Copyright
by
Kent Arthur Spaulding
1998

Natural Metaphoric Optimization Algorithms

by

Kent Arthur Spaulding, B.A.

Report
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Sciencein Engineering

The University of Texasat Austin
December 1998

Natural Metaphoric Optimization Algorithms

Approved by
Supervising Committee:

Dedication

This report is dedicated to my wife, Tracy, and the Peanut, without whose

patience and support it would not have been possible.

Acknowledgements

| would like to thank all of the fine software engineers and programmers who
have helped me develop an understanding of software and software systems
development. | would also like to thank my manager, Tim Magnuson, and

Trajecta’s CEO, Trey Herschap, for patiently supporting my research efforts

November 20, 1998

Abstract

Natural Metaphoric Optimization Algorithms

Kent Arthur Spaulding, M.S.E.

The University of Texas at Austin, 1998

Supervisors: Calvin Lin and Craig Chase

In the current business climate the quest for profit in the fadewer
margins drives companies to be more efficient and more careful yaging
decisions. Software systems need to enable users to state Higingd resource
constraints and then suggest an optimal plan that achieves that goladl Gl
optimization techniques can provide these kinds of answers. Many global
optimization techniques are difficult to use. This report reviews giogrand
accessible techniques for global optimization that are based @phmoet from
the natural sciences. We apply some of these algorithms to Isegtraroblems

using genetic programming and dynamic constraint optimization techniques.

Vi

Table of Contents

LIST Of TADIES ... e e e e e e e e e e e b s Xi
IS A0 T U OSSPSR Xil
LiSt Of HIUSTrAtIONS.....ceviiiiiiiiee et Xiii
1o To [¥ ox 1 o] o [PPSR 1
Y1} 1)Y= 11 o] o S 1
(@] o] [=Tox 1)< TSP 2
APPIOACKH. ...t 3
OVEIVIBW.....ceiiiiieie ettt e e e e e e e e e e e e e e e e s e e bbbttt et e e eeaeeeaeeas 4
LItEIratUre REVIEWeeiiiei ettt s e e e e e e e e e e e e e eeeeeeeneees 6
T (oo 18 o 1o] o U 6
TECNNICAl OVEIVIEW......cccieiieeeeee e e e e e e ettt s e s e e e e e e e e eeaeeeeenennnnes 6
A Few Search StrategiesS.......ccocviiiiiiii i 8
ContinUOUS OPLIMIZALION.........uuiiiiiiiiiiiiiieiiee e 10
Combinatorial OptimIizationcooveiiiiiiiiiieeee e 11
Metaheuristic Searchingccoooeeiiiiiiii e 12
Global and Local Searching..........cooooviiiiiiiiiiiiiiieeeeee e 13
Metaphoric Optimization Algorithmsccoooiiiiiii e 14
Natural Metaphoric Optimization Algorithms ..., 15
Genetic AlgOMtNMS.......oooiiiii e 15
Strengths and Weaknesses of GASccoovvviiiiiiiveeiiiee e, 17
Evolutionary Programmingooooiiiiiiiiiiiiiieiiiieeeeee e 18
Strengths and Weaknesses of EP.........cccoooovviiiiiiiiiiiiiie e, 20
Simulated ANNEAIINGuuiiiiieie e 21
The Process of ANNEAIINGcvviiiiiiiiiiiiieeee 21
Strengths and Weaknesses of SA ..., 23

vii

Genetic Programming.........ccoouveviieeeeuiiiiiiisee e e e e e e e e eeeeeeeeeaeennnn e as 24

Strengths and Weaknesses Of GP ..o, 25
Grammar-Based Genetic Algorithmsccooooiiiiiiiii e, 25
Strengths and Weaknesses of GBGA'Sccoovvvvvvvvvevvvvvinnnnn. 26
Ant Colony Optimization SYStEMSccuviiiiiiiiiiie e 27
ANt Colony BENAVIOF.........couviiiiiiiie e 27
The Traveling Salesman Problem..........ccccooviiiiiiiiiiiiiiccceeee e 30
Evolution of Ant-Based AlIgorithms...........c.oooviiiiiiiiiii e, 30
The Ant System AIgorithm............oovviiiiii 32
The Ant ColoNY SYSIEMuuuiiiiii i e e e e e 35
MAX-MIN ANt SYSTEM ...uiiiiiiiicee e 35
Continuous Ant Colony Optimization..............cceeeiiiiieeeeeeeeeeeeeeeiiiiinens 36
Global Search in CACO ...t 37
Local Search in CACO ... 38
Constrained Optimization in CACO...........coeeeveevveeeeeeeiinn 39
Another Global Optimization Algorithm of Interest...............ccoooiiiiiiiiinnn 40
GRG 2.ttt e e e e e aaaas 40
Strengths and Weaknesses of GRG2...........ccccovvevvvvvviiiiiiinee e, 42
Summary of Literature REVIEWoiiiiiiiiiiiii e 42
An Introduction to MasterMind and Possible Solutionsccccecciiiiiiiieeenee. 43
T (oo [¥ Tox 1o o O PR 43
MasterMind and ItS VariantSoooueiiiiiiiiiiiiie e 43
SoIving 3-3 MASLEIrMING........ccoiiiiiieiiire e e e e e 44
The Mini MasterMind Language...........cocovuuviiieieiieiiiiie e, 44
An Implicit Strategy for MMLovvviiiiiiiiieee e 45
MML in More Detailcoooiiiiiiiiiiiiiieeceee e 46
Estimating the 3-3 MasterMind Search Space............ccccceeeveeeviiiiennnn. 49
An Approach to Solving 3-3 MasterMind Using a GBGA 51
An Approach to Solving 3-3 MasterMind Using ACO.........c.ccceeeee. 52

viii

SoIvING 4-6 MASLEIrMING.........coooiiieiiiicre e e e e e e 55

The Dynamic Constraints APProachccccvvvvvevvviiiiiiiiiiee e 55
Estimating the 4-6 MasterMind Search Space............ccccceeeveeeviiiniennn. 57
Solving 4-6 MasterMind with @ GBGAcccciiiiiiiiiiiii 57
Solving 4-6 MasterMind with an ACO Algorithm..........cccccoeeeevvnnnnnnn. 58
EXperimental RESUILS..........uuuiiii e e e e e aeans 60
INEFOAUCTION ... e e e e e e e e e e e e e e e e e 60
3-3 MasterMind RESUIESuuuiiiiiiiee e 61
3-3 GBGA RESUILSuuuiiiii it 61
ODbjective FUNCLIONoooiiiiiiiieeeeeeee e 62
Intermediate RESUILSuuiiiiiiiie e 63
Non-Elitist, Default Crossover and Mutation................ccceceee.e.. 64
Elitist, Default Crossover and Mutationcccoeeeeeiiieiieninnns 65
Non-Elitist, 0.9 Crossover and 0.15 Mutation.............ccccceeeeenn... 66
Analysis of the 4.37 ReSUlt............cccviiiiiiiiii 67
Reanalyzing the 4.37 ResuUlt............cocoiiiiiiiii e, 69
Analysis of the 3.93 ReSUlt............cccuviiiiiiiii s 70
Comparison with Published Solutions...............coooiiiiiiiiiiine. 72
4-6 MaSterMiNd RESUILScooiiiiieeeie s 72
GBGA RESUILS ..ottt e e 72
Summary of Experimental RESUILSc.oiiiiiiiiiiiii e 73
(@] o Tod 10150 o USSP 74
MaIN FINAINGS ...t a e e e e e e e e e 74
Original ContribULIONSuiiiiiie e 75
0 T 7= U o 1R 75
Opportunities for FUrther WOork............cc.uuviiiiiiiiiiiiee e 75
Solution- and Approach-Neutral Possibilitiescccccooeevviiiiiieen, 76
The MML APPIOACKcuuiiiiiiiiiiiiei e 76

The Guess-to-Guess APProacChuveeeiiiiiiiiie e 76
Dynamically Specifying Constraints Using a Grammar 77

List of Tables

Table 1: A Representation of a 3-3 MasterMind Programc.cccevvvvviieeeenennnne 47
Table 2: An Example Row with Pruning Operators...........ccccoevvvvveveviviiiiiiineeeeenn 48
Table 3: Impossible Responses in an MML Programcccceevvvvvvevviviinnnnnnnnn. 50

Xi

List of Figures

Figure 1: Historical Progression of Ant-Based Algorithmscccovvviiiieeennnn, 31
Figure 2: The Ant System AlgOrithmMcooiiiiiiiierrr e 34
Figure 3: Finding 2 Digits with 3 Values Using TSP...........cccccevvrvvivviiiiiceeeen, 54
Figure 4: The Best Early Non-Elitist Performer...........ccccooeeieiiiiiiiiii e 65
Figure 5: The Best Early ElitiSt Performer ... 66
Figure 6: The 4.37 RESUIL.........ii e 67
Figure 7: The Reduced 4.37 ReSUItcouuiiiiiiiiie e 68
Figure 8: The Optimal First ROW fOr 3-3ouiiiiiiiieie e 69
Figure 9: The Reduced 3.93 ReSUIt.........couuiiiiiiiiiii e 70
Figure 10: A Graph of Progress Towards the 3.93 Result...............cccoevivvvviniiinnnns 71

Xii

List of Illustrations

[llustration 1: Ants and Obstacles

Xiii

I ntroduction

MOTIVATION

The current business climate, with its raft of mergers and anonss is
driving businesses to compete against one another for lower and lower profi
margins. This is true across many industries, including Telecommuamsati
Cable and Broadcast Television, Computers, Consumer Electronics, Ban#ling a
Consumer Credit. The quest for profit in the face of lower margninges
companies to be more efficient, and hence more careful when making decisions.

To illustrate, consider the credit card industry where the need for good
decisions is profound. In the current business climate, the only way doedit
card company to maintain profitability is to accept increasedfaskhe same
return. Hence, card issuers face a common dilemma. How does d&®e ma
decisions in an environment where there is a great reward for befirect and
severe penalties for being wrong?

Software in the form of data-mining tools used for advanced datgsanal
addresses this question by evaluating proposed plans of action. Data-mining
software finds patterns in vast data warehouses and is then usestlitd fve
probable outcome of a given proposed plan. This all well and good, but begs the
guestion, “If this is a good plan, then how can it be better?”

