
\paper"2000/12/4page iiii i ii

i i ii

List of Contributors
Emergy BergerDepartment of Computer S
ien
esThe University of Texas at AustinSamuel Z. GuyerDepartment of Computer S
ien
esThe University of Texas at Austin

Calvin LinDepartment of Computer S
ien
esThe University of Texas at Austin

iii



\paper"2000/12/4page 1i i ii

i i ii

Chapter 1Customizing SoftwareLibraries for Performan
ePortability
1.1 Introdu
tionSoftware libraries are widely used, parti
ularly in s
ienti�
 
omputing, be
ause theyprovide a 
onvenient method of en
apsulating and reusing 
olle
tions of domain-spe
i�
 
ode. Thus, for example, s
ienti�
 programmers 
an use linear algebralibraries [7, 8, 18℄ to leverage the expertise of others. The problem with librariesis that they are typi
ally designed to be general so that they 
an be reused in asmany situations as possible. This generality represents a performan
e penalty, asthere is great bene�t to spe
ializing a program for its spe
i�
 
alling 
ontexts. Theperforman
e bene�t of spe
ialization might seem unimportant sin
e most s
ienti�
libraries are designed by experts and 
arefully 
oded to be as eÆ
ient as possible,but Se
tion 1.2 will show that spe
ialization 
an improve by several hundred per
entthe performan
e of programs written with a high performan
e parallel dense linearalgebra library.In previous work, we have des
ribed the Broadway 
ompiler system, whi
hoptimizes the use of software libraries by exploiting library-spe
i�
 information thatis expressed in the form of an annotation language [11, 13℄. This paper des
ribeshow the Broadway system 
an be augmented to provide improved performan
eportability by exploiting a simple form of dynami
 optimization that was introdu
edby Diniz and Rinard [6℄. We begin by reviewing the Broadway system and itsbene�ts. We then explain how performan
e portability 
an be diÆ
ult to a
hievefor 
ertain parallel library routines. We then brie
y des
ribe our proposed approa
h.Finally, we 
on
lude by 
ontrasting our work with previous resear
h and providing
on
luding remarks.1.2 The Broadway CompilerFigure 1.1 shows our system ar
hite
ture for performing library-level optimiza-tions [11℄. In this approa
h, annotations 
apture semanti
 information about li-brary routines. These annotations are provided by a library expert and pla
ed in1
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2 Chapter 1. Customizing Software Libraries for Performan
e Portabilitya separate �le from the sour
e 
ode. This information is read by our 
ompiler,dubbed the Broadway 
ompiler, whi
h performs sour
e-to-sour
e optimizations ofboth the library and appli
ation 
ode. The resulting integrated system of libraryand appli
ation 
ode is then 
ompiled and linked using 
onventional tools. Our 
ur-rent implementation of the Broadway 
ompiler takes ANSI C as input and produ
esANSI C as output.In addition to supporting the development of new libraries, this ar
hite
tureis spe
i�
ally designed to support existing libraries. In parti
ular, by separating theannotations from the library sour
e, our approa
h applies to existing libraries andexisting library appli
ations.
Integrated and optimized

source codeBroadway Compiler

AnnotationsHeader Files + Source Code + 
Library:

Application
source code

Figure 1.1. Ar
hite
ture of the Broadway Compiler systemThe annotations des
ribe the library only, and not the appli
ation. Whileinformation about the appli
ation would 
ertainly be useful, this restri
tion makesthe system more usable, as appli
ations programmers do not need to learn theannotation language. In fa
t, the annotations 
an be 
ompletely hidden from thelibrary user, who only needs to 
ompile with the Broadway 
ompiler instead of astandard C 
ompiler.Moreover, there are several reasons why it is more bene�
ial to des
ribe li-brary information rather than appli
ation information. First, as mentioned in theIntrodu
tion, libraries are built to be general, but there is great bene�t to spe
ializ-ing them for spe
i�
 
