving the points-to set associated with that def. Ifp is a flow-insensitive
variables, then we retrieve the points-to set associated with the variable itself –
there are no use-def chains. The result of this operation is aset of right-hand-
side nodes,R.

(2) Look up right-hand-side flow values.For each elementr of R, we find the
flow values forr using the same process described above forp. The result
is two sets of flow values, one for the pointer analysis and onefor the client
analysis: (1)Vp, a set of points-to sets, and (2)V, a set of client flow values.
Eachr contributes one points-to set and one client flow value to each set.

(3) Merge right-hand-side flow values.We then compute a single points-to set
and a single client flow value to represent all the possible right-hand-side val-
ues. We use the lattice meet function to compute these values: mp = uVp andm = uV.

(4) Record left-hand-side flow value.If x is a flow-sensitive variable, then we
create a def forx at the current program location and store the flow valuesmp
andm with the def. Ifx is a flow-insensitive variable, then we look up the
current values associated with the variable and merge in thenew values using
the meet function again.

We evaluate an assignment of the form*p = y using the following steps:� Dereferencep. This step is identical to step (1) above, except that we referto the
resulting points-to set asL, the set of left-hand side nodes. Notice that because
our analysis is a “may point to” analysis,p can have multiple targets.� Look up right-hand-side flow values.This step is like step (2) above, except
that we have only one right-hand side,y. The result is a single points-to set and
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client flow value fory, vp andv.� Assign to left-hand sides.Since our analysis supports strong updates, this step
has two cases: (1)L contains exactly one flow-sensitive variable, so we apply a
strong update on the flow values, (2)L contains multiple targets or the targets are
flow-insensitive, in which case we apply a weak update. A strong update allows
the analyzer to store a new flow value independent of any previous defs of the
variable. A weak update forces the analyzer to use the meet function to merge
the new flow value with that of the previous reaching definition.

Finally, we evaluate a procedure callproc(x, y, ...) using a series of as-
signments from the actual parameters to the formal parameters. This process is
identical to that of the first type of assignment described above. Notice, though, that
for context insensitive procedures, the assignment effectively occurs at the entry of
the procedure, and therefore produces only a single def for the formal parameter.
This forces the analysis to merge the flow values from each callsite using the meet
function.

4 Client-driven algorithm

Our client-driven pointer analysis is a two-pass algorithm. The key idea is to use
a fast low-precision pointer analysis in the first pass to discover which parts of the
program need more precision. The algorithm uses this information to construct a
fine-grained customized precision policy for the second pass. This approach re-
quires a tight coupling between the pointer analysis and theclient analyses: in ad-
dition to providing memory access information to the client, the pointer analyzer
receives feedback from the client about the accuracy of the client flow values. For
example, the client analysis can report when a confluence point, such as a control-
flow merge or context-insensitive procedure call, adversely affects the accuracy of
its analysis. The simple interface between the pointer analyzer and the client is the
core mechanism that allows the framework to tailor its precision for the particular
client and target program.

The implementation of this algorithm (see Figure 5) adds twocomponents to our
analysis framework: amonitor that detects and tracks loss of information during
program analysis, and anadaptorthat uses the output of the monitor to adjust the
precision. During program analysis, the monitor identifiesthe places where infor-
mation is lost, and it uses a dependence graph to track the memory locations that
are subsequently affected. When analysis is complete the client performs its tasks—
after which it reports back to the adaptor with a set of memorylocations that are not
sufficiently accurate for its purposes. Borrowing terminology from demand-driven
analysis, we refer to this set as thequery. The adaptor starts with the locations in
the query and tracks their values back through the dependence graph. The nodes
and edges that make up this back-trace indicate which variables and procedures
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Fig. 5. Our analysis framework allows client analyses to provide feedback, which drives
corrective adjustments to the precision.

need more precision. The framework then reruns the analysiswith the customized
precision policy.

Although the algorithm detects information loss during analysis, it waits until the
analysis is complete before changing precision. One reasonfor this is pragmatic:
our framework cannot change precision during analysis and recompute the results
incrementally. The other reason is more fundamental: during analysis it is not read-
ily apparent that imprecision detected in a particular pointer value will adversely
affect the client later in the program. For example, a program may contain a pointer
variable with numerous assignments, causing the points-toset to grow large. How-
ever, if the client analysis never needs the value of the pointer then it is not worth
expending extra effort to disambiguate it. By waiting to seeits impact, we signifi-
cantly reduce the amount of precision added by the algorithm.

4.1 Polluting Assignments

The monitor runs along side the main pointer analysis and client analysis, detect-
ing information loss and recording its effects. Loss of information occurs when
conservative assumptions about program behavior force theanalyzer to merge flow
values. The analysis algorithm described in Section 3.3 contains several steps that
use the lattice meet function to compute these conservativevalues. In fact, any
place where the analyzer uses the lattice meet function can potentially result in loss
of information. In particular, we are interested in the cases where accurate, but con-
flicting, information is merged, resulting in an inaccuratevalue—we refer to this as
apolluting assignment.

For “may” pointer analysis smaller points-to sets indicatemore accurate information—
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a points-to set of size one is the most accurate. In this case the pointer relationship is
unambiguous, and assignments through the pointer allow strong updates [4]. There-
fore, a pointer assignment is polluting if it combines two ormore unambiguous
pointers and produces an ambiguous pointer.