Some data-mining tools address this issue by using optimization
technologies to fine-tune a given plan. Imagine being able to state ydsr goa

along with some set of resource constraints and have software sagyggstmal

plan that achieves that goal while minimizing consumed resources. |Globa
optimization techniques can provide these kinds of answers; the Iisdter
optimization algorithm, the better the plan and the higher the rewards.

What's the downside? Many global optimization techniques are difficult
to comprehend, and hence difficult to use.

Given the current business climate and the need for optimization, there is a
trend to incorporate more and more intelligence into software (WaioiGiven
this trend, it clearly behooves Software Engineers to understand @itoniz
technologies.

This report investigates a couple of promising and accessible techniques

for global optimization.
OBJECTIVES

This report has two primary objectives. First, to build a broad
understanding of the field of non-linear programming, which incorporates a wide
ranging variety of ‘global optimization’ tools and techniques. The second
objective is to learn to apply interesting optimization techniquesnteaningful
problem. Finally, we keep an eye towards using optimization technologies in
future software engineering projects.

Extending the state-of-the-art is not an objective; this researteing
undertaken in order to provide the author with an understanding of global-
optimization techniques and the beginnings of a process to follow for learning and
applying new techniques to novel problems. In other words, this researct shoul

result in the ability to answer high-level questions regarding chosénigees.

For example, what are the relative strengths and weaknessegvehamethod?
What kinds of problems are best suited for attack via this technibioa?
difficult (or easy) is it to map a given problem into a given technidie® easy
is it to incorporate a given technology into a software system? Asiaption
becomes more and more useful, these questions will need to be ahswear
on-going basis.

Generally, this report should provide the beginnings of a process to follow
for learning about, evaluating, and applying new optimization techniques as they

are discovered and appear in the literature.
APPROACH

The methodology used to compile this report was quite straightforward. It
started with an interest in ‘metaphoric optimization techniqudsat tis,
techniques based on observations of physical phenomena. More specifically, thi
interest is focused on algorithms grown from studies of biologicatmsstThese
techniques are in contrast to purely mathematically based technigjaethéd
popular Generalized Reduced Gradient (GRG2) method or even branch and
bound techniques. The descriptions of metaphoric optimization techniques are
rooted in familiar terminology, which make them more accessible thany
other techniques.

The next step was to review the literature and find specifiaphetic
optimization techniques of interest. Grammar-Based Genetic &lgwi(GBGA)
and Ant Colony Optimization (ACO) were selected from a plethorapbibns.

These appeared to be the most accessible methods, and have alsdrdsrdons

promising results when applied to standard test problems (Antonisseo@tiniC
91).

Next, it was time to find a problem to solve. We settled on the gdme
MasterMind. Why MasterMind? First, it has several variations and hence a
variety of search spaces and strategies to choose from. Second, mants \tko
not have known optimal solutions. Third, there are some published results for
certain variants for both a straight genetic algorithm and a siedukatnealing
solution. Fourth, MasterMind can be tackled with the chosen optimization
techniques in interesting ways. Finally, MasterMind should be illugtratf the
various strengths and weaknesses of the GBGA and ACO algorithms.
MasterMind serves as an excellent test bed, and yes, it is fun.

Why not a business problem? In the end, access to appropriate and
publishable data became an issue. All of the stated researchageaiset just
using MasterMind.

The remainder of the research was simply of matter of finding or
developing code to use for the evaluation of the techniques and performing

experiments that attempt to solve the test problems.
OVERVIEW

This report is divided into five major sections. This introductionrg.fiA
section covering the current literature on selected optimizatibmitpees follows
the introduction. This section focuses on Natural Metaphoric Optilmizat

Algorithms, with an extra emphasis on Ant Colony based techniques and

1 MasterMind is a trademark of Invicta Plastics,.Inc

4

Grammar-Based Genetic Algorithms. The third section provides ssdirdtion
to the test problems and their anticipated experimental solutionsorSéaur
focuses on the experiments, including lessons learned during the proddbe a
experimental results. The fifth major section provides a conclusiomalst
considers additional research and discusses the possibilitieguor fvork based

on this research.

Literature Review

INTRODUCTION

This section provides a brief literature review covering the opditioiz
techniques and technologies that were investigated while formulatingoaslut
for MasterMind. This review is by no means intended to be compétesry it is
intended to serve as a brief introduction to some of the concepts invalved
Nonlinear Programmirfg(NLP) and optimization techniques. It should also serve
to define terms and techniques used and discussed in the remainder of the report.

This section begins by providing a high-level technical overview of NLP
and optimization. This section is largely a consolidation of the ovesviaw
Fourer and Greening (Fourer 97)(Greening 92). After the technical owetitis
section discusses several Natural Metaphoric Optimization Atgasitat a high-
level. Grammar-Based Genetic Algorithms and Ant Colony Optinozadire then
discussed in more detail. Finally, we look at other non-metaphoric tgemihat

might be of interest to Software Engineers.
TECHNICAL OVERVIEW

Optimization and global optimization techniques fall into a field oflgt
called Nonlinear Programming (NLP). NLP is used to find good solutions to

problems that can be expressed in terms aftgective functiorand a number of

2 In this context, the term, "Programming", doesnediér to act of developing code, but rather the
act of "planning."

constraint functionsAn objective function takes a vector of input values as an
argument and returns a vector of output values.

The objective function describes the search space in which one teant
find a minimum or maximum set of output values. It is often conveniethirk
of objective functions as defining an n-dimensional landscape, wherdahe is
number of input values over which one wanders in order to find the high or low
point. Constraint functions limit the search of this landscape tofgpaceas.
Simply put, all optimization problems are just a search for the best cdrohin&
input values to an objective function that, given some constraints, produce the
optimal set of output values.

While it sounds simple in concept, it is actually very difficultitafgood
general solutions for all sets of possible objective and constrainttdnscFirst,
these search spaces are very large. Additionally, many problems have a aimber
local minima or maxima that are difficult to locate and/or hardistinguish from
one another.

To illustrate the concept of multiple local minima, consider thieviohg
minimization problem. Imagine that you are walking on a ranch and havasthe
of finding the lowest point on the ranch so you can drill a well (objective
function). You know the boundaries of the ranch when you see them (constraint
functions), but have no map to follow. You decide to traverse the ranch, but how
do you know that you are at the lowest place on the ranch? When you are in
depressions you cannot see over the hills around you. You can keep notes, so one

strategy might be to stand on the highest hill you can find, look around for

promising depressions, and then search each one for depth. Assuming you can
find the highest hill, you might not be able to see all of the depressi@earch
and there may a large number of depressions. The task is clearly not easy.

It should be clear from the ranch example that even though optimization
sounds simple, it is often quite difficult. However, the basic conisepimple;

you search a landscape to obtain an objective.
A Few Search Strategies

There are many strategies for searching, includirigaustive random
greedy and heuristic searches. The next few paragraphs look at these gross
strategies at a very high-level.

In anexhaustive searglevery possible set of inputs is tested to find the
one that results in the best, as judged by some measure, set of outputs.

In arandom searchwe just randomly generate and test combinations of
inputs until we find a set of inputs that is good enough. Random search bopes t
quickly find a good answer. Naturally, it is not always quick and is alwaips
optimal. Random search amounts to random guessing.

A greedy searchis related to a random search, but employs some
intelligence. Like a random search, a greedy search randomly gersevdtessts
combinations of inputs; however, when it finds a good combination it set&lé
and then begins testing other combinations of inputs in the same vicirthg as
current best result. The term "greedy" connotes a strong prefef@nbetter
solutions, and is applied to many algorithms. It follows that wheneveeetygr

search finds a better result, it sets it aside, and continue$ sadhat local area.

It stops after a set number of tries or when it has found a solution that is stifficie
It has the same weaknesses as random search, but on average cswiltiuis
that are good enough more rapidly than straight random guessing.

A heuristic searchollows some strategy, like a human might. For many
searches, one could follow a strategy of always moving in an uphittidine
hoping to find better and better results. If the results get bettaofme time and
then start to get worse, you have reached a summit. This isilthgimbing
strategy. It is commonly used in NLP systems. The use of agstratakes hill
climbing a heuristic search. Hill climbing is more complicatedhtitesounds. If
you reach a summit, how do you know it is the highest summit? There are,
naturally, other strategies available.

An as-of-yet unstated goal of searching is to find a near-optimatiol
in a search space in a reasonable period of time. All four tfpesarches may
fail to find a good solution, but can find good approximations. How long do we
have to wait for a good approximation? In all cases, one could seaesterfor
unless some preset time limit is imposed. It may not be imnedgd@bvious as to
why exhaustive searches may take forever. It suffices to sagubatfor simple
sounding problems, one could have an infinite number of possible input
conditions. For example, one of the inputs may be a real number. Theaa ar
infinite number of real numbers, therefore, a function taking real numbgeguds
has an infinite number of possible combinations of inputs. One cannot possibly

test all input combinations for these functions.

Optimization problems are broken into two general classes, basé on t
type of inputs to the problem. Problems with an infinite humber of input pubut
values are referred to asntinuous optimizatioproblems. Problems that have a
limited set of possible input values (no matter how big the set)calted
combinatorial optimization problems, or sometimedliscrete optimization

problems.
Continuous Optimization

Continuous optimization problems are the most difficult form of
optimization. Note that this is the case, even in the presenansiraints on the
inputs. These problems can be very difficult to solve.

Imagine a simple case where one is searching for the maximuen oy
given the Cartesian coordinates x and y (from the set of Real neinidrere
x=y and x < 1. This function defines a line of slope 1, from the origithé
coordinates (1,1) exclusive. It is bounded by the constraint x < 1, but rtchas
maximum value since given any X, we can always pick another thaisisr db
12. Obviously, exhaustive search is not possible. If we try a random search we run
into the problem that the odds of randomly generating values of x thatigre
close to 1 are extremely low. Random search could take an unbounded amount of
time to find good answers, even in the presence of constraints. Wk usmila
heuristic search, assuming our heuristic can tell us what value is good enough.

If we can construct an example as simple as x =y, then it sheuttear

that continuous optimization problems are very difficult to solve

3 Strictly speaking, this is not a fair example. Tixen function has no true optimal value.
Objective functions are generaliypimodalor multimodal meaning that they have one true

10

Combinatorial Optimization

Many other optimization problems can be characterized as a $eatbk
best combination of a finite set of discrete values to meeven giet of goals.
This does not make them easy, but one might argue that they aretleasier
continuous optimization problems.

