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Abstract

This paper presents a n@hlent-drivenpointer analysis algorithm that automatically ad-
justs its precision in response to the needs of client aaalydsing five significant error
detection problems as clients, we evaluate our algorithrh®real C programs. We com-
pare the accuracy and performance of our algorithm agagwstal commonly-used fixed-
precision algorithms. We find that the client-driven appfoaffectively balances cost and
precision, often producing results as accurate as fixecigioa algorithms that are many
times more costly. Our algorithm works because many clieoblpms only need a small
amount of extra precision applied to selected portions ol éput program.

1 Introduction

Pointer analysis is critical for effectively analyzing grams written in languages
such as C, C++, and Java, which make heavy use of pointersoamepbased data
structures. The goal of pointer analysis is to disambiguratgect memory refer-
ences so that subsequent compiler passes have a more acgavatf program
behavior. In this sense, pointer analysis is not a standeaiask: its purpose is to
provide pointer information to othetient analyses.

Existing pointer analysis algorithms differ consideraiplyheir precision. Previous
research has generally agreed that more precise algordghenaften significantly
more costly to compute, but previous work has disagreed agtlvein more pre-
cise algorithms yield more accurate results and whetheethesults are worth the
additional cost [30,28,19,10,26]. In fact, a recent survg\Hind claims that the
choice of pointer analysis algorithm should be dictatedH®yrieeds of the client
analyses [18].
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saf e_string_copy("Good"); char * safe_string _copy(char * s)
safe_string_copy("Bad");
safe_string_copy("Ugly"); if (s !=0) return strdup(s);

el se return O;

}
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o n

Fig. 1. Context-insensitive pointer analysis hurts accyrbut whether or not that matters
depends on the client analysis.

In this paper we present a neslient-drivenpointer analysis algorithm that ad-
dresses this viewpoint directly: it automatically adjuisssprecision to match the
needs of the client. The key idea is to discover where pratisi needed by run-
ning a fast initial pass of the client. The pointer and cliamélyses run together in
an integrated framework, allowing the client to providedieack about the qual-
ity of the pointer information that it receives. Using thésigial results, our algo-
rithm constructs a precision policy customized to the negdike client and input
program. This approach is related to demand-driven arsaj¥6i,17] but solves a
different problem: while demand-driven algorithms deter@which parts of the
analysis need to be computed, client-driven analysis aetes which parts need
to be computed using more precision.

As an example of how different clients require different amts of precision, con-
sider a context-insensitive analysis of the string copyimgtine in Figure 1: the
pointer parametes merges information from all the possible input strings and
transfers it to the output string. For a client that assesidtataflow facts with string
buffers, this could severely hurt accuracy—the approp@ation is to treat the rou-
tine context-sensitively. However, for a client that is nohcerned with strings, the
imprecision is irrelevant.

We evaluate our algorithm using five security and error detecproblems as
clients. These clients are demanding analysis problemstiess the capabilities
of the pointer analyzer, but with adequate pointer anaksigport they can detect
significant and complex program defects. We compare ouri#thgo against four
fixed-precision algorithms on a suite of 18 real C programsnvéasure the cost in
terms of time and space, and we measure the client’s accsirapyy as the num-
ber of errors reported: the analysis is conservative, serf@fror reports always
indicates fewer false positives.

This paper, which is an extended version of earlier work [hkes the following
contributions. (1) We present a client-driven pointer ggial algorithm that adapts
its precision policy to the needs of client analyses. For foug error detection
clients, this algorithm effectively discovers where to lgpmore analysis effort
to reduce the number of false positives. (2) We present érapievidence that
different analysis clients benefit from different kinds oépision—flow-sensitivity,
context-sensitivity, or both. In most cases only a smalt paheach input program
needs such precision; our algorithm works because it autoatig identifies these
parts. (3) Our results show that whole-program dataflowyeisis an accurate and



efficient tool for error detection when it is given adequatenper information.

The rest of this paper is organized as follows. Section Zwesirelated work. Sec-
tion 3 describes the implementation of our framework, anctie 4 presents our
client-driven algorithm. Section 5 describes our expentaemethodology. Sec-
tion 6 presents our results, and we conclude in Section 7.

2 Related Work

Previous work in program analysis, including pointer as@yhas explored ways
to reduce the cost of analysis while still producing an aatauresult. In this section,
we compare our client-driven algorithm with this previousriv We also describe
recent related work in error detection, focusing on the oblgointer analysis.

2.1 Precision versus cost of analysis

Iterative flow analysis [25] is an algorithm that adjustsgtecision automatically
in response to the quality of the results. Plevyak and Chgmnthis algorithm to
determine the concrete types of objects in programs wriiteng the Concurrent
Aggregates object-oriented language. When imprecisiaheénanalysis causes a
type conflict, the algorithm can perforfunction splitting which provides context-
sensitivity, ordata splitting which divides object creation sites so that a single
site can generate objects of different types. Brylow andl#al use a compara-
ble algorithm to control the level of context-sensitivitgr fdeadline analysis of
real-time, interrupt-driven software [3]. The basic meukm behind both of these
approaches is similar to ours, but it differs in importanysarFirst, since the type
of an object cannot change, iterative flow analysis doeswtide flow-sensitivity.
By contrast, our approach supports a larger class of cligaliyaes, known atype-
stateproblems [32], which include flow-sensitive problems. Msignificantly, our
algorithm manages the precision of both the client and thet@oanalysis, allow-
ing it to detect when pointer aliasing is the cause of infdrameloss.

Demand-driven pointer analysis [17] addresses the costiinfgr analysis by com-

puting just enough information to determine the pointsetis $or a specific subset
of the program variables. Client-driven pointer analysisimilar in the sense that
itis driven by a specific query into the results. However tthe algorithms use this

information to manage different aspects of the algorithrmand-driven pointer

analysis is a fixed-precision analysis that computes ordynécessary part of the
solution. Client-driven analysis dynamically varies pséan but always computes
an exhaustive solution. The two ideas are complementarcanid be combined

to obtain the benefits of both.



Demand interprocedural dataflow analysis [20] also avdidscbst of exhaustive
program analysis by focusing on the computation of specdtaftbw facts. This

algorithm produces precise results in polynomial time fotass of dataflow anal-
yses problems called IFDS—interprocedural, finite, distiive, subset problems.
However, this class does not include pointer analysisiquéarly when it supports

strong updates, which removes the distributive property.

Combined pointer analysis [36] uses different pointer atgms on different parts
of the program. This technique divides the assignments irogram into classes
and uses a heuristic to choose different pointer analygaighms for the different
classes. Zhang et al. evaluate this algorithm by measuneg@mber of possible
objects accessed or modified at pointer dereferencesathsfeusing a heuristic,
client-driven pointer analysis is guided by feedback: ited@mines the need for
precision dynamically by monitoring the analysis.

A number of previous papers have compared different poarialysis algorithms,
using both direct measurements (sizes of computed pansets) and indirect
measurements (transitive effects on subsequent analy#esfind that the aver-
age points-to set size is not a good measure of the analys@ibe it treats all
pointers as equals. For example, one algorithm might be morarate than an-
other by reducing the points-to set of a single variable by paointer. While the

overall measure is hardly affected, that one variable cbeldhe critical distinc-

tion for the client. We also find that error detection is moeenéinding than the
clients used in previous studies: the transitive benefitsgifer precision are more
apparent for our clients.

2.2 Pointer analysis for error detection

One of the major challenges in analyzing C programs is totcectsa model of

the store that is precise enough to support accurate ertectam. Previous work
has generally settled for a low-cost fixed-policy pointealgsis, which computes
minimal store information without overwhelming the coseofor detection analy-
sis [27,2,11]. Unfortunately, this store information ofteroves inadequate. Expe
riences with the ESP system [7] illustrate this problem:levtis dataflow analysis
engine is more powerful and more efficient than ours, the @zigion of its under-

lying pointer analysis can block program verification. Thh@rs solve this prob-
lem by manually cloning procedures in the application ineorith mimic context-

sensitivity. By contrast, our solution instead automaiycialentifies these proce-
dures that require context-sensitivity. Our algorithmedét when imprecision in
the store model hampers the client, and our algorithm auioally increases pre-
cision in the parts of the program where it's needed.