For the client analysis, information loss is problem-specific, but we can define it
generally in terms of dataflow lattice values. We take the compiler community’s
view of lattices: higher lattice values represent better analysis information. Lower
lattice values are more conservative, with lattice bottom denoting the worst case.
Therefore, a client update is polluting if it combines a set of lattice values and
produces a lattice value that is lower than any of the individual members.

We classify polluting assignments according to their cause. In our framework there
are three ways that conservative analysis can directly cause the loss of informa-
tion [8]. We will refer to them asdirectly polluting assignments, and they can occur
in both the pointer analysis and the client analysis:� Context-insensitive procedure call: the parameter assignment merges conflicting

information from different call sites.� Flow-insensitive assignment: multiple assignments to a single memory location
merge conflicting information.� Control-flow merge: the SSA� function merges conflicting information from
different control-flow paths.

The current implementation of the algorithm is only concerned with the first two
classes. It can detect loss of information at control-flow merges, but it currently has
no corrective mechanism, such as node splitting or path sensitivity, to remedy it.

In addition to these classes, there are two kinds of polluting assignments that are
caused specifically by ambiguous pointers. These assignments are critical to the
client-driven algorithm because they capture the relationship between accuracy in
the pointer analysis and accuracy in the client. We refer to them asindirectly pol-
luting assignments:� Weak access: the right-hand side of the assignment dereferences an ambiguous

pointer, which merges conflicting information from the pointer targets.� Weak update: the left-hand side assigns through an ambiguous pointer, forcing a
weak update that loses information.

4.2 Monitoring Analysis

During analysis, the monitor detects the five kinds of polluting assignments de-
scribed above, both for the client analysis and the pointer analysis, and it records
this information in a directed dependence graph. The goal ofthe dependence graph
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Code Imprecision Effect Monitor action
foo(5); Context insensitive Param to foo =? Add a node forfoo
foo(6); Labelneeds context-sensitivity
bar(&a); Context insensitive Param to bar Add a node forbar
bar(&b); points-toa or b Labelneeds context-sensitivity
x = 5; Flow insensitive x =? Add a node forx
x = 6; Labelneeds flow-sensitivity
p = &a; Flow insensitive p points-toa or b Add a node forp
p = &b; Labelneeds flow-sensitivity
if (c) Path insensitive x =? Currently no action
x = 5;
else
x = 6;

Table 2
For each type of polluting assignment the monitor adds a nodeinto the graph and labels it
according to the action needed to improve the precision.

Code Initially Effect Monitor action
x = y; y =? x =? Add a node forx

Add edgex! y

p = q; q points-toa or b p points-toa or b Add a node forp
Add edgep! q

Table 3
Complicit assignments track imprecision backwards acrossassignments, allowing the sys-
tem to find the polluting assignments that are the sources of the imprecision.

is to capture the effects of polluting assignments on subsequent parts of the pro-
gram.

Each node in the graph represents a memory location whose analysis information,
either points-to set or client flow value, is polluted. The graph contains a node for
each location that is modified by a directly polluting assignment, and each node
has a label that lists all of the directly polluting assignments to that memory loca-
tion. The monitor builds this graph online by adding nodes tothe graph and adding
assignments to the labels as they are discovered during analysis. These nodes rep-
resent the sources of polluted information, and the labels indicate how to fix the im-
precision. Table 2 shows examples of polluting assignmentsand the actions taken
for both pointers and constant propagation as an example client.

The dependence graph contains two types of directed edges. The first type of edge
represents an assignment that passes polluted informationfrom one location to an-
other. We refer to this as acomplicit assignment(see Table 3), and it occurs when-
ever the memory locations on the right-hand side are alreadyrepresented in the
dependence graph. The monitor creates nodes for the affected left-hand side lo-
cations and adds edges from those nodes back to the right-hand side nodes. Note
that the direction of the edge is opposite the direction of assignment so that we can
trace dependences backward in the program. The second type of edge represents
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indirectly polluting assignments. The monitor adds nodes for the left-hand side lo-
cations and adds a directed edge from each of these nodes backto the offending
pointer variable. This kind of edge is unique to our analysisbecause it allows our
algorithm to distinguish between the following two situations: (1) an unambiguous
pointer whose target is polluted, and (2) an ambiguous pointer whose targets have
precise information.

if (cond) x = 5;
  else    x = 10;

p = &x;

z = (*p); y=10 x=5

p

=

p

x

x = 5; y = 10;

if (cond) p = &x;
  else    p = &y;

z = (*p);

(1) (2)

Fig. 6. Both code fragments assign bottom toz: in (1) x is responsible; in (2)p is respon-
sible.

Figure 6 illustrates this distinction using constant propagation as an example client.
Both code fragments assign lattice bottom toz, but for different reasons. Case (1)
is caused by the polluted value ofx, so the monitor adds an edge in the dependence
graph fromz back tox. Case (2), however, is caused by the polluted value of the
pointerp, so the monitor adds an edge fromz to p.

We store the program locations of all assignments, but for performance reasons the
monitor dependence graph is fundamentally a flow-insensitive data structure. As a
result, the algorithm cannot tell which specific assignments to a memory location
affect other locations. For example, a location might have multiple polluting as-
signments, some of which occur later in the program than complicit assignments
that read its value. In most cases, this simplification does not noticeably hurt the al-
gorithm, but occasionally it leads to overly aggressive precision, particularly when
it involves global variables that are used in many differentplaces and for different
purposes.