The search space for a combinatorial problem can still be quge.|For
example, imagine trying to find the substitution values of O and 1 for a given
Boolean equation such that the result of the equation is true. It Basshewn
that as the number of terms in an arbitrary Boolean expression Sesrehe
equation is exponentially more difficult to solve. This is, in fact, edl-ktnown
NP-Complete problem. Therefore, searching can still take an enormous rafmber
tries before arriving at a solution.

As another example of a combinatorial optimization problem, consider a
pharmaceutical salesperson that has a fixed number of expensipéesdor
several different products to give away to doctors. If the right coninsatind
guantities of samples go to the right doctors and in turn their patieatdoctors
will write more prescriptions on average and the salespersonpacgmwill
realize more profits. Therefore, this salesperson would like to krawto best
allocate combinations of samples for each doctor in order to maxthizoverall
effectiveness of the samples.

One might also imagine a case where a program is trying to deurypt

encoded message by guessing a key. If the program had a means to éeauate

optimum or many, respectively. This example is $inmpeant to be illustrative of the problems
with the various strategies.

11

close its current guess is to the actual key, it could use comlahaiatimization
techniques to arrive at the correct sequence of characters in the key.

The solutions to a wide class of problems are simply the appropriate
sequence of characters or combination of items. The search doretdi

combinations, given a set of goals, is called combinatorial optimization.
M etaheuristic Sear ching

Clearly, random guessing is not the best strategy for finding solutions.
There are several improvements that can be made by following atlretivat we
use to make strategic decisions. In the simplest case, waoarid making the
same guess more than once. We therefore need to keep a history of guesse
order to avoid this. Next, we could make ‘educated’ guesses. Simply adding the
abilities to only try guesses once and to make ‘educated’ guess impores
situation quite a bit.

We can make educated guesses in a couple of ways. First, we cweld st
to make better guesses based on the results of previous guesses,predves
attempts at solving similar problems. This implies a need fostary of those
previous attempts. Second, we could improve our guessing by knowing more
things about the search space. If we are looking for wild elephaatshould not
search Canada.

Optimization techniques that employ these capabilities are sh&ldsing
heuristic search. Optimization techniques that can employ a numbédfepémti
heuristics, based on context, use metaheuristic searching. Hesgaatiching

allows a given technique to quickly locate regions of the search gp@amntain

12

good solutions. Metaheuristic searches decide how to make thesertedisiing
the search process.

One can think of a metaheuristics as a top-level generaégttathat
guide other heuristics to search for feasible solutions. The othastieucan be
thought of as tacticians.

The use of a metaheuristic is not always explicit. Examples of
metaheuristic techniques that incorporate the metaheuristichatoalgorithms
are simulated annealing, genetic algorithms, evolutionary programming, bad Ta
Search. None of these use an explicit metaheuristic - mostra@n by a

metaphor that serves as the metaheuristic.
Global and Local Searching

Many algorithms use one method to search the solution space in the large,
and another algorithm to search within local regions of the spacéothatike
they contain good solutions. Searching the space in the large is ghdlel
searching Limiting the search to nearby areas is calledal search When
hunting a particular elephant, you consult a book that tells you to go to .Africa
When you get there, you hire a local guide to help you find the elephant you want.
This is an example of global versus local search.

In general terms, optimization algorithms have been developed to allow us
to find good solutions to problems with very large search spaces, withoaghavi
to wait forever. According to Levy, researchers from a diversefsdisciplines,
from astronomy to economics and population studies to mathematical theery ha

developed these algorithms (Levy 94).

13

Naturally, all of the known algorithms have their own strengths and
weaknesses. For example, some are easier to use than others ampeionre
better on one class of problems versus another.

The most interesting and successful searches employ heuristics and/or
metaheuristics to rapidly converge on good solutions.

NLP is simple in concept, complex in implementation and use. This
section provided a brief overview of the concepts. The web is a goodtplgee
a deeper overview and pointers to a variety of resources. Thprasted much
of the information in this section (Fourer 97).

The next section discusses some easily accessible NLP methods.
METAPHORIC OPTIMIZATION ALGORITHMS

Most NLP techniques are rooted in theories of Mathematics, and are
therefore difficult to comprehend without a strong mathematical backgroursld. Thi
section introduces terminology for techniques that are based on metapinors f
domains outside of computer science and mathematics.

Metaphoric Optimization Algorithms’ are based on observations of
physical phenomena like autocatalytic processes in chemistry or ewalyti
biological systems. These techniques are in contrast to purely méatadiya
based techniques like GRG2 or many linear and non-linear programming
solutions. The descriptions of metaphoric optimization techniques aral rioote
familiar terminology, which make them more accessible than manyr othe

techniques.

14

NATURAL METAPHORIC OPTIMIZATION ALGORITHMS

Natural Metaphoric Optimization Algorithms (NMOA) are Metaphori
Optimization Algorithms that are based on metaphors derived frorldéral
Sciences. NMOAS are a subclass of MOAS.

The next few subsections discuss several Natural Metaphoric Optimization
Algorithms. There are a wide variety of NMOA' available; thasibsections
give a brief overview of several of these techniques and discussgéreral

strengths and weaknesses.
Genetic Algorithms

John Holland, from the University of Michigan, first described the Genetic
Algorithm (GA) in 1975. This section describes the Genetic Algorithohthen
discusses its strengths and weaknesses.

Genetic algorithms use principles from biology to provide an efficient
means of searching a large search space for a set of neaalcgiotions. The
possible solutions in the search space are represented as fixacifana length
chromosomesas one might expect in a biological system. The chromosomes are
built up from genes. The genes typically encode the set of vartabliesompose
a solution. Optimal solutions are found by creating a population of chromosomes
and playingsurvival of the fittestrom one generation to the next.

The basic algorithm generates a population of chromosomes representing
some random portions of the search space. It then ranks all individual
chromosomes usingfaness functionNext, it discards some portion of the least

fit chromosomes and then randonnhutatessome of the population to introduce

15

some random wandering through the search space. After this the haigorit
replaces the discarded individuals by randomly combining — using a crossover
function - the best-fit chromosomes with one another. This results new
generation. The algorithm repeats; continuing until the average levéghe$s
stops changing or some preset number of generations has passed.

To give a simple example, if we are searching the x,y plane for the
maximum value along a curve defined by the function foo(x,y), a chromosome
might consist of two genes representing x and y.

Fitness functions assign values within some range to chromosomes, based
on thegenotypeor thephenotypeThe genotype is simply the set of genes, as they
stand. It can be evaluated by applying some heuristic that has knowledge about
good sequences of genes. Evaluating the phenotype means looking at the
functionality of the genes. When evaluating phenotypes, the contents of the
individual genes do not matter. What matters is how the individual behaves
according to some criteria.

If we are evaluating strings, the genotype can be thought of as the bits
the string of values. The phenotype can be thought of as the charaatéfeedle
by the bits.

In the foo(x,y) example, we evaluate the phenotype. We favor x and y
values that result in high positive distances from the x-axis andtihank ahead
of those that result in smaller distances. This ranking sentég &sness function

for the algorithm.

16

The least fit chromosomes are discarded from the gene pool andbtome
the remaining population is mutated. Mutation randomly changes a few lats i
few chromosomes. Again in our example, the mutation function may todele a
of the bits in the x and y values of the individuals.

Next, new chromosomes are created to take the place of theddca
individuals. A process like mating creates these new chromosomasirity a
crossover functiomo swap some of the genes of two of the more fit chromosomes
into a new instance. The genes are typically swapped somewhat rgndoist
like in real cells. For our example, we might choose to creatérehiby crossing
the x and y values in the parents to create two new chromosomes.

The GA can be seen as a hill-climbing algorithm. The fithess famcti
defines the landscape’ of hills. The GA keeps track of whehast been in the
genes of the population of chromosomes. Mutation and crossover allow for some
level of backtracking in the space.

Antonisse and Merelo provide a good overview of Genetic Algorithms in

their works (Antonisse 91)(Merelo 96).
Strengths and Weaknesses of GA’s

Genetic algorithms can be faster than more traditional searthodse
especially when run on parallel hardware. The fithess function takemost
processor time in a normal application of the GA. It is easy dwildlite the
population of chromosome across many machines, letting each machinateval
the fitness a sub-population of the global populace. Each machine can also

independently apply the mutation operator to its sub-population. Crossover is the

17

only time that the machines need to communicate about the global population.
They can do this and then start independently evaluating the next genefation
chromosomes. The GA is a natural candidate for distribution acradsimas or

for execution on parallel machines.

These issues complicate the use of GAS.

GAS find a near optimal solution, but not the optimal solution. They are
not good at finding the one best solution, but are good at making quick
approximations and therefore do not do true global optimization.

Representing the search space as a chromosome is difficu# sinc
chromosomes are essentially long fixed length strings. Long strings do not
intuitively map to many problem domains. This is especially truel ibfathe
chromosomes need to be of a uniform length.

GA’s also suffer from the problem that many illegal chromosonies a
created by both mutations and crossover. This effectively increasesedinch
space because portions of it are searched more than once. THedisheallegal
chromosome problenand can be addressed by using custom crossover functions

and/or robust fitness functions.
Evolutionary Programming

This section introduces the Evolutionary Programming optimization
technique and then discusses its relative strengths and weaknesses.
Evolutionary Programming is conceptually related to Genetic Algorithms.

It is illustrative to discuss the two techniques in terms of oo¢har, so some the

18

terminology used here is used in both this section and the Genetictigeri
section. See Fogel for details (Fogel 95)(Fogel 97).

Lawrence J. Fogel invented Evolutionary Programming (EP) in 1960. EP
is based on an observation of evolutionary biology, at the species leyel If
consider generations of a species and its competitors withirolog®al niche as
Solutions’ for occupying that niche, you can understand the general idea behind
EP.

EP leverages the notion that solutions, serving something like parents, can
be mutated to produce new more viable solutions as their offsprimgsA's,
individuals’ are like individual organisms. The individuals’in EP apecies, not
individual animals.