More recent work has focused on developing a pointer arsadyscifically for error



detection [24], using the format string vulnerability asasis for evaluation. The
internal representation used for this analysis, calRSISA is very similar to our
interprocedural factored def-use chains (see Sectione&)eftheless, the approach
differs from ours in several ways. First, the analysis atyar is fixed precision: the
authors improve performance by makingapriori decision about which parts of
the application programs need more precision (the soethtielocation3. Second,
it uses unsound assumptions to reduce the number of falga/pesOur algorithm
is sound (within the limitations described later), whichkasit applicable to other
clients, such as optimization, which cannot tolerate faksgatives. Furthermore,
sound analysis allows us to validate programs as bug-freallys we show later in
this paper that detecting format string vulnerabilitieaa$ a problem that requires
very precise analysis: almost perfect results are prodbgecontext-insensitive
analysis.

3 Analysis Framework

Our analysis framework is part of the Broadway compiler exystwhich supports
high-level analysis and optimization of C programs [15,18]this section we de-
scribe the details of this framework, including the oveeatthitecture, the repre-
sentation of pointer information, and the analysis al¢ponit Our framework has
two enabling features that are critical to our client-dniaalysis algorithm. First,
it solves both the pointer and client analysis problems Kameously, which al-
lows it to monitor and control their interaction. Secondalibws precision to be
specified at a fine grain: context-sensitivity can be colgdobn a per-procedure
basis, and flow-sensitivity can be controlled on a per-mgramration basis. The
client-driven algorithm supplies thgecision policy that decides which procedures
to make context-sensitive and which memory locations toelaikv-sensitive.

Table 1 summarizes the design dimensions of our analysisefserk. It brings
together several commonly-used algorithms for pointerdatdflow analysis, each
with its own cost and precision characteristics [1,5,22R,The main contribution
of this paper is not a new addition to these algorithms, bilmersa mechanism for
combining different algorithms during analysis and a pofiar choosing which
algorithm to use on which parts of the input programs.

We use a lightweight annotation language to specify thathiralysis problems [14].
The error checking clients that we present in Section 5 dréesigned to detect
improper or unsafe use of system library calls in applicapoograms. The lan-
guage is designed to extend compiler support to softwararlds; it is not used to
describe the application programs themselves. The lamgalémyvs us to concisely
summarize the pointer behavior of library routines, andalvges a way to define
new library-specific dataflow analysis problems.



Feature Setting

Representation Points-to sets using storage shape graph
Flow-sensitivity Configurable—on a per-object basis
Context-sensitivity | Configurable—on a per-procedure basis
Assignments Uni-directional (subset-based)

Strong updates Yes—when applicable (see discussion)

Flow dependences | Factored use/def chains
Struct/union fields | Optional—turned on by default
Program scope Whole-program, interprocedural
Heap object naming By allocation site (see discussion)
Pointer arithmetic | Limited to pointers within an object
Arrays All elements represented by a single ngde

Table 1 . .
Specific features of our pointer analysis framework.

The remainder of this section describes our analysis frarlewhich provides the
underlying analysis mechanisms. The framework consisteefollowing major
components:

e Program representation a traditional intermediate representation consisting of
simple statements organized into a control-flow graph.

e Memory representation: a storage shape graph in which the vertices represent

memory locations (variables and heap objects), and thesgdgeesent points-to
relationships.

e Analysis algorithm: an iterative dataflow analysis algorithm that simultarstpu
computes pointer information and solves client dataflowyasmaproblems.

3.1 Program representation

Our internal program representation supports the andhgsrgework in three ways:
(1) it represents C code in a canonical form that consisteaiisnces of simple op-
erations organized into a control-flow graph, (2) it enaklbsle-program analysis
by bringing together all the procedures in a program (eveoasscmultiple source
files) and organizing them into a call graph, (3) it provides-procedure context
sensitivity through procedure cloning.

Our compiler accepts as input a set of C source files, whictoitgsses in several
ways in preparation for analysis. In particular, it dism@sithe code into a medium-
level intermediate representation. This IR consists opt&assignment statements,
similar to three-address instructions, organized intaddalecks, which are in turn
organized into a control-flow graph. This representati@sprves some of the high-
level constructs of C, such a$ r uct types andini on types, and array indexing.

Our system implements per-procedure context sensitivitgltering the program
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Fig. 2. Our framework implements context sensitivity byritm. (a) Context insensitivity
allows unrealizable paths: information generated ab() (1) is merged at the shared
procedureyadda() (2) and flows to the call site ibar () (3). (b) With cloning(4), the
two paths are kept separate.

representation to make each calling context explicit. Tayapontext sensitivity to
a procedure our compiler creates a logical clone of the jphareefor each of its call
sites. Figure 2 shows an example of this cloning process oogagm’s call graph.
In the figure theyadda() procedure is used at two different call sites. Cloning
the procedure provides a separate copy for each call site approach provides a
uniform view of the program structure, independent of ceingensitivity. Specif-
ically, since our analysis algorithm associates dataflaisfavith program points,
cloning a procedure provides a separate set of programspdhereby keeping
dataflow facts from the different calling contexts sepam@txent research has pro-
duced more efficient methods of implementing context-$mtyi[23,34,35], but
we show in Section 6 that the amount of context-sensitivégded is typically
small.

To analyze a context-insensitive procedure we create desingtantiation and
merge the information from all of its call sites. Since oualgsis is interprocedu-
ral, we still visit all of the calling contexts. However, wihao changes occur to the
input flow values, the analyzer can often skip over a conitesénsitive procedure
call, which helps the analysis converge quickly. The mamndrack of context-
insensitive analysis is that it suffers from the unrealiegdaths problem [35]: anal-
ysis information from one call site flows back to all the otleall sites. Figure 2
shows how this problem can affect dataflow analysis. Witlraumtext sensitivity,
dataflow information merges at the shared procegharda() and flows back to
all call sites. As a result dataflow information frdnoo( ) flows tobar (), an un-
realizable path. Cloning the shared procedure keeps sepheinformation from
the two callers.



3.2 Memory representation

Our representation of the objects in a program is based @tdhege shape graph [4],
adapted for C programs, and it includes a number of impromsmeveloped in
more recent work [9,22,35]. The memory representationgay important roles
in the analysis: (1) it manages the memory abstractionydicg the granularity of
the memory model and the mapping from abstract memory lmtstio concrete
memory locations, and (2) it provides per-object flow sévigitby managing how
flow values are associated with objects. For flow-sensitijeats the system builds
factored def-use chains and associates a separate flonwwvitthusach def; for flow-
insensitive objects the system only maintains a single flalwerand does not need
to compute reaching definitions.

The nodes of our storage shape graph represent all addeesbgxts in memory,
including variables, structures, arrays, and heap akacatemory. We decompose
complex objects into finer structures in order to more adelyanodel their be-
havior. For example, each field of a structure is represdmtedseparate node, and
each instantiation of a structure includes a full set ofétfedd nodes. We represent
all the elements of an array with a single node.

The nodes that represent program variables (local and ylatsindexed by their
declarations. This scheme produces the expected behawrmoritext-sensitive pro-
cedures: each clone of the procedure has its own set of ladables, and thus its
own set of nodes, thereby keeping the analysis informagparate in each calling
context.

We index heap-allocated memory according the programitocaf the allocation—
typically, a call tomal | oc() orcal | oc() . By using the program location as the
index, we obtain the same naming behavior for heap allocatdory as for local
variables: in the context-insensitive case, our systeneigges one node for each
static call tomal | oc() , while in the context-sensitive case, it generates one node
for each call taral | oc() in each procedure clone.

voi d main() void foo(int * p)
{
int x; if (sone_condition)
int y; (*p) = 6;
el se

foo(&x); (*p) =7,

foo(&y); /1 -- Phi function: nmerge x or y ?
} }

Fig. 3. Our variation of SSA form separatgsunctions that occur in different contexts.

For flow-sensitive objects our framework records their @wsebdefs and organizes
them into factored use-def chains [31]. This data struggusamilar in spirit to SSA
form [6], and it is well-suited for efficient dataflow analgsespecially for sparse
problems, such as pointer analysis, constant propagaim@hmany kinds of error



checking. The analyzer associates dataflow facts, suchiafsio sets and client
lattice flow values, with each def of an object in memory (nimdibe storage shape
graph). At a use of the object, the analysis can quicklyeegrithe current values
by following the use-def chain.