4.3 Diagnosing Information Loss

After the first pass of the analysis, the client provides feedback to the adaptor, in
the form of a query, indicating where it needs more accuracy.The adaptor uses the
dependence graph to construct a precision policy specifically tailored to obtain the
desired accuracy. The output of the adaptor is thus a set of memory locations that
need flow-sensitivity and a set of procedures that need context-sensitivity. The new
precision policy applies to both the pointer analysis and the client analysis.

The client query consists of a set of memory locations that have “unsatisfactory”
flow values. For example, if the client tests a variable for a particular flow value but
finds lattice bottom, it could add that variable to the query.The goal of the adaptor
is to improve the accuracy of the memory locations in the query. The correspond-
ing nodes in the dependence graph serve as a starting point, and the set of nodes
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reachable from those nodes represents all the memory locations whose inaccuracy
directly or indirectly affects the flow values of the query. The key to the efficiency
of our algorithm is that this subgraph is typically much smaller than the whole
graph—we rarely to need to fixall of the polluting assignments.

The adaptor starts at the query nodes in the graph and visits all of the reachable
nodes in the graph. This traversal effectively computes a backwards slice of the pro-
gram that includes all the assignments that may generate or propagate inaccuracy
to the nodes in the query. The adaptor collects the labels on the nodes and applies
the specified corrective measures: for polluting parameterassignments it adds the
corresponding procedure to the set of procedures that need context-sensitivity; for
flow-insensitive assignments it adds the corresponding memory location to the set
of locations that need flow-sensitivity.

Before making any changes to the policy, the adaptor checks each proposed pre-
cision enhancement. It verifies that flow-sensitivity will help by making sure that
there are actually multiple assignments to the object. For example, a polluting as-
signment could occur in a loop: a variable has a precise flow value until the second
time we visit the loop body. It might help to peel the loop, butthe current imple-
mentation just prunes out these cases.

To verify that context-sensitivity will help, the adaptor re-evaluates the parameters
at each callsite. For the client analysis, we make sure that the object in question
actually has different values at different call sites. For pointers, we perform two
checks: we make sure that the points-to sets are different atdifferent call sites, and
we check that any client objects reachable from those pointers have different states.
If the final incoming flow values are not different, then we prune the procedure
from the context-sensitive set.

4.4 Chaining precision

In addition to addressing each polluting assignment, the adaptor increases precision
along the path from each polluting assignment back to the original query nodes.
When it finds a node that needs flow-sensitivity, it also applies this additional pre-
cision to all the nodes back along the path. When it makes a procedure context-
sensitive, it also determines the set of procedures that contain all the complicit
assignments back along the path, and it adds that set to the context-sensitive set.
This chaining ensures that intermediate locations preserve the additional accuracy
that comes from fixing the polluting assignments.

By aggressively chaining the precision, we also avoid the need for additional anal-
ysis passes. The initial pass computes the least precise analysis information and
therefore covers all the regions of the program for which more precision might be
beneficial. Any polluting assignments detected in later passes would necessarily
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occur within these regions and thus would already be addressed in the customized
precision policy. We validated this design decision empirically: subsequent passes
typically discover only spurious instances of imprecisionand do not improve the
quality of the client analysis.

5 Experiments

In this section we describe our experiments, including our methodology, the five
error detection clients, and the input programs. The query that these clients provide
to the adaptor consists of the set of memory locations that trigger errors. We com-
pare both the cost and the accuracy of our algorithm against four fixed-precision
algorithms. In Section 6 we present the empirical results.

We run all experiments on a Dell OptiPlex GX-400, with a Pentium 4 processor
running at 1.7 GHz and 2 GB of main memory. The machine runs Linux with the
2.4.18 kernel. Our system is implemented entirely in C++ andcompiled using the
GNU g++ compiler version 3.0.3.

5.1 Methodology

Our suite of experiments consists of 18 C programs, five errordetection problems,
and five pointer analysis algorithms—four fixed-precision pointer algorithms and
our client-driven algorithm. The fixed-precision algorithms consist of the four pos-
sible combinations of flow-sensitivity and context-sensitivity—we refer to them in
the results asCIFI, CIFS, CSFI, andCSFS. For each combination of program, error
problem, and pointer analysis algorithm, we run the analyzer and collect a variety
of measurements, including analysis time, memory consumption, and number of
errors reported.

The number of errors reported is the most important of these metrics. The more
false positives that an algorithm produces, the more time a programmer must spend
sorting through them to find the real errors. Our experience is that this is an ex-
tremely tedious and time consuming task. Using a fast, inaccurate error detection
algorithm is false economy: it trades computer time, which is cheap and plentiful,
for programmer time, which is valuable and limited. We believe that it is preferable
to use a more expensive algorithm that can reduce the number of false positives,
even if it has to run overnight or over the weekend. When two algorithms report the
same number of errors, we compare them in terms of analysis time and memory
consumption.

In some cases, we know the actual number of errors present in the programs. This
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information comes from security advisories published by organizations such as
CERT and SecurityFocus. We have also manually inspected some of the programs
to validate the errors. For the client-driven algorithm we also record the number
of procedures that it makes context-sensitive and the number of memory locations
that it makes flow-sensitive. Unlike previous research on pointer analysis, we do
not present data on the points-to set sizes because this metric is not relevant to our
algorithm.