The evolution of species (and sometimes subspecies) into bettertsrd be
solutions is realized in the EP paradigm by the following process:

1. Randomly generate a set of finite automata machines to serve as a

population of solutions. This is the first grouppafrents

2. Copy each of the solutions into a new populatiooftdpringand then

apply amutationoperator that alters the behavior of the individuals in
the new population. The behavior of each offspring is compared to that
of its parent in order to achieve the appropriate distribution of changes.

3. Evaluate each known individual (from parents and offspring) for

fitness Fitness can be defined by its ability to achieve a certain goal
(like recognize a given input sequence). Keep some number of

individuals to serve as the next generation of parents.

19

Steps 2 and 3 continue until you have a set of finite automata thateachie
the desired goal.

EP is thus similar, at least conceptually, to Genetic Algorittihosvever,

EP differs in several key aspects.

First, EP is focused on the behavioral differences between paneats
their offspring rather than the representation of the individuals. Any
representation of individuals can be used, whereas GA’ typicallyesemur
individual solutions as strings. In other words, EP operates in the domtie of
phenotype rather than thegenotype It is not the structure of the genes that
matters, but rather their expression and their impact on the behavitre
animal, in this case, a finite automaton or a program.

Second, EP handles mutation differently than Genetic Algorithms. The
mutation operator still randomly alters the individuals, but it isnéefiin a way
that favors mutations that create small variances in behavisus/¢hose that
create large variances. Additionally, as the algorithm progreasds good
solutions are being found, the mutation operator favors small variameasnore
than in early generations.

Third, EP systems typically compare individuals against each other in a
tournament setting. GAS typically rank individuals based on their peaiocem

when provided as input to the fitness function.
Strengths and Weaknesses of EP

EP is a useful method for optimization when other techniques like GRG2

cannot be applied. EP is most useful for combinatorial optimization, amdhe

20

used for continuous optimization, especially when there are many potential
solutions as opposed to one global solution. These are the same classes of
problems that are well suited to a Genetic Algorithms approach.

EP’s main advantage over GAS is the ability to represent solutiotise

problem at hand in a more flexible manner.
Simulated Annealing

Simulated Annealing is a Metaphoric Optimization Algorithm thatnste
from the theories of Thermodynamics. It is widely used in a variety of
applications, including VLSI circuit design and distributed scheduling prablem
Simulated Annealing has even been used to play MasterMind (Bernier 97).

Aarts and Korst give detailed coverage to Simulated Annealing and a
relative, the Boltzmann Machine, in their book (Aarts 89).

This section describes annealing at a very high level in order tatgve
reader some insight into the metaphor. It then discusses the SonAfatealing

Algorithm and some of its relative strengths and weaknesses.
The Process of Annealing

Annealing is a generic term describing a process of treatingterial to
improve or enhance certain properties. In the annealing process, aiseahe
material to a given temperature, holds it there until it reagbesi-equilibrium,
and then allows cooling at a slow rate through phase transitions. Tuespr
allows materials to seek a lowest energy state.

Annealing is frequently used to soften metallic materials. it akso

simultaneously produce desired changes in other properties. In thef castls,

21

these changes may be an improvement in workability, facilitatioroldf work,
and/or improvement of mechanical or electrical properties. The lamp@aocess
can influence other properties as well. For example, silicon svafersliced from
large cylindrical blocks of silicon. Before slicing, the blocks aresated in order
to ensure that the distribution of materials within the blocks is exgoss all
regions.

How does annealing work? When a material is heated, the atoms of the
various elements in the material are excited to varying degrees. théharaterial
is cooled at specific rates, the material slowly approag@mpdratures near phase
transitions (e.g. water to ice). At these transition points, thesatend to settle’
into configurations that can be determined ahead of time. The specific
configuration of material depends on the rate of cooling. Since thegwxas
somewhat deterministic, by altering the rate of cooling one cartieéflgccontrol
the microstructure of the material.

How do optimization algorithms take advantage of this? According to
Greening (Greening 95), simulated annealing mimics the physical annealing
process in software.

Simulated Annealing is a modification of the "greedy algorithm", wtsch i
a well-known heuristic used to find approximate solutions in NP-Haarctlses.

In the very simplest terms, the "greedy algorithm" simply makesi@m guess
to determine a trial-state. It checks this state against its ctwsnstate and if the
cost of the trial-state is better, it keeps it. It then keepsging in a nearby area

until some stopping criteria is met - typically a criteria like improvement has

22

been seen for several iterations.’ Like many optimization algorjthrnsseasy for
the greedy algorithm to get caught in local minima.

Simulated annealing combats this weakness in the greedy algorithm by
adding the notion of a temperature’to the algorithm. Whenever thetadrial-
state is compared and the temperature’is high, the algorithkelg to choose to
keep the state with the higher cost. This tends to throw the algarvithof local
minima. As the temperature is reduced, the algorithm is ledy lidechoose a
new state with a higher cost over a state with a lower costher words, as the
temperature goes from high to low, the algorithm tends to exploreesnaaid
smaller valleys in the objective function’s surface.

The likelihood of choosing higher cost states over lower cost smtes i
determined by the temperature function, which, given a time, returns a
temperature. This function is usually monotonically decreasing. Varidrttse
algorithm use different temperature functions, some slow theofdemperature
change near phase transitions (the tops of peaks in the landsdapajgdrithm
stops when the trial-state and the best state exhibit a diginbof state
transitions that fit the Boltzmann distribution. This distributiostimight out of
the study of Thermodynamics and implies that the system has reached quas
equilibrium for a given state. The Simulated Annealing algorithminglyg a

simulation of a thermodynamic system.
Strengths and Weaknesses of SA

Simulated annealing makes good approximations for many applications. It

makes better approximations when given more time. Results areffelsted by

23

experimentation with the temperature function. Despite that, litgstilcaught in
local minima, so does not do true global optimization.

Simulated Annealing works reasonably well, but it is computationally
expensive. In fact, there is not a theoretical basis for then ¢lat it solves NP-
Hard problems in polynomial time. However, under certain conditions it
converges on solutions in polynomial time (Greening 95).

In the web-based MasterMind solution, Simulated Annealing does not
perform as well as Genetic Algorithms (Bernier 97). In many o#reas, it

performs better.
Genetic Programming

This section presents Genetic Programming and then briefly dtastthe
strengths and weaknesses of the technique.

John Koza, from Stanford, is the researcher most frequently assbciat
with Genetic Programming. Genetic programming is a specialized @ir a
Genetic Algorithm. In general, GP systems search through a sebgfaprs
looking for one that solves a particular problem. GP systems repmsgnams
in a number of ways, but they all basically reduce down to lists obalgnthat
are interpreted as program instructions (Antonisse 91).

Genetic Programming systems have been applied to problems like
planning, minimax gaming strategies, data mining applications (function
matching), and emergent behavior problems. They can be quite effecthvese

areas.

24

Strengths and Weaknesses of GP

Most GP systems have the same strengths and weaknesses as Genet

Algorithms. However, some GPs allow for variable length solutions, wjiies
them an edge for some problems.

The crossover techniques are usually very specific to the probleamat
especially considering the variable length strings. Unfortunately, thikesnih
harder to do crossover so there is a trade-off for allowing saaration in

length.

Genetic Programming systems have been used to solve some very difficult

problems. In fact, they have performed well on problems that were thtmghkt
almost intractable. However, they are not generally easy to usg.céheot be
generally applied to large classes of problems. In other words, tpgyer@ great

deal of effort to set up and execute.
Grammar-Based Genetic Algorithms

This section discusses a specialization of the GA, called a GraBasad
Genetic Algorithm (GBGA). The GBGA is the focus of this repan is simply
introduced here. The sections regarding the experiments go into maleTdesa
section is intended to serve as an introduction.

The Grammar-Based Genetic Algorithm is a generalized for@eoietic
Programming (Antonisse 91). A GBGA represents the set of chromosmings
a formal grammar. The grammar is typically context-free and #guesented in
BNF. This grammar defines a search space contoured by an objeciti®rfun

implemented as a parser for the BNF grammar.

25

The BNF grammar can serve as a set of constraints that @defieé of
programs, each of which is an expression of the phenotype of legal individuals
These strings are the phenotypes and the parse-tree is consideredht® be
genotype.

An individual is some legal combination of terms from the BNF. These
individuals are ranked for fitness using an objective function thHagrernalks the
parse tree (genotype) for an individual or sends the string reprisenta
(phenotype) to an interpreter that judges relative fitness.

The GBGA finds optimal solutions in the set of legal grammarsdas
some fitness criteria.

What about the crossover function? A GBGA system uses a geadraliz
parse-tree crossover function to create new individuals in a popul@asitally,
sub-trees of two mating individuals can be swapped. This is guaranteeshte
two new legal individuals, thus avoiding the illegal chromosome problem found
in some GA systems.

Mutation can be accomplished by changing the terminal nodes of the parse

tree to some other legal value from the grammar.
Strengths and Weaknesses of GBGA'’s

GBGA'’s simplify the representation of the search space by atpwito
be expressed in a BNF.

GBGA'’s simplify the crossover function by allowing for the crossing of
grammar trees. Usually, the developer can simply use the gemessower

function.

26

GBGA'’s do not suffer from the illegal chromosome problem, so the search
space is effectively smaller.
Like all GA systems, a GBGA finds a good solution, not necessarily the

best solution.
ANT COLONY OPTIMIZATION SYSTEMS

Ant Colony Optimization systems are the most interesting and recent
NMOAs. This section discusses several of these algorithms in some detail.

The general Ant Colony Optimization algorithm is based in part on the
natural behavior of ant colonies, and was first discussed in the wokk l@on
Dorigo, Maniezzo and Colorni (Colorni 91). This section discusses thehoeta
for the algorithm, the general algorithm itself, and some of themgsbased on

this work.
Ant Colony Behavior

Given the ubiquity of ants, it is safe to say that we have all dpuat
watching real ants forage for food. Ants are nearly blind and appesarider
aimlessly, but when an ant finds food and begins to carry some backresthe
other ants are sure to arrive shortly. Before long there is a hygbfaants taking
food back to the colony’s nest.

When there is highway of ants carrying food, what happens if we now put
an obstacle in the trail? The ants quickly navigate around the ahstaul
eventually, almost all of the ants take the shortest path around it.

How do animals like ants manage to find any path to food, let alone the

shortest path between food and the nest?

