List of Contributors

Emergy Berger

Department of Computer Sciences
The University of Texas at Austin
Samuel Z. Guyer

Department of Computer Sciences
The University of Texas at Austin

Calvin Lin
Department of Computer Sciences
The University of Texas at Austin

2000/12/-
page iii
—®

Chapter 1

Customizing Software
Libraries for Performance
Portability

1.1 Introduction

Software libraries are widely used, particularly in scientific computing, because they
provide a convenient method of encapsulating and reusing collections of domain-
specific code. Thus, for example, scientific programmers can use linear algebra
libraries [7, 8, 18] to leverage the expertise of others. The problem with libraries
is that they are typically designed to be general so that they can be reused in as
many situations as possible. This generality represents a performance penalty, as
there is great benefit to specializing a program for its specific calling contexts. The
performance benefit of specialization might seem unimportant since most scientific
libraries are designed by experts and carefully coded to be as efficient as possible,
but Section 1.2 will show that specialization can improve by several hundred percent
the performance of programs written with a high performance parallel dense linear
algebra library.

In previous work, we have described the Broadway compiler system, which
optimizes the use of software libraries by exploiting library-specific information that
is expressed in the form of an annotation language [11, 13]. This paper describes
how the Broadway system can be augmented to provide improved performance
portability by exploiting a simple form of dynamic optimization that was introduced
by Diniz and Rinard [6]. We begin by reviewing the Broadway system and its
benefits. We then explain how performance portability can be difficult to achieve
for certain parallel library routines. We then briefly describe our proposed approach.
Finally, we conclude by contrasting our work with previous research and providing
concluding remarks.

1.2 The Broadway Compiler

Figure 1.1 shows our system architecture for performing library-level optimiza-
tions [11]. In this approach, annotations capture semantic information about li-
brary routines. These annotations are provided by a library expert and placed in

2000/12/-
page 1
—®

2 Chapter 1. Customizing Software Libraries for Performance Portability

a separate file from the source code. This information is read by our compiler,
dubbed the Broadway compiler, which performs source-to-source optimizations of
both the library and application code. The resulting integrated system of library
and application code is then compiled and linked using conventional tools. Our cur-
rent implementation of the Broadway compiler takes ANSI C as input and produces
ANSI C as output.

In addition to supporting the development of new libraries, this architecture
is specifically designed to support existing libraries. In particular, by separating the
annotations from the library source, our approach applies to existing libraries and
existing library applications.

Application n Integrated and optimized
Broadway Compiler source code

A

Library:
Header Files + Source Code + Annotations

Figure 1.1. Architecture of the Broadway Compiler system

The annotations describe the library only, and not the application. While
information about the application would certainly be useful, this restriction makes
the system more usable, as applications programmers do not need to learn the
annotation language. In fact, the annotations can be completely hidden from the
library user, who only needs to compile with the Broadway compiler instead of a
standard C compiler.

Moreover, there are several reasons why it is more beneficial to describe li-
brary information rather than application information. First, as mentioned in the
Introduction, libraries are built to be general, but there is great benefit to specializ-
ing them for specific contexts. Applications, on the other hand, are typically not as
concerned with generality. Second, libraries are mechanisms for reuse, so the cost
of creating annotations for libraries can be amortized over many uses of the library.
Third, libraries typically encapsulate a coherent set of domain-specific abstractions,
which increases the likelihood that a small set of annotations can describe a useful
set of information. Finally, libraries typically embody a rich amount of domain-
specific knowledge, and these annotations encapsulate and exploit information that
library writers already know and that is otherwise wasted.

Philosophically, our architecture attempts to provide a clean separation of
concerns among the compiler writer, the library writer, and the applications pro-
grammer. The compiler encapsulates all compiler analysis and optimization ma-
chinery, but does not include any library-specific information or library-specific
optimizations. Thus, the compiler is built to be as general as possible and is only
configured for specific libraries through the annotation language. By contrast, the
annotations describe library knowledge and domain expertise, but do not require
deep compiler expertise to create. This separation of compiler expertise and library
expertise is critical, because it is unreasonable to expect anyone to possess both

2000/12/-
page 2
—®

1.2. The Broadway Compiler 3

types of expertise. Finally, the annotations and compiler together free the applica-
tions programmer to focus on application design rather than on performing manual
library-level optimizations [12].