ontexts. Appli
ations, on the other hand, are typi
ally not as
on
erned with generality. Se
ond, libraries are me
hanisms for reuse, so the 
ostof 
reating annotations for libraries 
an be amortized over many uses of the library.Third, libraries typi
ally en
apsulate a 
oherent set of domain-spe
i�
 abstra
tions,whi
h in
reases the likelihood that a small set of annotations 
an des
ribe a usefulset of information. Finally, libraries typi
ally embody a ri
h amount of domain-spe
i�
 knowledge, and these annotations en
apsulate and exploit information thatlibrary writers already know and that is otherwise wasted.Philosophi
ally, our ar
hite
ture attempts to provide a 
lean separation of
on
erns among the 
ompiler writer, the library writer, and the appli
ations pro-grammer. The 
ompiler en
apsulates all 
ompiler analysis and optimization ma-
hinery, but does not in
lude any library-spe
i�
 information or library-spe
i�
optimizations. Thus, the 
ompiler is built to be as general as possible and is only
on�gured for spe
i�
 libraries through the annotation language. By 
ontrast, theannotations des
ribe library knowledge and domain expertise, but do not requiredeep 
ompiler expertise to 
reate. This separation of 
ompiler expertise and libraryexpertise is 
riti
al, be
ause it is unreasonable to expe
t anyone to possess both
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1.2. The Broadway Compiler 3types of expertise. Finally, the annotations and 
ompiler together free the appli
a-tions programmer to fo
us on appli
ation design rather than on performing manuallibrary-level optimizations [12℄.
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Figure 1.2. Annotation-based optimizations improve PLAPACK parallelprograms from 10% to 180% for large problems, and from 36% to 622% for smallproblems.Figure 1.2 shows the results of applying our te
hniques manually to four pro-grams written with the PLAPACK parallel dense linear algebra library [18℄. Wesee that signi�
ant performan
e improvements were obtained. For example, thelowest 
urve (rank-k update) indi
ates a performan
e improvement of 10% for largeproblem sizes and 180% for small problem sizes. The highest 
urve (triangular solvewith multiple right hand sides) shows a performan
e improvement of 36% for largeproblem sizes and 622% for small problem sizes. In these 
ases, small problem sizesbene�t more be
ause the spe
ializations tend to remove overhead. This overhead,su
h as 
ommuni
ation, is signi�
ant be
ause it limits, for a �xed problem size,s
alability to large numbers of pro
essors. In summary, these results illustrate thebene�t of spe
ializing library routines for spe
i�
 