Our representation of factored use-def chains differs ftraditional SSA form
because it is designed to overcome some of the limitatior8SX form. These
limitations become apparent when performing interprocaidanalysis in the pres-
ence of pointers. The example code in Figure 3 shows the twioese problems.
The proceduré oo modifies a variable indirectly through a pointer, but sinoe t
modification occurs in a conditional branch, SSA form reesiiap function at the
confluence point to merge the flow values. The first problernasthe procedure is
called in two places, with two different input values fograddress ok and address
of y. However, the mergepoint ihoo only merges one of the variables, depend-
ing on the calling context. The second problem is that théyaeaonly discovers
the need for these mergepoints during the pointer analybetefore, we cannot
separate the computation of use-def chains from the pcantysis.

Previous work addresses this problem by creating a synthatne for the target
of the pointerp and adding a mergepoint for that synthetic variable [35jnYs
this approach, the analyzer must compute a binding betwetaalaarguments and
synthetics arguments at each call site. Our approach ideirapd more flexible:
we store the use-def chains in a separate data structurevaittiraodifying the
program at all. The analyzer represents the use-def chainsath variable as a
directed graph consisting of use nodes and def nodes, eachidf is associated
with a program location. For the example in Figure 3, our yrel creates a sepa-
rate set of use-def chains ferandy. In addition, it creates these use-def chains on
the fly, as it discovers each calling context and set of inpyraents.

For flow-insensitive objects our framework only maintairsragle flow value and
simply accumulates updates into that value. Flow insetfitgisignificantly reduces
the cost of analysis because there is no need to computeingaddfinitions for
these objects. This savings is particularly significanigiobal variables and heap-
allocated memory, whose reaching definitions can span magegures. For ex-
ample, a frequently modified global variable might have apglemweb of use-def
chains that wind throughout the whole program.

/1 Traditional Qur inplenmentation
p=2&; /I p->{x} p -> {x}
q=p; g ->{x} q-> {x}
p=g&; [/ p->{xy}, q->{xy} p->{x,y}, q->{x}

Fig. 4. Our implementation of flow-insensitive analysis isrmprecise than the traditional
definition because we respect the ordering of the statements

Our implementation of flow insensitivity deviates from thraditional definition
of flow insensitivity because we still visit statements iogmam order. As a result,



our flow-insensitive analysis can be more precise than dgsiadhat computes the
same result independent of the order in which it visits statats. Figure 4 shows
an example that highlights the difference in our algoritiima traditional flow-
insensitive analysis, the presence of an assignment, such=a p, forces the two
variables to always be equal. In our implementation, we takentage of the fact
that the second assignmentgmccurs after the assignmemt= p, and therefore

it cannot affect the value af. Note that we continue to use iterative analysis even
for flow-insensitive variables, which ensures correctmie$sops.

For each flow-sensitive object we store its defs in a listithatdered so that we can
quickly find reaching definitions at any program location][3bdef is never pre-
ceded in the list by another def that dominates it. We can fiechearest reaching
def by searching the list linearly: the first def that dom@sathe current program
location is the nearest reaching definition. We use the ségoethm to insert new
defs in the list. This approach is not as fast, asymptotica#i the dominator skele-
ton tree proposed by Chase et al. [4], but it works well in pcac

3.3 Analysis algorithm

The analysis algorithm performs two main tasks. First, &lgres statements in the
program and builds our modified SSA form, which representa dapendences
for the various nodes in the program, including pointerso®d, it manages client
dataflow analysis problems through a series of hooks. Qvavalergence of the

analysis occurs when all of the individual analyses coreerg

Our framework solves both the pointer analysis and cliealyees using the it-
erative dataflow analysis algorithm introduced by Kild&L]. We extend the al-
gorithm in a straightforward way to interprocedural aneysvhen the analyzer
encounters a procedure call, it immediately begins anadyttie body of the callee
procedure. The analysis framework computes dataflow factsvaluating each
statement in program order, looking up flow values for thesugfevariables, and
updating flow values for defs of variables. It manages thi€g@ss using a worklist
of basic blocks for each procedure.

Flow values come in two varieties: points-to sets (for pairgnalysis) and client
flow values. Points-to sets are simply sets of nodes in thragtoshape graph. For
points-to sets the latticmeetfunction, denoted by the operator, is the set union
operation. Client flow values are named types, organized ant explicit lattice
structure. For example, we could model colors using a sihaliee consisting of
“Red”, “Green”, and “Blue”, and the pairwise combinationgeftlow”, “Purple”,
“Aqua”. The meet function would specify, for example, th&ed” N “Blue” =
“Purple”. This information is specified using our annotatianguage, which we
describe in Section 5.2.

10



The analysis algorithm includes many engineering dethailsfor the purposes of
describing the client-driven analysis algorithm we onlgaé¢o describe two parts
in detail: assignments and procedure calls. These two coems use the lattice
meet function to implement flow insensitivity and contexsensitivity, respec-
tively. Later in the paper, we show how the client-drivenagithm monitors these
components and adjusts precision to avoid using the meetifum

We can divide assignments into two general categoriesg@assnts that derefer-
ence a pointer and assignments through a pointer. Thereaarg other assignment
forms, but we can handle them as special cases of, or contrisaif these two cat-
egories. In addition, there are other operators, such asdtalesses and arithmetic
operators, which our algorithm handles properly but thahdobear on the preci-
sion of the analysis. During this process we also record vdagaflow information
changes and update the worklists accordingly.

We evaluate an assignment of the foxm= * p using the following steps:

(1)

(2)

3)

(4)

Dereferencep. If p is a flow-sensitive variable, then we find the points-to
set forp by following the use-def chain to its nearest reaching didimiand
retrieving the points-to set associated with that def 1§ a flow-insensitive
variables, then we retrieve the points-to set associatdttiae variable itself —
there are no use-def chains. The result of this operatiosét af right-hand-
side nodesR.

Look up right-hand-side flow values.For each element of R, we find the
flow values forr using the same process described abovepfofhe result

is two sets of flow values, one for the pointer analysis andfonéhe client
analysis: (1)V,, a set of points-to sets, and (&), a set of client flow values.
Eachr contributes one points-to set and one client flow value th sat.

Merge right-hand-side flow values.We then compute a single points-to set
and a single client flow value to represent all the possilletrhand-side val-
ues. We use the lattice meet function to compute these vatyes 1V, and
m, = MNV.,.

Record left-hand-side flow valuelf x is a flow-sensitive variable, then we
create a def fox at the current program location and store the flow vatugs
andm, with the def. Ifx is a flow-insensitive variable, then we look up the
current values associated with the variable and merge inghevalues using
the meet function again.

We evaluate an assignment of the fofrm = y using the following steps:

e Dereferencep. This step is identical to step (1) above, except that we teftre
resulting points-to set a5, the set of left-hand side nodes. Notice that because
our analysis is a “may point to” analysis,can have multiple targets.

e Look up right-hand-side flow values.This step is like step (2) above, except
that we have only one right-hand sige,The result is a single points-to set and
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client flow value foty, v, anduv,.

e Assign to left-hand sidesSince our analysis supports strong updates, this step
has two cases: (1) contains exactly one flow-sensitive variable, so we apply a
strong update on the flow values, 2ontains multiple targets or the targets are
flow-insensitive, in which case we apply a weak update. Anginapdate allows
the analyzer to store a new flow value independent of any puewilefs of the
variable. A weak update forces the analyzer to use the meetifun to merge
the new flow value with that of the previous reaching definitio

Finally, we evaluate a procedure cpll oc(x, y, ...) using a series of as-
signments from the actual parameters to the formal paramelais process is
identical to that of the first type of assignment describeal/abNotice, though, that
for context insensitive procedures, the assignment @ffdgtoccurs at the entry of
the procedure, and therefore produces only a single deh&fdrmal parameter.
This forces the analysis to merge the flow values from eadkitgalising the meet
function.