5.2 Error detection clients

We define the five error detection client analyses using an annotation language [14],
which allows us to define simple dataflow analysis problems that are associated
with a library interface: for each library routine, we specify how it affects the flow
values of the problem. The language also provides a way to test the results of the
analysis and generate reports. For each analysis problem weshow some represen-
tative examples of the annotations.

These error detection problems represent realistic errorsthat actually occur in prac-
tice and can cause serious damage. Like many error detectionproblems, they in-
volve data structures, such as buffers and file handles, thatare allocated on the heap
and manipulated through pointers. The lifetimes of these data structures often cross
many procedures, requiring interprocedural analysis to properly model. Thus, they
present a considerable challenge for the pointer analyzer.

TBD: Show lattices for the error checking clients.

5.2.1 File access errors

Library interfaces often contain implicit constraints on the order in which their
routines may be called. File access rules are one example of this kind of usage
constraint. A program can only access a file between the proper open and close
calls. The purpose of this client analysis is to detect possible violations of this
usage rule. The first line in Figure 7 defines the flow value for this analysis, which
consists of the two possible states, “Open” and “Closed”. Figure 8 (a) depicts the
lattice structure for this dataflow analysis.

To track this state, we annotate the various library functions that open and close
files. Figure 7 shows the annotations for thefopen() function. Theon entry
andon exit annotations describe the pointer behavior of the routine: it returns
a pointer to a new file stream, which points to a new file handle.Theanalyze
annotation sets the state of the newly created file handle to open. At each use of
a file stream or file descriptor, we check to make sure the stateis open. Figure 7
also shows an annotation for thefgets() function, which emits an error if the
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property FileState : { Open, Closed } initially Closed

procedure fopen(path, mode)
{

on_exit { return --> new file_stream --> new file_handle }
analyze FileState { file_handle <- Open }

}

procedure fgets(s, size, f)
{

on_entry { f --> file_stream --> handle }
error if (FileState : handle could-be Closed) "Error: file might be closed";

}

Fig. 7. Annotations for tracking file state: to properly model files and files descriptors, we
associate the state with an abstract “handle”.

file could be closed.

Internal

External

Remote

ClosedOpen

(a) (b)

Fig. 8. Eachproperty annotation implies a dataflow lattice. The nesting structure of the
property values implies the meet function.

5.2.2 Format string vulnerability (FSV)

A number of output functions in the Standard C Library, such as printf() and
syslog(), take a format string argument that controls output formatting. A for-
mat string vulnerability (FSV) occurs when untrusted data ends up as part of the
format string. A hacker can exploit this vulnerability by sending the program a
carefully crafted input string that causes part of the code to be overwritten with
new instructions. These vulnerabilities represent a serious security problem that
have been the subject of many CERT advisories.

To detect format string vulnerabilities we define an analysis that determines when
data from an untrusted source can become part of a format string. We consider data
to be tainted [33,27] when it comes from an untrusted source. We track thisdata
through the program to make sure that all format string arguments areuntainted.

Our formulation of the Taint analysis starts with a definition of the Taint property,
shown at the top of Figure 9, which consists of two possible values,Tainted
andUntainted. We then annotate the Standard C Library functions that produce
tainted data. These include such obvious sources of untrusted data asscanf()
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property Taint : { Tainted, Untainted } initially Untainted

procedure read(fd, buffer_ptr, size)
{

on_entry { buffer_ptr --> buffer }
analyze Taint { buffer <- Tainted }

}

procedure strdup(s)
{

on_entry { s --> string }
on_exit { return --> string_copy }
analyze Taint { string_copy <- string }

}

procedure syslog(prio, fmt, args)
{

on_entry { fmt --> fmt_string }
error if (Taint : fmt_string could-be Tainted) "Error: tainted format string.";

}

Fig. 9. Annotations defining the Taint analysis: taintedness is associated with strings and
buffers and can be transferred between them.

andread(), and less obvious ones such asreaddir() andgetenv(). Fig-
ure 9 shows the annotations for theread() routine. Notice that the annotations
assign theTainted property to the contents of the buffer rather than to the buffer
pointer. We then annotate string manipulation functions toreflect how taintedness
can propagate from one string to another. The example in Figure 9 annotates the
strdup() function: the string copy has the same Taint value as the input string.

Finally, we annotate all the library functions that accept format strings (including
sprintf()) to report when the format string is tainted. Figure 9 shows the anno-
tation for thesyslog() function, which is often the culprit in FSV attacks.

5.2.3 Remote access vulnerability

Hostile clients can only manipulate programs through the various program inputs.
We can approximate the extent of this control by tracking theinput data and ob-
serving how it is used. We label input sources, such as file handles and sockets, ac-
cording to their level of trust. All data read from these sources is labeled likewise.
The first line of Figure 10 defines the three levels of trust in our analysis—internal
(trusted), locally trusted (for example, local files), and remote (untrusted). Figure 8
(b) depicts the lattice structure for this dataflow analysis. Notice that the nesting
of the three property values creates a vertical lattice, which captures the fact that
Remote is more conservative thanExternal, which is more conservative than
Internal.