27

Edward O. Wilson discovered that ants communicate by using chemical
signals (Holldobler 90). Ants deposit chemical markers, which arkedcal
pheromones, on the ground as they travel. The pheromones are deposited in
varying quantities and act like a trail of breadcrumbs that othercant$ollow.

Ants use pheromones to communicate their trail to other ants.

A single ant moves at random, and upon encountering a pheromone trail, it
may decide to follow it based on the amount of pheromone on the titidldés
follow the trail, it deposits more chemicals, thus reinforcingtthg. The more
ants that follow a trail, the more likely it becomes that otims avill follow it.

The probability of an ant following a trail is related to the numbeard$ that
previously followed that trail.

It should be clear how trails of pheromone allow ants to find food and
cooperate once they have discovered it; however, the exact mechantakirfor
the shortest route around obstacles is not quite so obvious.

When ants arrive at a new obstacle, there is no establishedotrail
pheromones so they are just as likely to choose one direction or theHdkizg
chosen one, they continue on until they find the nest. They drop their food, and
return to the food source. As they return, they again encounter the gbistdacle
they take the path with the most pheromone on it.

Why does one path have more pheromone than the other path? Imagine
that ants lay pheromones down at a constant rate, one unit per inchegfaral
ants move one inch every second. Now consider a food source and a nas that

ten inches apart. There is a four-inch wide obstacle in betwedondtieand the

28

nest. The obstacle is situated so that if the ants go to one sydeathw a total of

sixteen inches for a one-way trip. If they,

go the other way, they travel twelve
inches one-way. Pheromone will
accumulate more quickly on the short
side, since a round trip on that path
deposits 24 units, which over one
minute corresponds to 60/24 units pef
inch per ant. The longer trail only has

60/32 units per inch per ant of

pheromone. Over time, more ants will

take the shorter path and even more lllustration 1: Ants and Obstac

units of pheromone will accumulate. This explains why more pheromone
accumulates on the shorter path. This extra accumulation allog/goafibd the
shortest paths.

Note that in the real world, food sources get consumed and eventually
exhausted. Once a source is exhausted, ants stop going there béeause t
pheromones on the trail evaporate. This is an important aspect loétiaeior of
ants.

The observation that ants find shortest paths led Dorigo, Maniezzo and
Colorni to develop an optimization algorithm based on ant behavior. As it turns
out, there is a class of optimization problems ideally suited forcaldny

techniques (Colorni 91).

29

The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a very difficult Ni#dH
problem and many different techniques have been developed to solve itSPhe T
is defined as follows: "Given a set Nfcities and the distance between each pair
of cities, find the shortest trip that includes each city examtlye and ends with
the city of origin." A number from 1 tbl can represent each city. A matdxs
created such that; gives the distance from cityto city j. A trip can then be
shown as a vector ™ numbers, and the distance traveled is simply the sum of
the distances between the cities in the vector.

There are two flavors of the TSP, symmetric and asymmetric. &ymom
TSP uses the same cost (distance) for both directions of tratveten any two
cities. It is represented using undirected graphs. Asymmetric T&#sdle cost
of travelling from Austin to Buda to differ from the cost of trawejlfrom Buda
to Austin. It is represented using directed graphs. Asymmetrici§ @Pmore

difficult problem.
Evolution of Ant-Based Algorithms

Since its inception, Ant Colony Optimization has been successfully, and
repeatedly, applied to TSP. It has also been applied to other combinatoria
optimization problems like Job Shop Scheduling and the Quadratic Assignment
Problem.

The behavior of ants first appeared in optimization algorithms in 1991
(Colorni 91). One of the authors of this paper, Marco Dorigo, is most often

associated with this concept as it was the main contribution dPHIDs thesis

30

(Dorigo 92). Dorigo’s thesis covers the first functional ant basetersysAnt
Colony Optimization (ACO). ACO has been refined over the years,onmy

performance and becoming applicable to a wider variety of problems.

= Ant Col ony Optim zation
= Ant System
= Ant Col ony System
=2 MAX-M N Ant System
=» Cont i nuous Ant Col ony Optim zation

Figure 1: Historical Progression of Ant-Based Algorithms

The next few sections discuss the progression of Ant based algorithms.
The defining characteristics of the original algorithm (ACO) @aptured in all

the other algorithms, so it is not discussed.

31

The Ant System Algorithm

This section describes the Ant System (AS) and how it applied to the
Traveling Salesman Problem. This section paraphrases a numbempas pa
(Dorigo 97b)(Dorigo 96)(Wodrich 97).

The Ant System is an improvement on the original ACO. Some of the
features of the algorithm are tailored to the TSP, but the sppreach can be
applied to other combinatorial problems.

The algorithm is used to solve TSP as follows. Given a S¢ttoins, the
matrix d is created to contain the distance between towns. There amstam
number ofm ants dispersed among the cities, so that at tithere areb, (t) ants
in towni. Initially ants may be dispersed randomly among the cities, or #ikin
same city. Assume that random dispersion is used. Ants move to antther c
the start of each time unit. They select which city based onethed bf the
pheromone on the edges of the graph and the distance between tlesit city
and its neighbors. Initially, the level of pheromone on the trial isosdte same

small value for all edges so all ants will select cities with equal pratyabil

Each ant acts according to these rules:
1. An ant chooses a next step as a function of the distance and the amount
of pheromone on the connecting edge.
2. Ants always make legal round-trips by storing a list of the cthies

the ant has already visited.

32

3. After completing a trip of the cities, pheromone is deposited on the

routes traveled and then the list is cleared. This is done for each ant.

If 7;(t) is the amount of pheromone trail at tihen the route linking

citiesi andj, then the equation for updating the trail is given by :

7, (t+n)=plg)+ Ar
where p[J[0,1] is a constant governing the rate of pheromone evaporation,

and
_ k
A T = ZlArij

wherem is the number of ants, and

O
QO

if antk uses the route from city jto in its tour

1

ATK =

ij k

Esla

otherwise

whereQ is a constant, ant, is the tour length of the" ant.

The amount of pheromone added to the trail is inversely proportional to
the distance traveled. This makes shorter routes more attraStiyethe ants
quickly start following similar routes. Like real ants, they allrdually converge
towards the shortest route found.

In practice, ants do not actually converge on the shortest routeaall t

quickly. However, it is possible to give the ants a heuristic to aatel the

33

process. At any given junction, ants should favor towns that are clotes.dhts
use the distance between towns in their decisions they find shorter routes sooner.

The probability of an ant selecting a valid town is given by:

OINEEN

>[50 o d]”

kOTabu List

p; (1) =

The use of this formula allows the ants to use all of the infitoma
available to them. This tends to make the ants “greedy.” It makea fnore
efficient search.

As shown in Figure 2, the AS algorithm is simple even when using the

heuristic.

Initialize pheromone trail on all rout

Place ants at random locations and clear the lists of cities in

each ant.

3. Fort=1to N, select which city each ant moves to next and add
it to the ant’s list of cities.

4. Compute the length of ant’s tour and save the shortest tour
found so far.

5. Evaporate some of the pheromone.

6. For each ant, add pheromone trail to the routes used by the ant.

7. Repeat steps 2 through 6 until a maximum number of iteratjons

have passed or the ants stop finding shorter trips.

N =

Figure 2: The Ant System Algorithm

34

There are slightly more complex variations that alter the wayoptre
trail is added; but the basics are just that, basic. This mhkealgorithm very

accessible.
The Ant Colony System

The Ant Colony System (ACS) is a refinement on the Ant Systemd®or
97a). This algorithm has three differences when compared to AS. In&BGSa
single ant updates the pheromone level at the end of the processthathall
ants. The function used to determine the probabilities that an ant sleloksewn
good city versus taking a random choice is tunable, and finally, as aktshegl
locally update the pheromone level on trials.

These differences allow the user to tune the algorithm and belodtoe
ants, which gave it some measurable improvements over AS.

Dorigo and his colleagues showed that ACS outperforms SA and EP for
the TSP, in both its symmetric and asymmetric forms. It perfdamty well
when compared to specialized TSP algorithms, like opt-3, but it ishedbest

performer to date.
MAX-MIN Ant System

The MAX-MIN Ant System was developed by Stutzle and Hoos (Stutzle
97) as an improvement to the Ant System. It differs from the Ane8ys two
key aspects. First, when an ant completes trip, only the best ant tdeposi
pheromone on its path, rather than all of the ants. In other words, oniytttinaia
took the shortest trip for this round deposits pheromone. This is sitmildre

approach in ACS. Second, the system also allows the definition of anomaxi

35

and a minimum amount of pheromone allowed per trail, hence the nans& The
variances allow the MMAS to provide an extra parameter that helpsd
premature convergence on good trips in large TSP problems. The authers wer
able to tackle larger problems than the AS could.

The MMAS and the Ant System algorithm solve combinatorial problems.
They cannot be directly applied to problems where there are both eiscret
continuous variables. However, a more recent algorithm allows seanthes

continuous spaces.
Continuous Ant Colony Optimization

Mark Wodrich and George Bilchev have developed an algorithm suitable
for problems containing continuous input and/or output variables (Wodrich 97).
This algorithm is interesting because it combines some notions fr1s WEth
notions from the Ant System in order to solve continuous optimization problems
It solves them fairly well, and we cover this in some detail.

The Continuous Ant Colony Optimization (CACO) algorithm uses the ant
metaphor, but also borrows from GA’s. It divides the set of antswudalasses.
One type of ant is used to perform a global search for promising regfigche
search space. The global search employs concepts from GA’s anfibisperby
global ants The other ants are used to perform local search within the most
promising regions. Thedecal antsfollow an algorithm derived from the Ant
System. The two sets of ants combine to do true global optimization.

This section gives an overview of the system. For more details, see

Wodrich and Bilchev (Wodrich 97).

36

Global Search in CACO

A subset of the ants (about 80%) handle the Global Search. Thevepare t
aspects to global search. First, the ants must be able to seérite &pace.
Second, they need to avoid local extrema. CACO has an interesting dpfwoac
handling both of these issues.

In the Ant System, the ants select destinations from a finiteose
possibilities. The probability of selecting a destination is based ororpbee
level. To map the continuous space to a finite space, the CACO lafgativides
the search space into a finite set of regions. Each region aatdestination for
the local ants to explore and serves as a trial solution.