4 Client-driven algorithm

Our client-driven pointer analysis is a two-pass algoritfiine key idea is to use
a fast low-precision pointer analysis in the first pass teaisr which parts of the
program need more precision. The algorithm uses this irdtion to construct a
fine-grained customized precision policy for the seconds pakis approach re-
quires a tight coupling between the pointer analysis andlibat analyses: in ad-
dition to providing memory access information to the clighte pointer analyzer
receives feedback from the client about the accuracy oflteetdlow values. For
example, the client analysis can report when a confluenc#,mich as a control-
flow merge or context-insensitive procedure call, advgra#iects the accuracy of
its analysis. The simple interface between the pointeryaealand the client is the
core mechanism that allows the framework to tailor its mieci for the particular
client and target program.

The implementation of this algorithm (see Figure 5) adds ¢ammponents to our
analysis framework: anonitor that detects and tracks loss of information during
program analysis, and adaptorthat uses the output of the monitor to adjust the
precision. During program analysis, the monitor identiftes places where infor-
mation is lost, and it uses a dependence graph to track theorgdotations that
are subsequently affected. When analysis is completeittrd plerforms its tasks—
after which it reports back to the adaptor with a set of menhmegtions that are not
sufficiently accurate for its purposes. Borrowing termogy from demand-driven
analysis, we refer to this set as theery The adaptor starts with the locations in
the query and tracks their values back through the depeerdgnaph. The nodes
and edges that make up this back-trace indicate which Jasand procedures

12
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Fig. 5. Our analysis framework allows client analyses tovjgl® feedback, which drives
corrective adjustments to the precision.

need more precision. The framework then reruns the analyiighe customized
precision policy.

Although the algorithm detects information loss duringlgsia, it waits until the
analysis is complete before changing precision. One refisahis is pragmatic:
our framework cannot change precision during analysis andmpute the results
incrementally. The other reason is more fundamental: duaimalysis it is not read-
ily apparent that imprecision detected in a particular privalue will adversely
affect the client later in the program. For example, a prognaay contain a pointer
variable with numerous assignments, causing the poirgsttto grow large. How-
ever, if the client analysis never needs the value of thetpothen it is not worth
expending extra effort to disambiguate it. By waiting to gsempact, we signifi-
cantly reduce the amount of precision added by the algorithm

4.1 Polluting Assignments

The monitor runs along side the main pointer analysis arhthnalysis, detect-
ing information loss and recording its effects. Loss of miation occurs when
conservative assumptions about program behavior forcarthlyzer to merge flow
values. The analysis algorithm described in Section 3.3atos several steps that
use the lattice meet function to compute these conservasitees. In fact, any
place where the analyzer uses the lattice meet functionatmpally result in loss
of information. In particular, we are interested in the casbere accurate, but con-
flicting, information is merged, resulting in an inaccuresdue—we refer to this as
apolluting assignment

For “may” pointer analysis smaller points-to sets indicatee accurate information—
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a points-to set of size one is the most accurate. In this bagedinter relationship is
unambiguous, and assignments through the pointer allongupdates [4]. There-
fore, a pointer assignment is polluting if it combines twonoore unambiguous
pointers and produces an ambiguous pointer.

For the client analysis, information loss is problem-specbut we can define it
generally in terms of dataflow lattice values. We take the miten community’s
view of lattices: higher lattice values represent bettelysis information. Lower
lattice values are more conservative, with lattice bott@naling the worst case.
Therefore, a client update is polluting if it combines a sktattice values and
produces a lattice value that is lower than any of the indialadnembers.

We classify polluting assignments according to their calseur framework there
are three ways that conservative analysis can directlyecthes loss of informa-
tion [8]. We will refer to them aslirectly polluting assignmentand they can occur
in both the pointer analysis and the client analysis:

e Context-insensitive procedure call: the parameter agsggih merges conflicting
information from different call sites.

e Flow-insensitive assignment: multiple assignments taglsimemory location
merge conflicting information.

e Control-flow merge: the SSA function merges conflicting information from
different control-flow paths.

The current implementation of the algorithm is only coneermvith the first two
classes. It can detect loss of information at control-flowgas, but it currently has
no corrective mechanism, such as node splitting or pathtsatysto remedy it.

In addition to these classes, there are two kinds of polusissignments that are
caused specifically by ambiguous pointers. These assigsmaea critical to the
client-driven algorithm because they capture the relatigmbetween accuracy in
the pointer analysis and accuracy in the client. We refehéont asndirectly pol-
luting assignments

e Weak access: the right-hand side of the assignment demefssean ambiguous
pointer, which merges conflicting information from the peirtargets.

e Weak update: the left-hand side assigns through an ambsguainter, forcing a
weak update that loses information.

4.2 Monitoring Analysis

During analysis, the monitor detects the five kinds of pallgitassignments de-
scribed above, both for the client analysis and the poimalyais, and it records
this information in a directed dependence graph. The ga#leoflependence graph
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Code Imprecision Effect Monitor action
foo(5); Context insensitive Param to foo =L | Add a node foif 00
foo(6); Labelneeds context-sensitivity
bar (&a); | Contextinsensitive Param to bar Add a node fobar
bar ( &b) ; points-toa or b Labelneeds context-sensitivity
X = b5; Flow insensitive X=1 Add a node foix
X = 6; Labelneeds flow-sensitivity
p = &a; Flow insensitive p points-toa orb | Add a node foip
p = &b; Labelneeds flow-sensitivity
if (c) Path insensitive Xx=1 Currently no action
X = b5;
el se
X = 6;
Table 2

For each type of polluting assignment the monitor adds a muidehe graph and labels it
according to the action needed to improve the precision.

Code Initially Effect Monitor action

X =y, |y=1 Xx=_1 Add a node foix
Add edgex — vy

p = q; | qpoints-toa orb | p points-toa orb | Add a node fop
Add edgep — q

Table 3
Complicit assignments track imprecision backwards acassggnments, allowing the sys-

tem to find the polluting assignments that are the sourcdseafiiprecision.

is to capture the effects of polluting assignments on sulesgigparts of the pro-
gram.

Each node in the graph represents a memory location whogesenaformation,
either points-to set or client flow value, is polluted. Thagr contains a node for
each location that is modified by a directly polluting assigmt, and each node
has a label that lists all of the directly polluting assigmtseto that memory loca-
tion. The monitor builds this graph online by adding nodeth&ograph and adding
assignments to the labels as they are discovered duringsimalhese nodes rep-
resent the sources of polluted information, and the laipelisate how to fix the im-
precision. Table 2 shows examples of polluting assignmamdisthe actions taken
for both pointers and constant propagation as an examietcli

The dependence graph contains two types of directed edpgedirst type of edge
represents an assignment that passes polluted infornfetimnone location to an-
other. We refer to this as@mplicit assignmer(see Table 3), and it occurs when-
ever the memory locations on the right-hand side are alrea@pyesented in the
dependence graph. The monitor creates nodes for the affesftehand side lo-
cations and adds edges from those nodes back to the rigttsida nodes. Note
that the direction of the edge is opposite the direction sigasnent so that we can
trace dependences backward in the program. The second tygue represents
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indirectly polluting assignments. The monitor adds nodedHe left-hand side lo-
cations and adds a directed edge from each of these nodeddtiek offending
pointer variable. This kind of edge is unique to our analy&sause it allows our
algorithm to distinguish between the following two sitweis: (1) an unambiguous
pointer whose target is polluted, and (2) an ambiguous poimhose targets have
precise information.

p = &; p X =5, y = 10; p
if (cond) x = 5; if (cond) p = &x;
el se x = 10; \ el se p = &; /\
z = (*p); X=1 z = (*p); y=10  x=5

(1) (2)

Fig. 6. Both code fragments assign bottonztan (1) x is responsible; in (2p is respon-
sible.

Figure 6 illustrates this distinction using constant piggtéon as an example client.
Both code fragments assign lattice bottonztdout for different reasons. Case (1)
is caused by the polluted valuexfso the monitor adds an edge in the dependence
graph fromz back tox. Case (2), however, is caused by the polluted value of the
pointerp, so the monitor adds an edge framo p.

We store the program locations of all assignments, but fdopmance reasons the
monitor dependence graph is fundamentally a flow-insefesitata structure. As a
result, the algorithm cannot tell which specific assignméata memory location
affect other locations. For example, a location might hawtiple polluting as-
signments, some of which occur later in the program than ¢ieihpssignments
that read its value. In most cases, this simplification de¢saticeably hurt the al-
gorithm, but occasionally it leads to overly aggressivejgion, particularly when
it involves global variables that are used in many diffeqg@ates and for different
purposes.