We start by annotating functions that return fundamentallyuntrusted data sources,
such as Internet sockets. Figure 10 shows the annotations for thesocket() func-
tion. The level of trust depends on the type of socket being created. When the
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property Trust : { Remote { External { Internal }}}

procedure socket(domain, type, protocol}
{

on_exit { return --> new file_handle }
analyze Trust {
if (domain == AF_UNIX) file_handle <- External
if (domain == AF_INET) file_handle <- Remote

}
}

procedure open(path, flags)
{

on_entry { path --> path_string }
on_exit { return --> new file_handle }
analyze Trust { file_handle <- path_string }

}

Fig. 10. Annotations defining the Trust analysis. Note the cascading effect: we only trust
data from a file handle if we trust the file name used to open it.

program reads data from these sources, the buffers are marked with the Trust level
of the source.

The Trust analysis has two distinguishing features. First,data is only as trustwor-
thy as its least trustworthy source. For example, if the program reads both trusted
and untrusted data into a single buffer, then we consider thewhole buffer to be
untrusted. The nested structure of the lattice definition captures this fact. Second,
untrusted data has a domino effect on other data sources and sinks. For example,
if the file name argument toopen() is untrusted, then we treat all data read from
that file descriptor as untrusted. The annotations in Figure10 implement this policy.

As with the earlier Taint analysis, we annotate string manipulation functions to
propagate the Trust values from one buffer to another. We generate an error message
when untrusted data reaches certain sensitive routines, including any file system
manipulation or program execution routines, such asexec().

5.2.4 Remote FSV

The Taint analysis defined above tends to find many format string vulnerabilities
that are not exploitable security holes. For example, consider a program that uses
data from a file as part of a format string. If a hacker can dictate the name of the
file or can control the contents of the file, then the program contains a remotely
exploitable vulnerability. If a hacker cannot control the file, however, then the pro-
gram still contains a vulnerability, but the vulnerabilitydoes not have security im-
plications.

To identify exploitable format string vulnerabilities more precisely, we can com-
bine the Taint analysis with the Trust analysis, which specifically tracks data from
remote sources. No new dataflow analyses are needed. We simply revise the error
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test so that it only emits an error message when the format string is tainted and it
comes from a remote source.

5.2.5 FTP behavior

The most complex of our client analyses checks to see if a program can behave
like an FTP (file transfer protocol) server. Specifically, wewant to determine if
the program could possibly send the contents of a file to a remote client, where
the name of the file is determined, at least in part, by the remote client itself. This
behavior is not necessarily incorrect: it is the normal operation of the two FTP
daemons that we present in our results. We can use this error checker to make sure
the behavior is not unintended (for example, in a finger daemon) or to validate the
expected behavior of the FTP programs.

We use the Trust analysis defined above to determine when untrusted data is read
from one stream to another. However, we need to know that one stream is associated
with a file and the other with a remote socket. Figure 11 definesthe flow value
to track different type of sources and sinks of data. We can distinguish between
different type of sockets, such as “Server” sockets, which have bound addresses for
listening, and “Client” sockets, which are the result of accepting a connection.

property FDKind : { File, Client, Server, Pipe, Command, StdIO }

procedure write(fd, buffer_ptr, size)
{

on_entry { buffer_ptr --> buffer
fd --> file_handle }

error if ((FDKind : buffer could-be File) &&
(Trust : buffer could-be Remote) &&
(FDKind : file_handle could-be Client) &&
(Trust : file_handle could-be Remote))

"Error: possible FTP behavior";
}

Fig. 11. Annotations to track type of data sources and sinks.In combination with Trust
analysis, we can check whether a call towrite() behaves like FTP.

Whenever a new file descriptor is opened, we mark it accordingto the type. In
addition, like the other analyses, we associate this type with any data read from it.
We check for FTP behavior in thewrite() family of routines, shown in Figure 11,
by testing both the buffer and the file descriptor.

5.3 Programs

Table 4 describes our input programs. We use these particular programs for our
experiments for a number of reasons. First, they are all realprograms, taken from
open-source projects, with all of the nuances and complexities of production soft-
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Program Description Priv LOC CFG nodes Procedures
stunnel 3.8 Secure TCP wrapper yes 2K / 13K 2264 42
pfingerd 0.7.8 Finger daemon yes 5K / 30K 3638 47
muh 2.05c IRC proxy yes 5K / 25K 5191 84
muh 2.05d IRC proxy yes 5K / 25K 5390 84
pure-ftpd 1.0.15 FTP server yes 13K / 45K 11,239 116
crond (fcron-2.9.3) cron daemon yes 9K / 40K 11,310 100
apache 1.3.12 (core only)Web server yes 30K / 67K 16,755 313
make 3.75 make 21K / 50K 18,581 167
BlackHole 1.0.9 E-mail filter 12K / 244K 21,370 71
wu-ftpd 2.6.0 FTP server yes 21K / 64K 22,196 183
openssh client 3.5p1 Secure shell client 38K / 210K 22,411 441
privoxy 3.0.0 Web server proxy yes 27K / 48K 22,608 223
wu-ftpd 2.6.2 FTP server yes 22K / 66K 23,107 205
named (BIND 4.9.4) DNS server yes 26K / 84K 25,452 210
openssh daemon 3.5p1 Secure shell server yes 50K / 299K 29,799 601
cfengine 1.5.4 System admin tool yes 34K / 350K 36,573 421
sqlite 2.7.6 SQL database 36K / 67K 43,333 387
nn 6.5.6 News reader 36K / 116K 46,336 494

Table 4
Properties of the input programs. Many of the programs run inprivileged mode, making
their security critical. Lines of code (LOC) is given both before and after preprocessing.
CFG nodes measures the size of the program in our compiler’s internal representation—the
table is sorted on this column.

ware. Second, many of them are system tools or daemons that have significant secu-
rity implications because they provide privileged services and interact with remote
clients. Finally, several of them are specific versions of programs that are identified
by security advisories as containing format string vulnerabilities. In these cases, we
also obtain subsequent versions in which the bugs are fixed, so that we can confirm
their absence.