Regions’ positions are typically represented as a vector of real neimbe
Initially, the regions are distributed randomly in the search space. lwve
over time due to the actions of the ants so that they slowly moved®waegas of
high fitness.

To avoid local extrema the global ants have to be able to search wide areas
around the regions. The algorithm uses aspects of Genetic Algorithai®w
regions to exchange information. The end result is that ants can ngwasre
large distances by employing a crossover-like function. This is @eothe
mechanism used in Population Based Incremental Learning (PBIL) taigori
which has been shown to give good global search characteristics (Baluja 94).

Note that the global technique has no metaphoric link to ant colony

behavior. This link is provided in the local search technique.

37

Local Search in CACO

The local ants are responsible for local search and comprise aboutf20%

the population of the ants. These ants provide the metaphoric link to ant colonies.

Global ants recruit local ants to search promising regions by using

pheromones. This allows collaboration between the two groups. Pheromones
focus attention on promising regions of the search space.

The basic outline of the search process is as follows:

1. An ant selects a region with a probability proportional to the
pheromone value of that region. This is as if the ant went from a
virtual nest to the region.

2. After arrival the ant moves a short distance and calculates thesfitime
this point.

3. The region maintains the direction of the last ant. If the last ant
improved the fitness, the new ant goes the same way. If not, it goes a
random direction.

4. If the ant finds a higher fitness value, the region is moved anchthe a
deposits pheromone in proportion to the improvement made in the
fitness. The region has a counter that is decremented.

5. If the ant does not find a better value, the counter is incremertted. T
will cause the next step in that direction to be smaller.

The algorithm provides parameters that control a function that cemlt]

size of the step made by an ant in a local search. This fumctikes the step size

depend on the region’s counter. The step size decreases as the counter grows. This

38

enables ants to refine the area of the local search and immpawvesrgence if a
higher fitness is repeatedly found in the same direction.

Bilchev and Wodrich point out that one of the weaknesses of this approach
is that ants can mistakenly search a region more than once. It Wweuwery
expensive in large spaces to maintain a history of regions. In otldswsince
local search moves regions, regions can move back to a previously edhauste

local maximum.

Constrained Optimization in CACO

As described, the CACO algorithm does not handle constrained
optimization problems. However, Bilchev and Wodrich show that with a few
modifications, it can be adapted to effectively handle constraints.

The primary adaptation is the incorporation of the concept of constraint
violation. Given a set of constraints, every trial solution can be tested toaheter
whether it lies within the feasible region. odnstraint violationis a measure of
how far outside legal a solution lies. The violation is expresséaeasum of the
violations of each given constraint.

During local search, ants search for local improvements in fitriduss.
improvement in fitness acts like a food source that is exploitetdonts. With
the constraint handling mechanism, a point is only accepted as a "food"sburc
its constraint violation is below an acceptable threshold. Like teatye in SA,
the acceptable constraint violation is changed over time, decreasagyi from
an initial value to the desired final constraint tolerance. €Thisses ants to be

move back into feasible regions as the search progresses. Thejvaffeguay

39

more and more attention to the constraints over time. The increagimgement
of constraints allows limited exploration within non-feasible regidrikeastart of
the algorithm. This helps avoid premature convergence.
In the CACO algorithm was shown to perform quite well when compared
to other published algorithms over a fairly wide set of test prob(@kwirich
97). It also looks to be reasonably easy implement and to incorporatannt

application solution.
ANOTHER GLOBAL OPTIMIZATION ALGORITHM OF INTEREST

From the perspective Software Engineering, there is another ogiionz
techniqgue worth mentioning. This section very briefly introduces GRG2, waich
a well-known, oft-used, and relatively fast algorithm that can be emtadte

many software systems.
GRG2

GRG2 is an algorithm that solves nonlinear optimization problems using
Generalized Reduced Gradient methods (Lasdon 78). Leon Lasdon and others
developed it over the last couple of decades. GRG2 can be found in many
software systems, including Microsoft Excel and Borland’s QuatiwoIPis very
fast, and should be in a Software Engineer’s toolbox.

GRG2 can solve problems that seek to minimize or maximize some
function, g(X), subject to glb< gi(X) < guh where i=1,....m, # p and xIb< x; <
xuly where for j=1,...,n.

Xis a vector on n variables; x..,%, and the functions,g...,g, all depend

on X. Any of these functions may be nonlinear. Any of the bounds may be infinite

40

and any of the constraints may be absent. If there are no constrentsolblem

is solved as an unconstrained optimization problem. GRG2 uses firsl part
derivatives of each function; gvith respect to each variablg. XThese are
generally computed by finite difference approximation.

GRG2 works with a set of input functions. These functions are used in
some calculation that finds some output value. It can optionally be giN&noa
upper and lower bounds on the values of the input functions. Given this set of
inputs and the optional list of bounds, GRG2 can find maximum or minimum
output values. It finds the set of values for all of the input functioaisproduces
a minimum or maximum final value. This set of values will neartain any
values outside the bounds given in the optional list of bounds.

The algorithm operates in two phases. Phase | finds legal solutions and
Phase Il finds optimal solutions.

Phase one is structured as an optimization problem in its own right. It

only run if the initial values of the variables do not satisfy athefg constraints.
The Phase | objective function is the sum of the constraint violalitocan also
include a fraction of the true objective. The Phase | optimiz&tioninates either
with a message that the problem is infeasible, or returns vigpah and feasible
solution.

Phase Il begins with a legal solution and attempts to optimizéruke
objective function. At the conclusion of Phase IlI, an optimal value kas b

found.

41

Strengths and Weaknesses of GRG2

GRG2 can solve problems involving up to 200 variables, which makes it
applicable to many problem domains. However, it can get trapped in local
extrema, requiring a restart with slightly different inputs. Thygrhm cannot
tell that it is stuck. Most implementations of GRG2 monitor tlyorhm for a
timeout period and then restart the algorithm with slightly diffengmaits when
the timeout expires.

The GRG2 algorithm is relatively fast and is fairly simplentiegrate into

software products. It is therefore widely used.
SUMMARY OF LITERATURE REVIEW

We looked at a number of optimization techniques and introduced some
new terminology. Almost all of the techniques discussed are abifdas as
Metaphoric Optimization Algorithms, with most being members of a asbcl
called Natural Metaphoric Optimization Algorithms. We also lookednat very
commonly used algorithm called GRG2. All of these techniques aresiitey
because they are easily accessible and understandable.

It is important for Software Engineers to be aware of theskniques.
They are fairly easy to incorporate into software systems witheed for

optimization.

42

An Introduction to Master Mind and Possible Solutions

INTRODUCTION

This section introduces the game of MasterMind, defines two vamdnts
the game, and finally frames the approaches that can be used teacivef the
variants. These variants of MasterMind serve as test problEmes. solutions
involve distinctly different attacks.

We formulate solutions for these variants using GBGA approaches and
ACO approaches. In order to try some hands-on experimentation, wenemple
one of the solutions using a GBGA. The next major section covers the

experimental results.
MASTERMIND AND ITSVARIANTS

MasterMind is a relatively straightforward two-player guessing egam
Assume we have players A and B. Player A selects a fixed |segthence of
colors from a set of available colors. Player A’s initial seqaeesccalled the
targetsequence. It is saved and hidden from Player B who then repeatesiiyptri
guess the target sequence. Player A responds to each guess withf ahses
indicating how close the guess is to the target. When Player Bnalg §uessed
the target, B receives a score based on how many guesses wer©takeusly,
low scores are better than high scores.

Let's look at the response to guesses in a little more detdédr Afch

guess, Player A responds with a sequence of Black and White chipk.dBips

43

state how many places in the guess are exactly correct. White indicate how
many colors are correct but not in the right position.

The response defines constraints on the next guess, so Player Bisises t
information to make an informed decision. Based on the response fromsa gues
and the history of guesses made previously, Player B knows that cprésses
are not reasonable. Furthermore, Player B knows that some reaspuneddes
are better than others; they should lead to more information in theesgxnse.

The ultimate goal is to find to next best guess that meets theaiotsimposed
by the response. The problem boils down to a constraint-based seatuh riext
best guess.

MasterMind is typically played with a sequence of four items ard s
possible colors. This is the 4-6 version, with the first cardinal number representing
the number of items in a guess and the second number representing liee olum
possible colors. We selected two variants, 3-3 and 4-6, as our testnpsobhd

provide two different approaches for solving these problems.
SOLVING 3-3 MASTERMIND

We use a genetic programming approach to solve a 3-3 version of
MasterMind. This section introduces the programs that we use to 3y
MasterMind. These programs are captured in a static tablec#matplay all

possible games of MasterMind.
The Mini MasterMind Language

As discussed, the response to a guess specifies constraints on the next

guess, so the game boils down a constraint-based search for a nexiOmeess.

44

way to implement a constraint based search is to prune all oblingoss in a
search space that do not meet the given constraints and then cluyosthdr
remaining solutions. This is the “guess and prune” approach.

In terms of MasterMind, a player simply makes a guess, prunesttiog¢ s
possible remaining guesses according to the response from the previoys guess
and then makes another guess.

To use genetic programming, we have to first define the notion of a
program. The Mini-MasterMind Language (MML) captures this notion of sgue
and prune” in a string representing a program. MML can thus be usedrie def
programs that play the game.

Since this game is about making a guess and eliminating any unreasonable
next guesses, the MML language simply defines a table of guessedixed a
order, and pruning operators for each possible response to a guess. The MML
interpreter maintains a list of unused guesses, and after epamsesremoves
any guesses from the unused list that do not make sense based on the.rééspons

then moves to the next guess in the list and offers it as the new current guess.

An Implicit Strategy for MML

All of the MML programs follow a strategy. They always try to maxan
the number of black pegs in a response in order to pin down the colors in the
target. This strategy to “maximize the black pegs” is followed bymzing the
number of different colors in a guess.

To do this, the first row of a MML table always represents a Joés

RRR. This has the effect of identifying the number of reds in trgettaBy

45

guessing RRR a player is guaranteed to get a response containing only black
chips, one per red item in the target. If we know how many reds #re target,

then we should certainly never make follow-on guesses that do not havlg exac
that number of reds. This allows us to eliminate a large pegeeofahe guesses

after we get our first response.