4.3 Diagnosing Information Loss

After the first pass of the analysis, the client provides lie@# to the adaptor, in
the form of a query, indicating where it needs more accurbleg.adaptor uses the
dependence graph to construct a precision policy spedyfi@alored to obtain the

desired accuracy. The output of the adaptor is thus a set wiamelocations that

need flow-sensitivity and a set of procedures that need xbséamsitivity. The new

precision policy applies to both the pointer analysis amddient analysis.

The client query consists of a set of memory locations thee Hansatisfactory”
flow values. For example, if the client tests a variable foadipular flow value but
finds lattice bottom, it could add that variable to the qu&he goal of the adaptor
is to improve the accuracy of the memory locations in the yuBEne correspond-
ing nodes in the dependence graph serve as a starting poththa set of nodes
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reachable from those nodes represents all the memorydosatihose inaccuracy
directly or indirectly affects the flow values of the querp€elkey to the efficiency
of our algorithm is that this subgraph is typically much serathan the whole

graph—we rarely to need to fedl of the polluting assignments.

The adaptor starts at the query nodes in the graph and vikis the reachable
nodes in the graph. This traversal effectively computeswards slice of the pro-
gram that includes all the assignments that may generatepagate inaccuracy
to the nodes in the query. The adaptor collects the labelb®nddes and applies
the specified corrective measures: for polluting paramestsignments it adds the
corresponding procedure to the set of procedures that reedxt-sensitivity; for
flow-insensitive assignments it adds the corresponding ongiocation to the set
of locations that need flow-sensitivity.

Before making any changes to the policy, the adaptor cheakis proposed pre-
cision enhancement. It verifies that flow-sensitivity widllp by making sure that
there are actually multiple assignments to the object. kamgple, a polluting as-
signment could occur in a loop: a variable has a precise flduevantil the second
time we visit the loop body. It might help to peel the loop, bu current imple-
mentation just prunes out these cases.

To verify that context-sensitivity will help, the adapt@-evaluates the parameters
at each callsite. For the client analysis, we make sure beabbject in question
actually has different values at different call sites. Fomgers, we perform two
checks: we make sure that the points-to sets are differetiffatent call sites, and
we check that any client objects reachable from those pwsihteve different states.
If the final incoming flow values are not different, then we q@uhe procedure
from the context-sensitive set.

4.4 Chaining precision

In addition to addressing each polluting assignment, tlagtaad increases precision
along the path from each polluting assignment back to thgirai query nodes.
When it finds a node that needs flow-sensitivity, it also aspthis additional pre-
cision to all the nodes back along the path. When it makes eegioe context-
sensitive, it also determines the set of procedures thatioall the complicit
assignments back along the path, and it adds that set to tiext@ensitive set.
This chaining ensures that intermediate locations presi additional accuracy
that comes from fixing the polluting assignments.

By aggressively chaining the precision, we also avoid trearier additional anal-
ysis passes. The initial pass computes the least preci$gsanimformation and
therefore covers all the regions of the program for whichermrecision might be
beneficial. Any polluting assignments detected in lateispasvould necessarily
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occur within these regions and thus would already be adeldaéssthe customized
precision policy. We validated this design decision enggily: subsequent passes
typically discover only spurious instances of imprecisand do not improve the
guality of the client analysis.

5 Experiments

In this section we describe our experiments, including oethmdology, the five

error detection clients, and the input programs. The guetthese clients provide
to the adaptor consists of the set of memory locations tigggdr errors. We com-
pare both the cost and the accuracy of our algorithm agamustfixed-precision

algorithms. In Section 6 we present the empirical results.

We run all experiments on a Dell OptiPlex GX-400, with a Pemti4 processor
running at 1.7 GHz and 2 GB of main memory. The machine runsxt.imith the
2.4.18 kernel. Our system is implemented entirely in C++ eowpiled using the
GNU g++ compiler version 3.0.3.

5.1 Methodology

Our suite of experiments consists of 18 C programs, five eetection problems,
and five pointer analysis algorithms—four fixed-precisiamnper algorithms and
our client-driven algorithm. The fixed-precision algonth consist of the four pos-
sible combinations of flow-sensitivity and context-semgit—we refer to them in
the results a€IFI, CIFS, CSFl, andCSFS For each combination of program, error
problem, and pointer analysis algorithm, we run the analgré collect a variety
of measurements, including analysis time, memory consiempand number of
errors reported.

The number of errors reported is the most important of thesgics. The more

false positives that an algorithm produces, the more timegrpmmer must spend
sorting through them to find the real errors. Our experiesdhat this is an ex-
tremely tedious and time consuming task. Using a fast, unate error detection
algorithm is false economy: it trades computer time, whichheap and plentiful,
for programmer time, which is valuable and limited. We bedi¢hat it is preferable
to use a more expensive algorithm that can reduce the nunilf@ise positives,

even if it has to run overnight or over the weekend. When tworhms report the
same number of errors, we compare them in terms of analysesand memory
consumption.

In some cases, we know the actual number of errors presem jprograms. This
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information comes from security advisories published byaoizations such as
CERT and SecurityFocus. We have also manually inspected sbthe programs
to validate the errors. For the client-driven algorithm vigoaecord the number
of procedures that it makes context-sensitive and the nuofbeemory locations
that it makes flow-sensitive. Unlike previous research oimteo analysis, we do
not present data on the points-to set sizes because thii seaipot relevant to our
algorithm.

5.2 Error detection clients

We define the five error detection client analyses using aatation language [14],
which allows us to define simple dataflow analysis problenas #ne associated
with a library interface: for each library routine, we sggdiow it affects the flow
values of the problem. The language also provides a way tdhtesesults of the
analysis and generate reports. For each analysis problesheve some represen-
tative examples of the annotations.

These error detection problems represent realistic etfnatsctually occur in prac-
tice and can cause serious damage. Like many error detquidaiems, they in-
volve data structures, such as buffers and file handlesatbatllocated on the heap
and manipulated through pointers. The lifetimes of thesa stauctures often cross
many procedures, requiring interprocedural analysis ¢pgny model. Thus, they
present a considerable challenge for the pointer analyzer.

TBD: Show lattices for the error checking clients.

5.2.1 File access errors

Library interfaces often contain implicit constraints dretorder in which their
routines may be called. File access rules are one examplasokind of usage
constraint. A program can only access a file between the pmpen and close
calls. The purpose of this client analysis is to detect fbssriolations of this
usage rule. The first line in Figure 7 defines the flow valuetigg &nalysis, which
consists of the two possible states, “Open” and “Closedjufeé 8 (a) depicts the
lattice structure for this dataflow analysis.

To track this state, we annotate the various library fumgithat open and close
files. Figure 7 shows the annotations for thepen() function. Theon entry
andon_exi t annotations describe the pointer behavior of the routinesturns
a pointer to a new file stream, which points to a new file hanthe anal yze
annotation sets the state of the newly created file handl@én.oAt each use of
a file stream or file descriptor, we check to make sure the saipen. Figure 7
also shows an annotation for thget s() function, which emits an error if the
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property FileState : { Open, Cosed} initially O osed

procedure fopen(path, node)

{

on_exit { return --> newfile_stream--> new file_handle }
analyze FileState { file_handle <- Open }
}

procedure fgets(s, size, f)

{

on_entry { f -->file_stream--> handle }
error if (FileState : handle could-be Cosed) "Error: _file_mght_be _closed";

}

Fig. 7. Annotations for tracking file state: to properly mbfiles and files descriptors, we
associate the state with an abstract “handle”.

file could be closed.

T
T Internal
/\
Open Closed External
\/
Remote
+ |
1
(a) (b)

Fig. 8. Eachpr oper t y annotation implies a dataflow lattice. The nesting striectifrthe
property values implies the meet function.

5.2.2 Format string vulnerability (FSV)

A number of output functions in the Standard C Library, suspia nt f () and
sysl og(), take a format string argument that controls output formgttA for-
mat string vulnerability (FSV) occurs when untrusted datdseup as part of the
format string. A hacker can exploit this vulnerability bynskng the program a
carefully crafted input string that causes part of the cadbd overwritten with
new instructions. These vulnerabilities represent a gsrgecurity problem that
have been the subject of many CERT advisories.