alling 
ontexts, even for librarieslike PLAPACK that have been 
arefully designed to provide high performan
e.1.2.1 Library-Level OptimizationsWe now des
ribe an example of the type of optimization that was used to produ
ethe results shown in Figure 1.2. To understand the optimizations, we need to �rstunderstand that PLAPACK programs manipulate matri
es through obje
ts knownas views, whi
h represent the indi
es of a submatrix. PLAPACK thus providesroutines for 
reating and manipulating views. During the 
ourse of a program'sexe
ution, these views 
an assume di�erent properties. In the most general 
ase,a view represents a matrix that is distributed a
ross multiple pro
essors. In some
ases a view resides wholly on a single pro
essor, in whi
h 
ase the view is said to
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4 Chapter 1. Customizing Software Libraries for Performan
e Portabilitybe lo
al, and in other 
ases the view represents the empty matrix, in whi
h 
asewe say the view is empty.These properties of views are signi�
ant be
ause they 
an be used to improveperforman
e. Appli
ation programs typi
ally invoke PLAPACK routines that workon any matrix view, as this greatly simpli�es the programming, but routines areavailable that operate on spe
i�
 types of views. For example, PLA Gemm() performsmatrix multipli
ation and makes no assumptions about the input matri
es' views,but PLA Lo
al Gemm() works only if the views are lo
al. PLA Lo
al Gemm() is themore eÆ
ient of the two routines, be
ause it does not in
lude any of the overheadsrequired to deal with parallel obje
ts. When a view is known to be empty evengreater savings 
an be obtained, as many PLAPACK 
alls on empty views simplybe
ome no-ops.One optimization, then, is to determine at ea
h 
all site whether a view hasone of the spe
ial properties, and if so to substitute the invo
ation of the gen-eral PLAPACK routine for an invo
ation of the appropriate spe
ialized routine.This optimization requires a data
ow analysis that tra
ks the properties of viewsthroughout the exe
ution of the program. Our annotation language supports thistype of library-spe
i�
 analysis by allowing a library expert to de�ne properties onviews as follows:property Distribution : map_of< obje
t, {general, lo
al, empty} >;This annotation de
lares a property of matri
es (a 
ow value in data
ow analysisterms [16℄) that has three values: general, lo
al, and empty. Other annotationsthen des
ribe transfer fun
tions [16℄ that des
ribe how the various PLAPACK rou-tines a�e
t the properties of views. That is, the transfer fun
tions indi
ate whi
hroutines 
reate views, whi
h ones shrink them, and so forth. Colle
tively, these an-notations 
on�gure the Broadway 
ompiler to perform a data
ow analysis on views.On
e the analysis is performed, a third type of annotation indi
ates how the libraryinvo
ations 
an be spe
ialized by through pattern mat
hing:pattern PLA_Gemm(...){ when ((Distribution[viewA℄ == Lo
al) &&(Distribution[viewB℄ == Lo
al) &&(Distribution[viewC℄ == Lo
al))repla
e { PLA_Lo
al_Gemm(...)...}In these examples we elide details due to spa
e limitations, but the full annotationlanguage is des
ribed elsewhere [13℄.The key points from this example are that library-spe
i�
 analyses are neededto exploit library-spe
i�
 abstra
tions su
h as views, and that our annotation lan-guage provides a me
hanism for des
ribing su
h analyses and abstra
tions.
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1.3. Optimizing for Performan
e Portability 51.3 Optimizing for Performan
e PortabilityThis se
tion des
ribes how the Broadway system 
an be extended to provide im-proved performan
e portability. We �rst argue that many optimizations on parallelprograms require information that is diÆ
ult to obtain stati
ally. We then explainthe notion of dynami
 feedba
k [6℄ and show how we 
an support this notion withannotations.1.3.1 Classes of OptimizationsBroadway optimizations 
an be 
lassi�ed into three 
ategories: (1) optimizationsthat the 
ompiler assumes will always improve performan
e; (2) otimizations thatapply to parti
ular target ma
hines but not to others; and (3) optimizations whosebene�t depends on intera
tions between the appli
ation and the target ma
hine,possibly requiring run-time information. Broadway's annotation language 
urrentlysupports the �rst two types of annotations. In parti
ular, 
lass (2) ma
hine-spe
i�
optimization 
an be turned on or o� by manually in
luding or ex
luding the relevantannotations for a parti
ular target ma
hine. New me
hanisms are needed, however,to support 
lass (3) optimizations and to provide an added degree of performan
eportability.Many optimizations fall into 
lass (3), in
luding two types of optimizationsthat are fundamental to parallelism: optimizations that deal with granularity ofparallelism, and optimizations that deal with the degree of parallelism.Most parallel programs must be tuned for their granularity of parallelism. Forexample, the granularity of PLAPACK programs is guided by the 
on
ept of a blo
ksize. Larger blo
k sizes provide larger units of 
ommuni
ation, whi
h redu
es theoverhead of 
ommuni
ation. Smaller blo
k sizes, however, tend to produ
e betterload balan
e. Thus, there is a ma
hine-spe
i�
 tradeo�. Moreover, the 
hoi
e ofblo
k size 
an intera
t with the algorithm, so the issue of granularity is sensitive tothe 
ommuni
ation 
hara
teristi
s of the target ma
hine, as well as to appli
ation-spe
i�
 and algorithmi
 