How can we guarantee that we only guess the correct number ofaeds f
this point on? We use pruning operators to remove guesses from aursisgd
guesses. Applying the correct pruning operators for a given responsenoNe
all of the guesses with the wrong number of reds from our set of unusssegu
Now we just make any guess from the remaining set.

It should be noted that this strategy works for variants of the gatheaw
small difference in the number of positions and the number of coldren\there
are significantly more colors than positions, one should probably try to nzaximi
the number of different colors in a given guess. This could be called th
“maximize white pegs” strategy.

Since MML programs only play 3-3 MasterMind, the “maximize black

pegs” strategy serves as a common heuristic for all MML programs.
MML in More Detail

Each possible MML program represents a ‘maximize black pegs@oluti
to 3-3 MasterMind. These programs are very similar to finigestnachines
(FSM).

Consider a specific MML program that represents a specifid. Fi$ this

FSM, the most recent guess representssthte and the response to that guess

46

represents aavent Events cause actions that prune the search space to eliminate
invalid next guesses. The state machine is, in essence, dynamicallgdupdat
that only ‘valid’ next guesses are achievable. After pruning, the custatd is
updated to the next guess.

For the 3-3 variant, MasterMind programs are represented as dhable
has one row per possible guess and one column per possible response. These
tables therefore have 27 rows and eight columns.

Each cell in the table contains a list of zero to three pruning topesa
Pruning operations are used to remove particular types of guessabdrtist of
unused guesses. For example, the operator “Red 1” (R1) would remove all
guesses containing exactly one red chip. Since we have three positiomanive
operators that can prune guess with 0, 1, or 2 chips of a given color.ciasthef
red, we have operators RO, R1, and R2. This implies that we have $oopéara
total, 3 per color. This is not sufficient. It may be the caseweatio not want to
prune anything for a given response to a guess. What should we prune if e gues
RYG and get one black chip as response? For these cases, we nemal dme-

leaves us with 10 pruning operations.

Table 1: A Representation of a 3-3 MasterMind Program

BWV | BB BW |Wv |B W WWV | None
RRR | {op} |{op} [{op} |{op} |{op} |[{op} |{op} |{op}
RRG | {op} |{op} [{op} |{op} |[{op} |[{op} |{op} |{op}
RRY |{op} |{op} |[{op} [{op} |{op} [{op} |{op} |{op}
RGR |{op} |{op} |{op} [{op} |{op} [{op} |{op} |{op}
RGG | {op} |{op} [{op} |{op} |{op} |{op} |{op} |{op}
RGY |{op} |{op} |{op} [{op} |{op} [{op} |{op} |{op}
RYR |{op} |{op} |[{op} [{op} |{op} [{op} |{op} |{op}
RYG |{op} |{op} [{op} [{op} [{op} [{op} |{op} |{op}

47

RYY |{op} |{op} |{op} [{op} [{op} |{op} |{op} |[{op}
GRR | {op} |{op} |{op} |{op} |{op} |{op} |{op} |{op}
GRG | {op} [{op} |{op} [{op} [{op} [{op} |{op} |{op}
GER | And so on until YYY

The first column represents the set of possible guesses (igoieabes are
shown.) The row headers represent the set of responses. The loel, va
represented by{ op}, are any non-repeating combination of the pruning
operators, including no-ops. Applying a pruning operator removes some set of
matching guesses from the set of available guesses. Note thatiBB® shown
since this response indicates a win.

The next figure shows an example of a very small portion of an MML
program. Table 2 shows the first row of table, complete withwa gauning

operators.

Table 2: An Example Row with Pruning Operators

BWW | BB BW WW | B W WWW | None
RRR R1 RO R2 RO RO

The row in Table 2 specifies the actions to take for a giveporese to a
guess of RRR. If the response is BB then we know that thergvareetls in the
target and we can apply pruning operators that throw away all guessbavba
either exactly 1 red and all guesses that have exactly O ratieuld be clear that
by providing pruning operators for all 27 possible guesses and their respoases,

build programs that play MasterMind.

48

A near-optimal solution for 3-3 MasterMind should exist as one of these
programs and the problem can now be restatedong the set of all MML

programs, find the program that is the best, on average, at playing the game.
Estimating the 3-3 MasterMind Search Space

This search space is huge. There are 27 times 8 cells ialilee(216).
There are up to 3 of the 10 operators in each cell so eachrcéledhought of as
holding a 3-digit, base 10, number. The entire table is thereforeng ofr216*3
digits (648). It therefore appears that there afé®pdssible solutions.

The space is actually quite a bit smaller than that. Notelbatdils of the
table contairsetsof operators. Therefore, no operator should be repeated and the
order of operators within each cell does not matter. These dasigmificantly
reduce the number of possible combinations per cell. This in turn rethees
search space.

Since we want to disallow combinations of digits within each group of 3,
we could assume that we can use (10 choose 3) as the number of possible
combinations per cell. However, we want to allow the no-op to be rebeate
Therefore, for our analysis, we define a total of 3 no-ops to go athghe 9
pruning operators. This effectively allows the no-ops to repeat. Weahiatal of
12 operators and use (12 choose 3) as the number of items per cellafiéhdd0
possible combinations per cell.

This leaves 216 cells with 440 possible combinations per cell. Tlas is
total of 44G'® combinations, which is a search space of roughly'®10

combinations. This is still a huge search space, but certainly not as bad as before.

49

We can gain even more ground by noting that there is noise in this
representation. Some of the responses for a given guess are not péssible.
example, the guess ‘RRR’ will never result in a response contairhitg ehips.

Table 3 identifies the impossible responses.

Table 3: Impossible Responses in an MML Program

|BV\YN BB BW WV B W WAV | None
RRR

ol - . .

RYG

e
|

RR . N
]

ceell R B

GGY | And so on until YYY

Table 3 shows that the WWW response can only occur when all three
chips in the guess are a different color. There are 3! (6) pesgielkses in which
all of the color are different. Subtract 6 from 27 total rows ancethee 21 cases
that can be removed from consideration. Furthermore, responses witlrchipie
cannot occur when all the chips are the same color. This adds 12 more chases to t
total of impossible responses. There are a total of 33 responsesarhat occur
and hence should not count as part of the search. This further reduceamin

space tqust 4403 or 13%. This is still a huge space, and it does not appear to

50

be reduciblé Given the apparent size of the space, it cannot be searched
exhaustively. Therefore, we did not attempt to compute the optimal solution.
When using MML, the lower bound on guesses per game of the 3-3 variant is

unknown.
An Approach to Solving 3-3 MasterMind Using a GBGA

Since GBGA'’s use a formal grammar, in Backus-Naur-Form (BiF),
define a search space we defined the Mini MasterMind Langualy. \Ms a
BNF grammar and built an interpreter to serve as the objective function.

MML programs are executed via this interpreter that was buiguex
and yacc. As expected, the interpreter actually maintains a list of pagsésges,
and after each response, removes any guesses from consideratiorerthat w
specified by the pruning operations for that response.

Note that partial solutions can be expressed in this grammar. Foplexa
we know that certain cells are never ‘hit’ so we can wheegrammar to provide
empty operator lists in those cells.

The ability to provide partial solutions allows the user to run preamyi
experiments, learn something unexpected about the problem, and hopefully
provide a partial result that helps reduce the search space.

Rather than implement an entire GBGA system, we used the Geneti
Programming Kernel (GPK) which is freely available on the InterHelmut

Hoerner developed the GPK, which is a Grammar-Based-GenéjmritAm

4t is, but we will let the story unfold as the cepprogresses.

51

system that applies the general Genetic Algorithm to populations gfdodls as
defined by a BNF grammar representing the search space.

The code is free for educational and research use. It is impledhén
C++ and is delivered as source. The code is available at thesiteefor The
Austrian Institute of Economics, Vienna, Austria. The free code hast updated
in 1996. A more recent version of this system is available as a eanamn
ActiveX control. Hoerner based the code on research by Andreas-Saydr
(Geyer 97)(Bohm 97).

The GPK system is fairly easy to use, and seems to work well ehough
satisfy our goal of learning to apply these algorithms to actual prebl€here
were naturally some issues. These are discussed in the ExpatirResults

section.
An Approach to Solving 3-3 MasterMind Using ACO

The table used by the GBGA can also be seen as a verynlonigerof
183 digits in base 440. Therefore, we could use one of the ACO algotibhms
search the range of possible numbers from 0 td®44ér good values that play
MasterMind well.

This approach allows us to reuse the MML interpreter as thetgjec
function for the algorithm. Our objective function simply takes a number,
converts it to MML, and then runs it through the interpreter; justi&elo in the
GBGA approach.

One option might be to use the CACO algorithm. The CACO algorithm

searches promising regions of the search space for optimal sollttionght be

52

applied to search our space, although it will require is to define I&hies for
use.

Additionally, it is not clear that our problem space can be sealphbil-
climbing. The values our variables take (from 0 to 439) do not relatado e
other. More specifically, they do not define a total or even a partiak amongst
themselves. This implies that the ‘direction’ of travel for a givariable is not
particularly helpful. In other words, given the way the variables intabie
interact, the notion of ‘direction’ is meaningless. This implies ltilég cannot be
defined so that we cannot possibly climb them in any reasoned fashion. Therefore,
we chose to propose a solution using the MAX-MIN Ant System.

The MAX-MIN Ant System was designed to solve Traveling Salesman
Problems (TSP) and other graph-based problems. It is fairly eassthte our
problem as a graph that can be traversed with a goal of finding shepdih
through the graph.

Naturally, there is more than one way to graph this problem. In any
method the graph will be huge.

As a small example of a graph that can be used, consider arsimila
problem in which we find 2 digits, each with 3 possible values. This is
significantly easier to represent than 183 digits with 440 values eaclt, ibut
essentially the same problem. Figure 3 shows the problem of finding & witht

3 possible values as a TSP problem.

53

S<E g ; 2 gg/b Back tc start

Figure 3: Finding 2 Digits with 3 Values Using TSP

Each column of nodes represents a digit; each node in the column
represents a specific value of that digit. All distances in thphgcan be set to the
same value. The objective is to find the shortest route from the start to thbystart
traversing the graph. This will result in an ordering of nodes, and hemaomlaer
that can be used to generate an MML table.

This representation would be very large for the full MML case, butavoul
allow the MMAS algorithm to yield results. Note that this repnéstgon does not
take advantage of the distance heuristic used in MMAS, so it oreierge quite
slowly. However, this representation is quite flexible. This mak@®ssible to
use partial solutions as a starting point.