To detect format string vulnerabilities we define an analyisat determines when
data from an untrusted source can become part of a formad sthle consider data
to betainted[33,27] when it comes from an untrusted source. We trackdata
through the program to make sure that all format string aenusarauntainted

Our formulation of the Taint analysis starts with a defimtiaf the Taint property,
shown at the top of Figure 9, which consists of two possibleag Tai nt ed
andUnt ai nt ed. We then annotate the Standard C Library functions thatywred
tainted data. These include such obvious sources of uathdkdta ascanf ()
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property Taint : { Tainted, Untainted } initially Untainted

procedure read(fd, buffer_ptr, size)
{
on_entry { buffer_ptr --> buffer }
anal yze Taint { buffer <- Tainted }

}

procedure strdup(s)
{
on_entry { s --> string }
on_exit { return --> string_copy }
anal yze Taint { string_copy <- string }

}

procedure syslog(prio, fmt, args)

{
on_entry { fnt --> fnt_string }
error if (Taint : fnt_string could-be Tainted) "Error:_tainted format_string."

}

Fig. 9. Annotations defining the Taint analysis: taintednissassociated with strings and
buffers and can be transferred between them.

andr ead( ), and less obvious ones suchrasaddi r () andget env() . Fig-
ure 9 shows the annotations for thead() routine. Notice that the annotations
assign thélai nt ed property to the contents of the buffer rather than to thedsuff
pointer. We then annotate string manipulation functionseftect how taintedness
can propagate from one string to another. The example inr&igwannotates the
st rdup() function: the string copy has the same Taint value as thd stpng.

Finally, we annotate all the library functions that acceptifat strings (including
sprintf())toreport when the format string is tainted. Figure 9 shdvesanno-
tation for thesysl og() function, which is often the culprit in FSV attacks.

5.2.3 Remote access vulnerability

Hostile clients can only manipulate programs through tireoua program inputs.

We can approximate the extent of this control by trackingitipait data and ob-

serving how it is used. We label input sources, such as fildlearand sockets, ac-
cording to their level of trust. All data read from these s@sris labeled likewise.

The first line of Figure 10 defines the three levels of trustunanalysis—internal

(trusted), locally trusted (for example, local files), arthote (untrusted). Figure 8
(b) depicts the lattice structure for this dataflow analyhistice that the nesting

of the three property values creates a vertical latticeclviesaptures the fact that
Renot e is more conservative thaext er nal , which is more conservative than
| nt er nal .

We start by annotating functions that return fundamentatiyusted data sources,

such as Internet sockets. Figure 10 shows the annotatiotissfeocket () func-
tion. The level of trust depends on the type of socket beirgted. When the
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property Trust : { Renpte { External { Internal }}}

procedure socket (domai n, type, protocol}
{
on_exit { return --> new file_handle }
anal yze Trust {
if (domain == AF_UNIX) file_handle <- External
if (domain == AF_INET) file_handle <- Renote
}
}

procedure open(path, flags)
{
on_entry { path --> path_string }
on_exit { return --> new file_handle }
anal yze Trust { file_handle <- path_string }

}

Fig. 10. Annotations defining the Trust analysis. Note thecading effect: we only trust
data from a file handle if we trust the file name used to open it.

program reads data from these sources, the buffers are dnaittethe Trust level
of the source.

The Trust analysis has two distinguishing features. Fifsta is only as trustwor-
thy as its least trustworthy source. For example, if the @ogreads both trusted
and untrusted data into a single buffer, then we considemtin@e buffer to be
untrusted. The nested structure of the lattice definitigrtur@s this fact. Second,
untrusted data has a domino effect on other data sourcesrdd Bor example,

if the file name argument topen() is untrusted, then we treat all data read from
that file descriptor as untrusted. The annotations in FigjQrienplement this policy.

As with the earlier Taint analysis, we annotate string malaititon functions to
propagate the Trust values from one buffer to another. Wergéman error message
when untrusted data reaches certain sensitive routinelsiding any file system
manipulation or program execution routines, suckx@asc() .

5.2.4 Remote FSV

The Taint analysis defined above tends to find many formatgstrulnerabilities
that are not exploitable security holes. For example, dansa program that uses
data from a file as part of a format string. If a hacker can tkctae name of the
file or can control the contents of the file, then the programtaios a remotely
exploitable vulnerability. If a hacker cannot control tHe fhowever, then the pro-
gram still contains a vulnerability, but the vulnerabildges not have security im-
plications.

To identify exploitable format string vulnerabilities neoprecisely, we can com-
bine the Taint analysis with the Trust analysis, which djeadly tracks data from
remote sources. No new dataflow analyses are needed. Weysimfde the error
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test so that it only emits an error message when the formagss tainted and it
comes from a remote source.

5.2.5 FTP behavior

The most complex of our client analyses checks to see if aranogan behave
like an FTP (file transfer protocol) server. Specifically, want to determine if
the program could possibly send the contents of a file to a tremlent, where

the name of the file is determined, at least in part, by the terdgent itself. This

behavior is not necessarily incorrect: it is the normal apen of the two FTP

daemons that we present in our results. We can use this éxreoker to make sure
the behavior is not unintended (for example, in a finger dagrooto validate the
expected behavior of the FTP programs.

We use the Trust analysis defined above to determine wheunstedr data is read
from one stream to another. However, we need to know thattoges is associated
with a file and the other with a remote socket. Figure 11 defihedflow value
to track different type of sources and sinks of data. We catindjuish between
different type of sockets, such as “Server” sockets, whalretbound addresses for
listening, and “Client” sockets, which are the result ofggming a connection.

property FDKind : { File, dient, Server, Pipe, Conmand, StdlO}

procedure wite(fd, buffer_ptr, size)

{
on_entry { buffer_ptr --> buffer
fd --> file_handle }

error if ((FDKind : buffer could-be File) &&

(Trust : buffer coul d-be Renpte) &&
(FDKind : file_handle could-be ient) &&
(Trust : file_handl e coul d-be Renpte))

"Error:_possibl e FTP_behavior";

Fig. 11. Annotations to track type of data sources and siltkeombination with Trust
analysis, we can check whether a callnoi t e() behaves like FTP.

Whenever a new file descriptor is opened, we mark it accortbrifpe type. In
addition, like the other analyses, we associate this typle any data read from it.
We check for FTP behaviorinthw i t e() family of routines, shown in Figure 11,
by testing both the buffer and the file descriptor.

5.3 Programs

Table 4 describes our input programs. We use these partiptdgrams for our
experiments for a number of reasons. First, they are allmearams, taken from
open-source projects, with all of the nuances and compsxitf production soft-
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Program Description Priv LOC | CFG nodes| Procedures
stunnel 3.8 Secure TCP wrapperyes 2K /13K 2264 42
pfingerd 0.7.8 Finger daemon yes 5K /30K 3638 47
muh 2.05c IRC proxy yes 5K /25K 5191 84
muh 2.05d IRC proxy yes 5K /25K 5390 84
pure-ftpd 1.0.15 FTP server yes 13K /45K 11,239 116
crond (fcron-2.9.3) cron daemon yes 9K / 40K 11,310 100
apache 1.3.12 (core only)Web server yes 30K /67K 16,755 313
make 3.75 make 21K /50K 18,581 167
BlackHole 1.0.9 E-mail filter 12K / 244K 21,370 71
wu-ftpd 2.6.0 FTP server yes 21K/ 64K 22,196 183
openssh client 3.5p1 Secure shell client 38K /210K 22,411 441
privoxy 3.0.0 Web server proxy | yes 27K /48K 22,608 223
wu-ftpd 2.6.2 FTP server yes 22K / 66K 23,107 205
named (BIND 4.9.4) DNS server yes 26K /84K 25,452 210
openssh daemon 3.5p1 | Secure shell server | yes | 50K / 299K 29,799 601
cfengine 1.5.4 System admin tool | yes | 34K /350K 36,573 421
sqlite 2.7.6 SQL database 36K /67K 43,333 387
nn 6.5.6 News reader 36K /116K 46,336 494
Table 4

Properties of the input programs. Many of the programs ruprivileged mode, making
their security critical. Lines of code (LOC) is given bothftue and after preprocessing.
CFG nodes measures the size of the program in our compitée®nial representation—the
table is sorted on this column.

ware. Second, many of them are system tools or daemons thesigaificant secu-
rity implications because they provide privileged sersiaed interact with remote
clients. Finally, several of them are specific versions ofypams that are identified
by security advisories as containing format string vulbéitzes. In these cases, we
also obtain subsequent versions in which the bugs are figdlas we can confirm
their absence.