We present several measures of program size, including number of lines of source
code, number of lines of preprocessed code, and number of procedures. The table
is sorted by the number of CFG nodes, and we use this ordering in all subsequent
tables.

6 Results

We measure the results for all combinations of pointer analysis algorithms, error
detection clients, and input programs—a total of over 400 experiments. We present
the results in five graphs, one for each error detection client (see Figures 12-16).
Each bar on the graph shows the accuracy and performance of the different anal-
ysis algorithms on the given program. To more easily comparedifferent programs
we normalize all execution times to the time of the fastest algorithm on that pro-
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Fig. 12. Checking file access requires flow-sensitivity, butnot context-sensitivity. The
client-driven algorithm beats the other algorithms because it makes only the file-related
objects flow-sensitive.
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Fig. 13. Detecting format string vulnerabilities rarely benefits from either flow-sensitivity
or context-sensitivity—the client-driven algorithm is only slower because it is a two-pass
algorithm.

gram, which in all cases is the context-insensitive, flow-insensitive algorithm. Each
point on these graphs represents a single combination of error detection client, input
program, and analysis algorithm. We label each point with the number of errors re-
ported in that combination. For example, from Figure 12 we see that for the stunnel
program, the CI-FI and CS-FI algorithms reported 8 errors, while the other algo-
rithms reported 5 errors. The same bar shows that the client-driven algorithm was
as fast as the CI-FS algorithm, but slower than the CI-FI algorithm.
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Fig. 14. Detecting remote access vulnerabilities can require both flow-sensitivity and con-
text-sensitivity. In these cases the client-driven algorithm is both the most accurate and the
most efficient.
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Fig. 15. Determining when a format string vulnerability is remotely exploitable is a more
difficult analysis. The execution time of the client-drivenalgorithm is still competitive with
the fastest fixed-precision algorithm.

For the 90 combinations of error detection clients and inputprograms, we find the
following:� In all cases, the client-driven algorithm equals or beats the accuracyof the best

fixed-precision policy.� In 64 of the 90 cases the client-driven algorithm also equalsor beats theper-
formance of the comparably accurate fixed-precision algorithm. In 29of these
cases the client-driven algorithm is both the fastestand the most accurate.� In 19 of the remaining 23 cases the client-driven algorithm performs within a
factor of two or three of the best fixed-precision algorithm.In many of these
cases the best fixed-precision algorithm is the fastest fixed-precision algorithm,
so in absolute terms the execution times are all low.
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Fig. 16. Detecting FTP-like behavior is the most challenging analysis. In three cases
(WU-FTP, privoxy, and CFEngine) the client-driven algorithm achieves accuracy that we
believe only the full-precision algorithm can match—if it were able to run to completion.

Note that for many of the larger programs the fully flow-sensitive and context-
sensitive algorithm either runs out of memory or requires anintolerable amount of
time. In these cases we cannot measure the accuracy of this algorithm for compari-
son. However, we do find that for the smaller programs the client-driven algorithm
matches the accuracy of the full-precision algorithm.

In general, the only cases where a fixed-policy algorithm performs better than the
client-driven algorithm are those in which the client requires little or no extra pre-
cision. In particular, the format string vulnerability problem rarely seems to benefit
from higher levels of precision. In these cases, though, theanalysis is usually so fast
that the performance difference is practically irrelevant. Figure 18 shows that for
these cases, the analysis time for the client-driven algorithm is typically between 1
and 10 seconds.

For the problems that do require more precision, the client-driven algorithm con-
sistently outperforms the fixed-precision algorithms. Tables 5 and 6 provide some
insight into this result. For each program and each client, we record the number of
procedures that the algorithm makes context-sensitive andthe percentage of mem-
ory locations that it makes flow-sensitive. From these tables, we draw several con-
clusions:� Looking at the columns, we find that different clients have different precision re-

quirements. The file access client, for example, benefits from some flow-sensitivity
but not context-sensitivity; the FTP behavior client requires both. These statistics
show that client analyses often need some extra precision, but only a very small
amount.� While the client-driven algorithm might needlessly analyze some variables with
flow-sensitivity, the amount of such extra precision is minimal. For example,
Figure 13 shows that the Format String Vulnerability requires flow-sensitivity
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Percentage of Memory Locations
set Flow-Sensitive