400 . .
Triangular solve —+v—
holesky factorization —-%--
350 Lyuponov solver --%*-- H
H Rank-K update ---&--
S
8
5 300
2
o
% 250
3
£ *\
2 200
o "\\
»
g
150
5 X
2
9
g 100 s
E ~~<
A e
o *. T
50 S
e S
[I
@ R

0 500 1000 1500 2000 2500 3000
Problem size

Figure 1.2. Annotation-based optimizations improve PLAPACK parallel
programs from 10% to 180% for large problems, and from 36% to 622% for small
problems.

Figure 1.2 shows the results of applying our techniques manually to four pro-
grams written with the PLAPACK parallel dense linear algebra library [18]. We
see that significant performance improvements were obtained. For example, the
lowest curve (rank-k update) indicates a performance improvement of 10% for large
problem sizes and 180% for small problem sizes. The highest curve (triangular solve
with multiple right hand sides) shows a performance improvement of 36% for large
problem sizes and 622% for small problem sizes. In these cases, small problem sizes
benefit more because the specializations tend to remove overhead. This overhead,
such as communication, is significant because it limits, for a fixed problem size,
scalability to large numbers of processors. In summary, these results illustrate the
benefit of specializing library routines for specific calling contexts, even for libraries
like PLAPACK that have been carefully designed to provide high performance.

1.2.1 Library-Level Optimizations

We now describe an example of the type of optimization that was used to produce
the results shown in Figure 1.2. To understand the optimizations, we need to first
understand that PLAPACK programs manipulate matrices through objects known
as views, which represent the indices of a submatrix. PLAPACK thus provides
routines for creating and manipulating views. During the course of a program’s
execution, these views can assume different properties. In the most general case,
a view represents a matrix that is distributed across multiple processors. In some
cases a view resides wholly on a single processor, in which case the view is said to

2000/12/
page 3
—®

4 Chapter 1. Customizing Software Libraries for Performance Portability

be local, and in other cases the view represents the empty matrix, in which case
we say the view is empty.

These properties of views are significant because they can be used to improve
performance. Application programs typically invoke PLAPACK routines that work
on any matrix view, as this greatly simplifies the programming, but routines are
available that operate on specific types of views. For example, PLA_Gemm() performs
matrix multiplication and makes no assumptions about the input matrices’ views,
but PLA Local Gemm() works only if the views are local. PLA Local _Gemm() is the
more efficient of the two routines, because it does not include any of the overheads
required to deal with parallel objects. When a view is known to be empty even
greater savings can be obtained, as many PLAPACK calls on empty views simply
become no-ops.

One optimization, then, is to determine at each call site whether a view has
one of the special properties, and if so to substitute the invocation of the gen-
eral PLAPACK routine for an invocation of the appropriate specialized routine.
This optimization requires a dataflow analysis that tracks the properties of views
throughout the execution of the program. Our annotation language supports this
type of library-specific analysis by allowing a library expert to define properties on
views as follows:

property Distribution : map_of< object, {general, local, empty} >;

This annotation declares a property of matrices (a flow value in dataflow analysis
terms [16]) that has three values: general, local, and empty. Other annotations
then describe transfer functions [16] that describe how the various PLAPACK rou-
tines affect the properties of views. That is, the transfer functions indicate which
routines create views, which ones shrink them, and so forth. Collectively, these an-
notations configure the Broadway compiler to perform a dataflow analysis on views.
Once the analysis is performed, a third type of annotation indicates how the library
invocations can be specialized by through pattern matching:

pattern PLA_Gemm(...)

{
when ((Distribution[viewA] == Local) &&
(Distribution[viewB] == Local) &&
(Distribution[viewC] == Local))
replace { PLA_Local_Gemm(...)
}

In these examples we elide details due to space limitations, but the full annotation
language is described elsewhere [13].

The key points from this example are that library-specific analyses are needed
to exploit library-specific abstractions such as views, and that our annotation lan-
guage provides a mechanism for describing such analyses and abstractions.

2000/12/-
page 4
—®

1.3. Optimizing for Performance Portability 5

1.3 Optimizing for Performance Portability

This section describes how the Broadway system can be extended to provide im-
proved performance portability. We first argue that many optimizations on parallel
programs require information that is difficult to obtain statically. We then explain
the notion of dynamic feedback [6] and show how we can support this notion with
annotations.

1.3.1 Classes of Optimizations

Broadway optimizations can be classified into three categories: (1) optimizations
that the compiler assumes will always improve performance; (2) otimizations that
apply to particular target machines but not to others; and (3) optimizations whose
benefit depends on interactions between the application and the target machine,
possibly requiring run-time information. Broadway’s annotation language currently
supports the first two types of annotations. In particular, class (2) machine-specific
optimization can be turned on or off by manually including or excluding the relevant
annotations for a particular target machine. New mechanisms are needed, however,
to support class (3) optimizations and to provide an added degree of performance
portability.