We present several measures of program size, including euaillines of source
code, number of lines of preprocessed code, and number oéguoes. The table
is sorted by the number of CFG nodes, and we use this orderial) subsequent
tables.

6 Results

We measure the results for all combinations of pointer aslglgorithms, error
detection clients, and input programs—a total of over 4Qfeexents. We present
the results in five graphs, one for each error detection tc(see Figures 12-16).
Each bar on the graph shows the accuracy and performance dffterent anal-
ysis algorithms on the given program. To more easily comgdferent programs
we normalize all execution times to the time of the fastegviadhm on that pro-

24




A3

Ay
1000—:— — —A—7—A—7—A—?—A-?—A—?A—A—7—A-7—A—?—A—7-A—'-
] 25
A5
A CS-FS

© 100
E E +14 e CS-FI
ks ag m CI-FS
s 1a e a ®1189 ®lim om; 148 v CI-FI
= 5 6 A6 ;M2 . .
g 10 g9 + Client-Driven

3 418 # Errors reported

#5855 g, mg Wy my5T54 ®>5t,,, W25 i P

t6 48 16 +4 +,5 T2 teotos ~ To +p5t418 +1ots T148
15vg v14Vg Vg VgV 1 5y 1% 3¥s M ®» ¥ X1 Y67 B2 Y3 | 151

% %
2 2
3 %

Fig. 12. Checking file access requires flow-sensitivity, bat context-sensitivity. The
client-driven algorithm beats the other algorithms beeaitisnakes only the file-related
objects flow-sensitive.
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Fig. 13. Detecting format string vulnerabilities rarelynleéits from either flow-sensitivity
or context-sensitivity—the client-driven algorithm islprslower because it is a two-pass
algorithm.

gram, which in all cases is the context-insensitive, flogeimsitive algorithm. Each
point on these graphs represents a single combinationafagtection client, input
program, and analysis algorithm. We label each point wighrthmber of errors re-
ported in that combination. For example, from Figure 12 weetkat for the stunnel
program, the CI-FI and CS-FI algorithms reported 8 errofserthe other algo-
rithms reported 5 errors. The same bar shows that the aiévgn algorithm was
as fast as the CI-FS algorithm, but slower than the CI-Flrdigo.
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Fig. 14. Detecting remote access vulnerabilities can redusth flow-sensitivity and con-
text-sensitivity. In these cases the client-driven alfponiis both the most accurate and the
most efficient.
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Fig. 15. Determining when a format string vulnerability &@motely exploitable is a more
difficult analysis. The execution time of the client-drivaigorithm is still competitive with
the fastest fixed-precision algorithm.

For the 90 combinations of error detection clients and imgagrams, we find the
following:

e In all cases, the client-driven algorithm equals or beagsatituracy of the best
fixed-precision policy.

e In 64 of the 90 cases the client-driven algorithm also eqaalseats theper-
formance of the comparably accurate fixed-precision algorithm. Iro2¢hese
cases the client-driven algorithm is both the faséestthe most accurate.

e In 19 of the remaining 23 cases the client-driven algoritrerfgrms within a
factor of two or three of the best fixed-precision algoritimmany of these
cases the best fixed-precision algorithm is the fastest-fixedision algorithm,
so in absolute terms the execution times are all low.
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Fig. 16. Detecting FTP-like behavior is the most challeggamalysis. In three cases
(WU-FTP, privoxy, and CFENgine) the client-driven algonit achieves accuracy that we
believe only the full-precision algorithm can match—if ieve able to run to completion.

Note that for many of the larger programs the fully flow-sémsiand context-
sensitive algorithm either runs out of memory or requiregéwierable amount of
time. In these cases we cannot measure the accuracy ofgbigtlim for compari-
son. However, we do find that for the smaller programs thetligiven algorithm
matches the accuracy of the full-precision algorithm.

In general, the only cases where a fixed-policy algorithnfigpers better than the

client-driven algorithm are those in which the client reqailittle or no extra pre-

cision. In particular, the format string vulnerability fdem rarely seems to benefit
from higher levels of precision. In these cases, thoughatiadysis is usually so fast
that the performance difference is practically irrelevangure 18 shows that for

these cases, the analysis time for the client-driven algoris typically between 1

and 10 seconds.

For the problems that do require more precision, the cligivien algorithm con-
sistently outperforms the fixed-precision algorithms.|@atb and 6 provide some
insight into this result. For each program and each clieetrecord the number of
procedures that the algorithm makes context-sensitivetemgercentage of mem-
ory locations that it makes flow-sensitive. From these &®bie draw several con-
clusions:

e Looking at the columns, we find that different clients havéedént precision re-
qguirements. The file access client, for example, benefits fome flow-sensitivity
but not context-sensitivity; the FTP behavior client regsiboth. These statistics
show that client analyses often need some extra precisinmrity a very small
amount.

e While the client-driven algorithm might needlessly analgome variables with
flow-sensitivity, the amount of such extra precision is mmal. For example,
Figure 13 shows that the Format String Vulnerability regsiflow-sensitivity
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Percentage of Memory Locations
set Flow-Sensitive
File FSV | Remote| Remote FTP

Program Access Access| FSV | Behavior
stunnel-3.8 0.20 — — - 0.19
pfinger-0.7.8 - 0.53| 0.20 0.53 0.61
muh2.05c¢ 0.10 - - 0.07 0.31
muh2.05d 0.10 - - - 0.33
pure-ftpd-1.0.15 0.13 - 0.12 - 0.10
fcron-2.9.3 - - 0.03 - 0.26
apache-1.3.12 0.18 | 091| 0.89 1.07 0.83
make-3.75 0.02 - - - 2.19
BlackHole-1.0.9 0.04 - 0.24 - 0.32
wu-ftpd-2.6.0 0.09 | 0.22| 0.34 0.24 0.08

openssh-3.5pl-clientf 0.06 | 0.55| 0.35 0.56 0.96

privoxy-3.0.0-stable | 0.01 - - - 0.10
wu-ftpd-2.6.2 0.09 | 051| 0.63 0.53 0.23
bind-4.9.4-REL 0.01 | 0.23| 0.14 0.20 0.42
openssh-3.5pl-server 0.59 - 0.49 - 1.19
cfengine-1.5.4 0.04 | 0.46| 0.43 0.48 0.03
sqlite-2.7.6 0.01 - 1.47 - 1.43
nn-6.5.6 0.17 | 1.99| 1.82 2.03 0.97

Table 5
The percent of all memory locations in each program that trentedriven algorithm

chooses to analyze using flow-sensitivity. We show thisevalsi a percentage because the
overall numbers are large. Dashes indicate that no memoagiéms were analyzed using
flow-sensitivity.

for only one benchmarlkyn, and Table 5 shows that the client-driven algorithm
does not use any flow-sensitivity for ten of the benchmarkd, far the others
excludingnn, it uses very little flow-sensitivity.

e From Figures 12-16, we determine that only seven of the 9Bl@no instances
require any context-sensitivity. From Table 6, we see thét a tiny fraction of
procedures are analyzed in this way, suggesting that waskef techniques may
exist for implementing context-sensitivity, we can aclyiavoid it altogether in
most cases.

6.1 Client-specific results

The client-driven algorithm reveals some significant défeces between the preci-
sion requirements of the five error detection problems.