File FSV Remote Remote FTP
Program Access Access FSV Behavior
stunnel-3.8 0.20 – – – 0.19
pfinger-0.7.8 – 0.53 0.20 0.53 0.61
muh2.05c 0.10 – – 0.07 0.31
muh2.05d 0.10 – – – 0.33
pure-ftpd-1.0.15 0.13 – 0.12 – 0.10
fcron-2.9.3 – – 0.03 – 0.26
apache-1.3.12 0.18 0.91 0.89 1.07 0.83
make-3.75 0.02 – – – 2.19
BlackHole-1.0.9 0.04 – 0.24 – 0.32
wu-ftpd-2.6.0 0.09 0.22 0.34 0.24 0.08
openssh-3.5p1-client 0.06 0.55 0.35 0.56 0.96
privoxy-3.0.0-stable 0.01 – – – 0.10
wu-ftpd-2.6.2 0.09 0.51 0.63 0.53 0.23
bind-4.9.4-REL 0.01 0.23 0.14 0.20 0.42
openssh-3.5p1-server 0.59 – 0.49 – 1.19
cfengine-1.5.4 0.04 0.46 0.43 0.48 0.03
sqlite-2.7.6 0.01 – 1.47 – 1.43
nn-6.5.6 0.17 1.99 1.82 2.03 0.97

Table 5
The percent of all memory locations in each program that the client-driven algorithm
chooses to analyze using flow-sensitivity. We show this value as a percentage because the
overall numbers are large. Dashes indicate that no memory locations were analyzed using
flow-sensitivity.

for only one benchmark,nn, and Table 5 shows that the client-driven algorithm
does not use any flow-sensitivity for ten of the benchmarks, and for the others
excludingnn, it uses very little flow-sensitivity.� From Figures 12-16, we determine that only seven of the 90 problem instances
require any context-sensitivity. From Table 6, we see that only a tiny fraction of
procedures are analyzed in this way, suggesting that while faster techniques may
exist for implementing context-sensitivity, we can actually avoid it altogether in
most cases.

6.1 Client-specific results

The client-driven algorithm reveals some significant differences between the preci-
sion requirements of the five error detection problems.

Figure 12 shows the results for the file access client, which benefits significantly
from flow-sensitivity but not from context-sensitivity. This result makes sense be-
cause the state of a file handle can change over time, but most procedures only
accept open file handles as arguments. We suspect that few of these error reports
represent true errors, and we believe that many of the remaining false positives
could be eliminated using path-sensitive analysis.
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Number of Procedures
set Context-Sensitive

Total File FSV Remote Remote FTP
Program procedures Access Access FSV Behavior
stunnel-3.8 42 - - - - -
pfinger-0.7.8 47 - - 1 - -
muh2.05c 84 - - - - 6
muh2.05d 84 - - - - 6
pure-ftpd-1.0.15 116 - - 2 - 9
fcron-2.9.3 100 - - - - -
apache-1.3.12 313 - 2 8 2 10
make-3.75 167 - - - - -
BlackHole-1.0.9 71 - - 2 - 5
wu-ftpd-2.6.0 183 - - - - 17
openssh-3.5p1-client 441 1 - 10 - -
privoxy-3.0.0-stable 223 - - - - 5
wu-ftpd-2.6.2 205 - 4 - 4 17
bind-4.9.4-REL 210 - 2 1 1 4
openssh-3.5p1-server 601 1 - 13 - -
cfengine-1.5.4 421 - 1 4 3 31
sqlite-2.7.6 387 - - - - -
nn-6.5.6 494 - 1 2 1 30

Table 6
The number of procedures in each program that the client-driven algorithm chooses to
analyze using context-sensitivity. Dashes indicate that no procedures were analyzed using
context-sensitivity.

Figure 13 shows the results for detecting format string vulnerabilities. The tainted-
ness analysis that we use to detect format string vulnerabilities generally requires
no extra precision beyond the CI-FI analysis. We might expect utility functions,
such as string copying, to have unrealizable paths that cause spurious errors, but
this does not happen in any of our example programs. The high false positive rates
observed in previous work [27] are probably due to the use of equality-based anal-
ysis.

Figure 14 shows the results for remote access vulnerabilitydetection. Accurate de-
tection of remote access vulnerabilities requires both flow-sensitivity and context-
sensitivity because the “domino effect” of the underlying Trust analysis causes in-
formation loss to propagate to many parts of the program. Forexample, all of the
false positives in BlackHole are due to unrealizable paths through a single func-
tion calledmy strlcpy(), which implements string copying. The client-driven
algorithm detects the problem and makes the routine context-sensitive, which elim-
inates all the false positives.

Figure 15 shows the results for determining the remote exploitability of format
string vulnerabilities. We find that this client is particularly difficult for the client-
driven analysis, which tends to add too much precision without lowering the false

29



positive count. Interestingly, many spurious FSV errors are caused by typos in the
program: for example,cfengine calls sprintf() in several places without
providing the string buffer argument.

For two of the input programs,muh andwu-ftp, we use two versions of each
program: one version known to contain format string vulnerabilities and a subse-
quent version with the bugs fixed. Our system accurately detects the known vul-
nerabilities in the old versions and confirms their absence in the newer versions.
Our analysis also finds the known vulnerabilities in severalother programs, includ-
ing stunnel, cfengine, sshd, andnamed. In addition, our system reports a
format string vulnerability in the Apache web server. Manual inspection, however,
shows that it is unexploitable for algorithmic reasons thatare beyond the scope of
our analysis.