Many optimizations fall into class (3), including two types of optimizations
that are fundamental to parallelism: optimizations that deal with granularity of
parallelism, and optimizations that deal with the degree of parallelism.

Most parallel programs must be tuned for their granularity of parallelism. For
example, the granularity of PLAPACK programs is guided by the concept of a block
size. Larger block sizes provide larger units of communication, which reduces the
overhead of communication. Smaller block sizes, however, tend to produce better
load balance. Thus, there is a machine-specific tradeoff. Moreover, the choice of
block size can interact with the algorithm, so the issue of granularity is sensitive to
the communication characteristics of the target machine, as well as to application-
specific and algorithmic characteristics.

The degree of parallelism is also machine-specific. For any given computation,
there is a tradeoff between computing it sequentially or computing it in parallel.
The parallel approach has the benefit of splitting the task across multiple processors,
which will ideally decrease the computation time. However, the parallel approach
typically requires communication that is not required for a sequential computation,
so parallelism is not always a win. With PLAPACK, an application programmer
can often choose to distribute a computation across all processors at the expense
of added communication, or to perform the computation on a subset of processors
at the cost of increased load imbalance. This tradeoff is tightly coupled to the
program’s granularity. For example, it is probably better to choose full parallelism
when there is a large amount of work to do, while it is better to compute on the
subset of processors if the amount of work is small compared to the overhead of
re-distributing the work. This tradeoff can be complex. Worse, this tradeoff can
change dynamically as the amount of work to perform often varies as the algorithm
progresses.

2000/12/
page 5
—®

6 Chapter 1. Customizing Software Libraries for Performance Portability

1.3.2 Dynamic Feedback

The idea of dynamic feedback is simple. When optimization decisions cannot be
made statically due to lack of information, the compiler creates multiple versions of
the code and uses dynamic sampling to determine which is best. The best code is
then executed for some duration, known as the production phase, which is typically
much longer than the sampling period. To support situations where the relative
performance of the different versions can vary dynamically, this cycle is repeated
until the program completes.

Minor modifications to our annotation language can be made to support dy-
namic feedback. In particular, the select keyword can be introduced to instruct
the compiler that multiple optimizations are possible for different situations. In the
following example, select is used to indicate that there are three ways to specialize
a Broadcast operation in MPI [10].

pattern {
MPI_Bcast(...);
}
{
when (Distribution[A] == ColumnPanel)
select {
{ /* Bucket implementation */ ...}
{ /* MST implementation */ ...}
{ /* Scatter-gather */ ...}
}

Annotations can also be used to guide policy decisions, such as how long
the sample periods should be and how long the production period should be. For
example, the following annotation fragment indicates that samples should be taken
every 20 times that the routine is called.

select every 20 { ...
}

Annotations can be used to customize the feedback process in more sophis-
ticated ways by indicating how the adaptivity depends upon various aspects of
the library implementation. For example, the following annotation states that the
adaptivity depends on the value of the program variable blocksize, which tells
the compiler that adaptivity is not needed in areas where the value of blocksize
does not change.

select on blocksize { ...

}

The Broadway compiler system greatly simplifies the production of dynami-
cally adaptive library routines. The library implementation need not change. In-
stead, the annotations that describe them change, and these changes only express
a few key bits of information. The remaining details are hidden in the Broadway

2000/12/
page 6
—®

1.4. Related Work 7

compiler, which creates and optimizes the various code versions, and which inserts
code into the application to sample the different versions and to select the most
efficient version.

1.4 Related Work

Our research extends to libraries a considerable body of previous work in dynamic
optimizations [6], partial evaluation [2, 4], abstract interpretation [5, 14], and pat-
tern matching [17]. This section relates our work to other efforts that provide
configurable compilation technology.

The Genesis optimizer generator produces a compiler optimization pass from
a declarative specification of the optimization [20]. Like Broadway, the specification
uses patterns, conditions and actions. However, Genesis targets classical loop opti-
mizations for parallelization, so it provides no way to define new program analyses.
Conversely, the PAG system is a completely configurable program analyzer [15] that
uses an ML-like language to specify the flow value lattices and transfer functions.
While powerful, the specification is low-level and requires an intimate knowledge of
the underlying mathematics. It does not include support for actual optimizations.