Figure 12 shows the results for the file access client, whaebts significantly
from flow-sensitivity but not from context-sensitivity. IBresult makes sense be-
cause the state of a file handle can change over time, but mostqures only
accept open file handles as arguments. We suspect that féves# error reports
represent true errors, and we believe that many of the rengafalse positives
could be eliminated using path-sensitive analysis.
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Number of Procedures
set Context-Sensitive
Total File | FSV | Remote| Remote| FTP
Program procedures || Access Access| FSV | Behavior
stunnel-3.8 42 - - - - -
pfinger-0.7.8 47 - - 1 - -
muh2.05c 84 - - - - 6
muh2.05d 84 - - - - 6
pure-ftpd-1.0.15 116 - - 2 - 9
fcron-2.9.3 100 - - - - -
apache-1.3.12 313 - 2 8 2 10
make-3.75 167 - - - - -
BlackHole-1.0.9 71 - - 2 - 5
wu-ftpd-2.6.0 183 - - - - 17
openssh-3.5p1-client 441 1 - 10 - -
privoxy-3.0.0-stable 223 - - - - 5
wu-ftpd-2.6.2 205 - 4 - 4 17
bind-4.9.4-REL 210 - 2 1 1 4
openssh-3.5pl-server 601 1 - 13 - -
cfengine-1.5.4 421 - 1 4 3 31
sqlite-2.7.6 387 - - - - -
nn-6.5.6 494 - 1 2 1 30
Table 6

The number of procedures in each program that the clieméwlralgorithm chooses to
analyze using context-sensitivity. Dashes indicate thgbnocedures were analyzed using
context-sensitivity.

Figure 13 shows the results for detecting format string erdbilities. The tainted-
ness analysis that we use to detect format string vulnétiabigenerally requires
no extra precision beyond the CI-FI analysis. We might ekpétity functions,
such as string copying, to have unrealizable paths thatecggrious errors, but
this does not happen in any of our example programs. The high positive rates
observed in previous work [27] are probably due to the usejoékty-based anal-
ysis.

Figure 14 shows the results for remote access vulnerabgityction. Accurate de-
tection of remote access vulnerabilities requires both-Bewsitivity and context-
sensitivity because the “domino effect” of the underlyingst analysis causes in-
formation loss to propagate to many parts of the programekample, all of the
false positives in BlackHole are due to unrealizable patinsugh a single func-
tion calledny st r 1 cpy(), which implements string copying. The client-driven
algorithm detects the problem and makes the routine cosngitive, which elim-
inates all the false positives.

Figure 15 shows the results for determining the remote ésflidity of format
string vulnerabilities. We find that this client is partiadly difficult for the client-
driven analysis, which tends to add too much precision withawering the false
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positive count. Interestingly, many spurious FSV erroesaaused by typos in the
program: for examplecf engi ne callsspri ntf () in several places without
providing the string buffer argument.

For two of the input programsyuh andwu- f t p, we use two versions of each
program: one version known to contain format string vulbéitées and a subse-
guent version with the bugs fixed. Our system accuratelyctietbe known vul-
nerabilities in the old versions and confirms their absencié newer versions.
Our analysis also finds the known vulnerabilities in sevetlagér programs, includ-
ing st unnel , cf engi ne, sshd, andnaned. In addition, our system reports a
format string vulnerability in the Apache web server. Mannapection, however,
shows that it is unexploitable for algorithmic reasons tratbeyond the scope of
our analysis.

Figure 16 shows the results for detecting FTP-like behawitich is the most
challenging of our problems because it depends on the sihtasltiple memory
locations and multiple client analyses. Even for this mamdnding problem, our
client-driven analysis properly detects exactly thosgpam points in the two FTP
daemons that perform the “get” or “put” file transfer functso Context-sensitivity
helps eliminate a false positive in one interesting casewinf t p, a data transfer
function appears to contain an error because the sourceagget tould either be
files or sockets. However, when the calling contexts areraggd, the combinations
that actually occur are file-to-file and socket-to-socket.

6.2 Program-specific results

This section describes some of the significant challengastiie input programs
present for static analysis.

6.2.1 Function tables

Some of the programs use tables of function pointers thasiandar to virtual
function tables in C++. Unfortunately, these tables arexed by strings, making it
practically impossible to reduce the number of possibletaegets. As a result, the
dispatch procedures, which access the table and call thringgfunction pointer,
end up significantly polluting the call graph.

6.2.2 Library wrappers

Many of the programs put wrappers around standard libramgtians or provide
their own implementations of these functions. For examgiany programs put
a wrapper aroungt r dup() that handles a null pointer or that exits gracefully
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if memory is exhausted. The client-driven algorithm worksllwn these cases
because it makes the wrapper functions context-sensfiigeasionally, however,
there are so many calls to these functions that the cost déxbgensitivity ex-

plodes.

6.2.3 Custom memory allocators

A few of the programs use custom memory allocators. Apachariscularly prob-
lematic because it implements a region-like allocator vegmantics unlike the
conventional heap or stack allocation. Luckily, there isoation to compile it us-
ing the regular malloc interface. In general, though, mamglysis tools rely on
the semantics of malloc and free to build an accurate mode¢ap objects: since
multiple calls to malloc always return distinct chunks ofmuey, there is no need
to explicitly model the address space.

6.2.4 Internal library state

A number of library routines contain internal state thatas explicitly represented
in their interfaces. The string tokenizer functishrt ok(), in particular, can

present a challenge for static analysis because it stomresub input strings in

a hidden global variable and returns pointers into the nexsntly stored string on
null inputs. Figure 17 shows how we can easily model this ehasing the an-

notation language. The global varialdert ok_st at i c_poi nt er is synthetic

and only exists for the purposes of analysis. The clientedrianalysis often de-
cides to make this variable flow-sensitive in order to dotish between different
tokenized strings.

gl obal { strtok_static_pointer }
procedure strtok(str, find_str)
{
on_entry { str --> string
find_str --> find_string
strtok_static_pointer --> previous_string }

access { string, find_string }
on_exit {
if (str == 0) { strtok_static_pointer --> previous_string

return --> previous_string }

default { strtok_static_pointer --> string
return --> string }

Fig. 17. Annotations fost r t ok properly model its internal state.
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6.3 Average performance

Figures 18 and 19 show the performance of the different algos averaged over
all five clients. These two graphs show the actual executioe tn seconds and
the memory usage in megabytes. We see that the client-daigemithm is quite

efficient. In most cases the client-driven algorithm perfsralmost as well as the
fastest fixed-policy algorithm—the flow-insensitive cofitgnsensitive algorithm.

As we saw in Figures 12-16, in the cases where the clienedralgorithm uses
more resources, it produces a better result: it takes more, tbut it eliminates

false positives.
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Fig. 18. The client-driven algorithm performs competilyveith the fastest fixed-precision
algorithm.
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Fig. 19. Memory usage is only a significant problem for théyfabntext-sensitivity algo-
rithms. More efficient implementations exist, but we findtthel context-sensitivity is not
needed.
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6.4 Discussion and future work

The current implementation of the client-driven algorithmanages just two aspects
of precision—flow-sensitivity and context-sensitivity-atiprecision could be im-
proved by handling other aspects as well. For example, meeige algorithms
exist for handling control-flow and for modeling heap obge®Vhile our algorithm
can detect information loss in these situations, we cugrdreve no mechanism
to address them. We could imagine using path-sensitivatgabs when the algo-
rithm detects information loss at a control-flow merge. $anty, we could employ
shape analysis for heap objects that merge information.

The client-driven approach might also be extended to imgits/scalability. One
promising direction would be to first perform an equalitysed pointer analysis,
which can scale to programs with a million lines of code [28¢ can then apply
our existing client-driven algorithm in places where weedéinformation loss due
to unification. Finally, our algorithm might be combined kibther approaches,
such as demand-driven analysis [20], to yield further inaproents in accuracy
and scalability.

7 Conclusions

In this paper we have presented a new client-driven apprt@achanaging the
tradeoff between cost and precision in pointer analysishéee shown that such
an approach is needed because no single fixed-precisiopsana appropriate
for all client problems and programs. The low-precisionoaliyms do not pro-
vide sufficient accuracy for the more challenging clientlgsia problems, while
the high-precision algorithms waste time over-analyzivgdasy problems. Rather
than choose any of these fixed-precision policies, we eftei fact that many
client analyses require only a small amount of extra prenisipplied to specific
places in each input program. Our client-driven algorithen effectively detect
these places and automatically apply the necessary adalippoecision.

Looking to the future, we believe that the client-drivenalthm provides a blueprint
for the deployment of more sophisticated but expensivetpoanalysis techniques.
For example, shape analysis can be extremely expensiveebaps in a client-
driven framework it can be profitably applied to very smalttpms of the pro-
grams.
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