hara
teristi
s.The degree of parallelism is also ma
hine-spe
i�
. For any given 
omputation,there is a tradeo� between 
omputing it sequentially or 
omputing it in parallel.The parallel approa
h has the bene�t of splitting the task a
ross multiple pro
essors,whi
h will ideally de
rease the 
omputation time. However, the parallel approa
htypi
ally requires 
ommuni
ation that is not required for a sequential 
omputation,so parallelism is not always a win. With PLAPACK, an appli
ation programmer
an often 
hoose to distribute a 
omputation a
ross all pro
essors at the expenseof added 
ommuni
ation, or to perform the 
omputation on a subset of pro
essorsat the 
ost of in
reased load imbalan
e. This tradeo� is tightly 
oupled to theprogram's granularity. For example, it is probably better to 
hoose full parallelismwhen there is a large amount of work to do, while it is better to 
ompute on thesubset of pro
essors if the amount of work is small 
ompared to the overhead ofre-distributing the work. This tradeo� 
an be 
omplex. Worse, this tradeo� 
an
hange dynami
ally as the amount of work to perform often varies as the algorithmprogresses.
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6 Chapter 1. Customizing Software Libraries for Performan
e Portability1.3.2 Dynami
 Feedba
kThe idea of dynami
 feedba
k is simple. When optimization de
isions 
annot bemade stati
ally due to la
k of information, the 
ompiler 
reates multiple versions ofthe 
ode and uses dynami
 sampling to determine whi
h is best. The best 
ode isthen exe
uted for some duration, known as the produ
tion phase, whi
h is typi
allymu
h longer than the sampling period. To support situations where the relativeperforman
e of the di�erent versions 
an vary dynami
ally, this 
y
le is repeateduntil the program 
ompletes.Minor modi�
ations to our annotation language 
an be made to support dy-nami
 feedba
k. In parti
ular, the sele
t keyword 
an be introdu
ed to instru
tthe 
ompiler that multiple optimizations are possible for di�erent situations. In thefollowing example, sele
t is used to indi
ate that there are three ways to spe
ializea Broad
ast operation in MPI [10℄.pattern {MPI_B
ast(...);}{ when (Distribution[A℄ == ColumnPanel)sele
t { { /* Bu
ket implementation */ ...}{ /* MST implementation */ ...}{ /* S
atter-gather */ ...}}} Annotations 
an also be used to guide poli
y de
isions, su
h as how longthe sample periods should be and how long the produ
tion period should be. Forexample, the following annotation fragment indi
ates that samples should be takenevery 20 times that the routine is 
alled.sele
t every 20 { ...}Annotations 
an be used to 
ustomize the feedba
k pro
ess in more sophis-ti
ated ways by indi
ating how the adaptivity depends upon various aspe
ts ofthe library implementation. For example, the following annotation states that theadaptivity depends on the value of the program variable blo
ksize, whi
h tellsthe 
ompiler that adaptivity is not needed in areas where the value of blo
ksizedoes not 
hange.sele
t on blo
ksize { ...}The Broadway 
ompiler system greatly simpli�es the produ
tion of dynami-
ally adaptive library routines. The library implementation need not 
hange. In-stead, the annotations that des
ribe them 
hange, and these 
hanges only expressa few key bits of information. The remaining details are hidden in the Broadway
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1.4. Related Work 7
ompiler, whi
h 
reates and optimizes the various 
ode versions, and whi
h inserts
ode into the appli
ation to sample the di�erent versions and to sele
t the mosteÆ
ient version.1.4 Related WorkOur resear
h extends to libraries a 
onsiderable body of previous work in dynami
optimizations [6℄, partial evaluation [2, 4℄, abstra
t interpretation [5, 14℄, and pat-tern mat
hing [17℄. This se
tion relates our work to other e�orts that provide
on�gurable 
ompilation te
hnology.The Genesis optimizer generator produ
es a 
ompiler optimization pass froma de
larative spe
i�
ation of the optimization [20℄. Like Broadway, the spe
i�
ationuses patterns, 
onditions and a
tions. However, Genesis targets 
lassi
al loop opti-mizations for parallelization, so it provides no way to de�ne new program analyses.Conversely, the PAG system is a 
ompletely 
on�gurable program analyzer [15℄ thatuses an ML-like language to spe
ify the 
ow value latti
es and transfer fun
tions.While powerful, the spe
i�
ation is low-level and requires an intimate knowledge ofthe underlying mathemati
s. It does not in
lude support for a
tual optimizations.Some 
ompilers provide spe
ial support for spe
i�
 libraries. For example,semanti
 expansion has been used to optimize 
omplex number and array libraries,essentially extending the language to in
lude these libraries [1℄. Similarly, some C
ompilers re
ognize 
alls to mallo
() when performing pointer analysis. Our goalis to provide 
on�gurable 
ompiler support that 
an apply to many libraries, notjust a favored few.Meta-programming systems su
h as meta-obje
t proto
ols [3℄, programmablesyntax ma
ros [19℄, and the Magik 
ompiler [9℄, 
an be used to 
reate 
ustomizedlibrary implementations, as well as to extend language semanti
s and syntax. Whilethese te
hniques 
an be quite powerful, they require users to manipulate AST's andother 
ompiler internals dire
tly and with little data
ow information.1.5 Con
lusionsSoftware libraries are designed for semanti
 reuse and semanti
 portability, but notfor performan
e portability. This paper has explained how the Broadway 
ompilerframework 
an be extended to use dynami
 optimizations to provide improved per-forman
e portability. In parti
ular, a simple me
hanism of dynami
 feedba
k [6℄allows multiple versions of optimized 
ode to be dynami
ally sele
ted. We have ex-plained why this approa
h is an ideal extension of annotation-based optimization.Furthermore, the ne
essary extensions to our annotation language are minimal. Weare 
urrently 
ondu
ting experiments to quantify the bene�ts of our proposed idea,and we are in the pro
ess of 
ompleting our 
ompiler implementation so that we
an obtain fully automated results.A
knowledgments. This work was supported in part by NSF CAREER GrantACI-9984660, DARPA Contra
t #F30602-97-1-0150 from the US Air For
e Re-
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