Some compilers provide special support for specific libraries. For example,
semantic expansion has been used to optimize complex number and array libraries,
essentially extending the language to include these libraries [1]. Similarly, some C
compilers recognize calls to malloc() when performing pointer analysis. Our goal
is to provide configurable compiler support that can apply to many libraries, not
just a favored few.

Meta-programming systems such as meta-object protocols [3], programmable
syntax macros [19], and the Magik compiler [9], can be used to create customized
library implementations, as well as to extend language semantics and syntax. While
these techniques can be quite powerful, they require users to manipulate AST’s and
other compiler internals directly and with little dataflow information.

1.5 Conclusions

Software libraries are designed for semantic reuse and semantic portability, but not
for performance portability. This paper has explained how the Broadway compiler
framework can be extended to use dynamic optimizations to provide improved per-
formance portability. In particular, a simple mechanism of dynamic feedback [6]
allows multiple versions of optimized code to be dynamically selected. We have ex-
plained why this approach is an ideal extension of annotation-based optimization.
Furthermore, the necessary extensions to our annotation language are minimal. We
are currently conducting experiments to quantify the benefits of our proposed idea,
and we are in the process of completing our compiler implementation so that we
can obtain fully automated results.

Acknowledgments. This work was supported in part by NSF CAREER Grant
ACI-9984660, DARPA Contract #F30602-97-1-0150 from the US Air Force Re-

2000/12/
page 7
—®

2000/12/
page 8
—®

8 Chapter 1. Customizing Software Libraries for Performance Portability

search Labs, and an Intel Fellowship

[1]

Bibliography

P. Artigas, M. Gupta, S. Midkiff, and J. Moreira. High performance numerical
computing in Java: language and compiler issues. In Workshop on Languages
and Compilers for Parallel Computing, 1999.

A. Berlin and D. Weise. Compiling scientific programs using partial evaluation.
IEEE Computer, 23(12):23-37, December 1990.

S. Chiba. A metaobject protocol for C++. In Proceedings of the Conference

on Object Oriented Programming Systems, Languages and Applications, pages
285-299, October 1995.

C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Proceedings
of the 1993 ACM Symposium on Principles of Programming Languages, pages
493-501, Charleston, South Carolina, 1993.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511-547, August 1992.

P. Diniz and M. Rinard. Dynamic feedback: An effective technique for adaptive
computing. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 71-84, 1997.

J. Dongarra, 1. Duff, J. DuCroz, and S. Hammarling. A set of level 3 basic
linear algebra subprograms. ACM Transactions on Mathematical Software,
16(1):1-28, 1990.

J. J. Dongarra and D. W. Walker. Software libraries for linear algebra com-
putations on high performance computers. SIAM Review, 37(2):151-180, June
1995.

D. R. Engler. Incorporating application semantics and control into compila-
tion. In Proceedings of the Conference on Domain-Specific Languages (DSL-
97), pages 103118, October 1997.

M. P. I. Forum. MPI: A message passing interface standard. International
Journal of Supercomputing Applications, 8(3/4), 1994.

9

2000/12/
page 9
—®

10

Bibliography

[11]

[12]

[13]

[14]

[15]

S. Z. Guyer and C. Lin. An annotation language for optimizing software li-
braries. In Second Conference on Domain Specific Languages, pages 39-52,
October 1999.

S. Z. Guyer and C. Lin. Broadway: A software architecture for scientific
computing. In IFIPS Working Group 2.5: Working Conference on Software
Architectures for Scientific Computing Applications, October 2000.

S. Z. Guyer and C. Lin. Optimizing the use of high performance software
libraries. In Languages and Compilers for Parallel Computing, August 2000.

N. D. Jones and F. Nielson. Abstract interpretation: a semantics-based tool
for program analysis. In Handbook of Logic in Computer Science. Oxford Uni-
versity Press, 1994. 527-629.

F. Martin. PAG — an efficient program analyzer generator. International Jour-
nal on Software Tools for Technology Transfer, 2(1):46—67, 1998.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kauffman, San Francico, CA, 1997.

S. Paul and A. Prakash. A framework for source code search using program
patterns. IEEE Transactions on Software Engineering, 20(6):463-475, 1994.

R. van de Geijn. Using PLAPACK - Parallel Linear Algebra Package. The
MIT Press, 1997.

D. Weise and R. Crew. Programmable syntax macros. In Proceedings of the
Conference on Programming Language Design and Implementation, pages 156—
165, June 1993.

D. Whitfield and M. L. Soffa. Automatic generation of global optimizers. ACM
SIGPLAN Notices, 26(6):120-129, June 1991.

2000/12/-
page 10
—®