Figure 16 shows the results for detecting FTP-like behavior, which is the most
challenging of our problems because it depends on the statesof multiple memory
locations and multiple client analyses. Even for this more demanding problem, our
client-driven analysis properly detects exactly those program points in the two FTP
daemons that perform the “get” or “put” file transfer functions. Context-sensitivity
helps eliminate a false positive in one interesting case: inwu-ftp, a data transfer
function appears to contain an error because the source and target could either be
files or sockets. However, when the calling contexts are separated, the combinations
that actually occur are file-to-file and socket-to-socket.

6.2 Program-specific results

This section describes some of the significant challenges that the input programs
present for static analysis.

6.2.1 Function tables

Some of the programs use tables of function pointers that aresimilar to virtual
function tables in C++. Unfortunately, these tables are indexed by strings, making it
practically impossible to reduce the number of possible call targets. As a result, the
dispatch procedures, which access the table and call through the function pointer,
end up significantly polluting the call graph.

6.2.2 Library wrappers

Many of the programs put wrappers around standard library functions or provide
their own implementations of these functions. For example,many programs put
a wrapper aroundstrdup() that handles a null pointer or that exits gracefully
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if memory is exhausted. The client-driven algorithm works well in these cases
because it makes the wrapper functions context-sensitive.Occasionally, however,
there are so many calls to these functions that the cost of context-sensitivity ex-
plodes.

6.2.3 Custom memory allocators

A few of the programs use custom memory allocators. Apache isparticularly prob-
lematic because it implements a region-like allocator withsemantics unlike the
conventional heap or stack allocation. Luckily, there is anoption to compile it us-
ing the regular malloc interface. In general, though, many analysis tools rely on
the semantics of malloc and free to build an accurate model ofheap objects: since
multiple calls to malloc always return distinct chunks of memory, there is no need
to explicitly model the address space.

6.2.4 Internal library state

A number of library routines contain internal state that is not explicitly represented
in their interfaces. The string tokenizer functionstrtok(), in particular, can
present a challenge for static analysis because it stores non-null input strings in
a hidden global variable and returns pointers into the most recently stored string on
null inputs. Figure 17 shows how we can easily model this behavior using the an-
notation language. The global variablestrtok static pointer is synthetic
and only exists for the purposes of analysis. The client-driven analysis often de-
cides to make this variable flow-sensitive in order to distinguish between different
tokenized strings.

global { strtok_static_pointer }
procedure strtok(str, find_str)
{

on_entry { str --> string
find_str --> find_string
strtok_static_pointer --> previous_string }

access { string, find_string }

on_exit {
if (str == 0) { strtok_static_pointer --> previous_string

return --> previous_string }

default { strtok_static_pointer --> string
return --> string }

}
}

Fig. 17. Annotations forstrtok properly model its internal state.
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6.3 Average performance

Figures 18 and 19 show the performance of the different algorithms averaged over
all five clients. These two graphs show the actual execution time in seconds and
the memory usage in megabytes. We see that the client-drivenalgorithm is quite
efficient. In most cases the client-driven algorithm performs almost as well as the
fastest fixed-policy algorithm—the flow-insensitive context-insensitive algorithm.
As we saw in Figures 12-16, in the cases where the client-driven algorithm uses
more resources, it produces a better result: it takes more time, but it eliminates
false positives.
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Fig. 18. The client-driven algorithm performs competitively with the fastest fixed-precision
algorithm.
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Fig. 19. Memory usage is only a significant problem for the fully context-sensitivity algo-
rithms. More efficient implementations exist, but we find that full context-sensitivity is not
needed.
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6.4 Discussion and future work

The current implementation of the client-driven algorithmmanages just two aspects
of precision—flow-sensitivity and context-sensitivity—but precision could be im-
proved by handling other aspects as well. For example, more precise algorithms
exist for handling control-flow and for modeling heap objects. While our algorithm
can detect information loss in these situations, we currently have no mechanism
to address them. We could imagine using path-sensitive techniques when the algo-
rithm detects information loss at a control-flow merge. Similarly, we could employ
shape analysis for heap objects that merge information.

The client-driven approach might also be extended to improve its scalability. One
promising direction would be to first perform an equality-based pointer analysis,
which can scale to programs with a million lines of code [29].We can then apply
our existing client-driven algorithm in places where we detect information loss due
to unification. Finally, our algorithm might be combined with other approaches,
such as demand-driven analysis [20], to yield further improvements in accuracy
and scalability.

7 Conclusions

In this paper we have presented a new client-driven approachto managing the
tradeoff between cost and precision in pointer analysis. Wehave shown that such
an approach is needed because no single fixed-precision analysis is appropriate
for all client problems and programs. The low-precision algorithms do not pro-
vide sufficient accuracy for the more challenging client analysis problems, while
the high-precision algorithms waste time over-analyzing the easy problems. Rather
than choose any of these fixed-precision policies, we exploit the fact that many
client analyses require only a small amount of extra precision applied to specific
places in each input program. Our client-driven algorithm can effectively detect
these places and automatically apply the necessary additional precision.

Looking to the future, we believe that the client-driven algorithm provides a blueprint
for the deployment of more sophisticated but expensive pointer analysis techniques.
For example, shape analysis can be extremely expensive, butperhaps in a client-
driven framework it can be profitably applied to very small portions of the pro-
grams.
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