In fact, partial solutions can be presented in two manners. iFicsttain
subsequences are known to be optimal, this knowledge can be represé¢néd in
graph by removing invalid digits within the column representing those sequences

In other words, edges that are known to connect sub-optimal sequendas can

54

removed. Second, one could add and then alter distances for the edgesthe gi
ants a preference for certain routes.
The ability to use partial solutions as a starting point should allowra

rapid discovery of good programs.
SOLVING 4-6 MASTERMIND

The MML-based solutions try to solve all possible games of 3-3
MasterMind with one search. This approach will not work for 4-6 Misstel
because the search space is very large. Each increase in the oficdlers or
the number of chips increases the search space in three dimensiersearch
space correlates directly to the table size. Each increasa@drs or chips results
in an increased in number of rows, number of columns, and number of operators
per cell in the table. Therefore, the “guess and prune” searde $pa 4-6
MasterMind is completely intractable.

We can dramatically reduce our search space if we run our search
algorithm once for each guess in each game. This new approach s@wgpsess
at a time, and illustrates some other properties of thelsadgorithm, e.g. its
performance under constraints and the ease of incorporating eoddugsiristic

into the game.
The Dynamic Constraints Approach

The 4-6 solution plays “guess by guess.” The basic algorithm is simple. At
every guess search for a best next guess basashetraintsdefined by all of the

responses to previous guesses. This is in line with the experimentsrbioNh

55

genMM (Merelo 96). This approach dramatically reduces the sizlkeeo$earch
space for each execution of the optimization algorithm.

How can we define the constraints based on a response to a guwess? Bl
chips identify the exact number of chips in the guess that are tolirde
represents the number of black chips in the response, then we mustthatatl
‘next-guesses’ have at least b chips in the exact same posititinedfuore, if w
represents the number of white chips in the response then we must thiasuhe
next guess has w colors that are the same. These constrainésraxt guess are
composed, with black chips taking precedence. Additionally, we should never
make the same guess twice. Sanatching ruleis defined as a guess and its
response. We need to maintain a list of these as we progresssdNeantain a
list of prior guesses. By using the information in these two lists;amesearch for
a next best guess amongst the set of possible guesses.

During each search for a next guess, we want to consider all matching
rules. Our fitness function will calculate how close a potenmfiedss is to each
rule, and return the summation of these calculations.

Our solution differs from Merelo’s in one key aspect. We try ttofola
similar strategy to that used in our MML solution. First, we defineorder in
which we will try to identify colors. For example, if the colorstié MasterMind
are Red, Orange, Yellow, Green, Indigo, and Purple, then we can try to pin the
down in that order. We start with RRRR guess and then when seleatiext a
guess from the set of guesses that match as many of our rypessisle, we

favor the guess with the most of the next color in our order, Orange diifaes

56

us towards maximizing the number of black chips in the responses. Iy, ttieor

addition of this strategy will garner better results.
Estimating the 4-6 MasterMind Search Space

The search space is small. There are 4 chips of 6 colors, asea@
number with 4 places. This gived 6ombinations. There are 1296 possible
combinations, so the space has a magnitude of ofly 10

Genetic Algorithms find a near-optimal solution, so we do not expect this
algorithm to obtain the theoretical optimum. For the 4-6 game, this leas be
posited to be either an average of 4.34 guess per game if 6 guessdsveed
(Koyama 94) or to have a slightly higher average taking a maximum of Segues
(Knuth 76-77). Koyama'’s solution uses an exhaustive search.

Why don’t we use an exhaustive search? This is a solved problem so we
do not expect to learn anything new from an exhaustive search. Since oig goal
to learn about optimization algorithms and different approaches tdaisim
problems we use the techniques under investigation. We then compare any
experimental results to the known optimum for the 4-6 variant in oodgrdge

the effectiveness of our solution.
Solving 4-6 MasterMind with a GBGA

The implementation using a GBGA is fairly straightforward.

First, we need a grammar that defines a current guess. Thigaksince
the population consists of 4 digit strings of base 6.

Merelo’s solution relies heavily on a crossover technique called

transposition.Transposition boils down to the ability to swap digits in the string.

57

Therefore, the generic crossover function for the GBGA appedos ideal for
this application.

Next, we need a fitness function that provides a range of fithess tige
prior guesses and the responses to the prior guesses. For a givieimngnatie,
we count the number of identical matches to the prior guess amutihieer of
colors that are same and then, favoring blacks, return a valués th@t* the
identicals + the same color values. We do this for each matchmgmdl overall
fitness is simply the sum of these values.

The difficult item is to incorporate the color-ordering heuridBiasically,
we add one additional point to fitness for each chip in a matchinghatiestthe
same color as our current focus. Focus progresses as we trysgaesdeone
color, so it is initially R, then follows a progression. We move tontad color
when we cannot find any black pegs in a response to guess containing the curre
focus color.

We also throw out any next guess that is in the list of all prior guesses.

This composition of evaluation techniques should perform reasonably. We
do not expect it to be optimal, since the GBGA does not generally lied t

optimal answer, but rather a close approximation.
Solving 4-6 Master Mind with an ACO Algorithm

It is not clear how this can be tackled with an ACO algorithmmidally,
an approach would require a graph representing the possible guessesultlis w

be like the graph seen in the MML-Based ACO approach.

58

It is conceivable that the distances on the edges in this graph auld b
manipulated from guess to guess to incorporate the various matching rulee that
have discovered so far. We could then essentially add pheromones from one ant
based on results of the same fitness function as the GBGA solution.

It is not clear exactly how to do this, which may outline a weakinetbe

idea of using ACO for this problem.

59

Experimental Results

INTRODUCTION

This section presents the results of the experiments with theaxants
of MasterMind. We discuss the 3-3 results and then the 4-6 resulteaEbr
variant and each optimization technique, we generally follow a progrestion
topics including experimental setup, intermediate results, tuning the
implementation, and finally an analysis of the final results. Wheraiaiwe
make a comparison against other research’s published results.

By ‘tuning the implementation’ we mean that these discussions aled re
on any issues encountered during experimentation and any changes from the
original framework of the solution that were required. These chamgesmade
in order to get the best solution possible within the project’s lthtitreframe. In
other words, this section will read somewhat like a laboratory notetagaikiring
the results and observations made during the experiments.

When discussing performance, we will normally talk about the number of
executions of the objective function that were required, rather thamgtidata.
However, when appropriate, we will discuss run lengths for the various
experiments. For reference, the experiments were performed dhRibension

266MHz Pentium Il machine with 128MB of RAM and a 512K L2 cache.

60

3-3 MASTERMIND RESULTS

This section covers the results of the experiments with a GBGAthe
AS algorithm for the 3-3 variant of MasterMind. We begin, as usuah thi

GBGA results and follow with the AS results.
3-3 GBGA Reaults

As mentioned earlier, this solution was implemented using the Genetic
Programming Kernel. The GPK system is a bit unwieldy to use dimequires
the recompilation of the entire code set into one executable in rden the
GA. This required many cycles of build, run, rebuild, run, and so forth. Every
change to the GA parameters (like elitist vs. non-elitistegras or population
size) required rebuilding the executable.

The GPK system was designed to use an input grammar to defiaech se
space and to naturally use an interpreter as the objective functigiteltbss, we
found that integrating the MML interpreter was quite difficult. Wedusommon
tools (flex and yacc) for development and expected a cleaner inegoatween
the GPK and the interpreter. The objective function, a parser, hath tmany
times per execution. This required us to enable the interpretestart many
times within a single execution. Flex and yacc are not normally used in
environments like this, so knowing this in advance would have been helpful.
Thankfully, a ready-made solution was available (Levin 92).

Integrating the interpreter was also complicated by the factGhaand
interpreter live in the same executable. We needed to repeetbdiid the entire

GA executable for each bug fix in the interpreter.

61

The GPK does not use the yacc grammar as input for the BNRlIniti
this seemed like a flaw since we had to specify the gramwiee.t However,
since the grammar is specified in a separate file from the iGcan be
manipulated to only search portions of the search space without havimgnigec
the interpreter. For example, the GPK input grammar can be written in sugh a
that the cells in the table that cannot exist are left emptantalso be written to
fix the values at a certain row or column in our table. Specifyinggthenmar
twice turned out to have great advantages.

The GPK system works, but it could make it easier to set up proligms

making it clear how to use common tools to develop interpreters.
Objective Function

We measured fithess by passing the phenotype for each individual to the
MML interpreter for every possible target sequence. In otherdsyothe
interpreter was used to play all possible games. The sum of #ie aksulting
number of guesses was returned as a measure of fitness. btalerof guesses
were rated as more fit than larger totals.

In order to give a measure of fitness, the total number of guessali for
games was subtracted from the upper bound of 729. It would normally be 756 (27
games times 28 for a very bad program). Given our strategy, we know leedtat
one guess (RRR) always results in a score of 1. This leaves 758s-tl2§ upper
bound.

The interpreter is used for our objective function, so it needed to execut

as quickly as possible. It maintains a list of guesses and ansgeaifying if a

62

given operator prunes a particular guess. This makes pruning very eagsrand

fast since it is simply a lookup on the téble
Intermediate Results

We ran the GA many times, varying the input parameters based on
observations of each run. It took a lot of searching to find a ‘good’ solUtren.
parameters fed into the GA can make a big difference on the results.

While there are no solid heuristics for determining what paramgiaise,
early runs appeared to get stuck in local minima. The solutions comeaggdn
the run and stopped making much progress. We therefore slowly increased the
amount of mutation present in the system in order to introduce more rarsfomne
and climb out of these valleys.

Recall that the empty solution (no pruning at all) requires an avefdge
guesses.

Almost all runs started with 70 individuals, ran for 1200 generations, and

had the following parameters the same:

* They used a Selection Strategy based on Linear Ranking. This justhakes
top performers.

* They use Stochastic Sampling for the initial population generation.

* They use Random Permutation for the Mating Strategy.

* The mating pairs are selected using the (Selection Heuristit)selects the
mates from adjacent quartiles of the population (pow?2).

* The Crossover ratio was varied between .85 and .9.

5 Despite this, there was a bug in the first implataton, discussed later.

63

* The Mutation rate was dramatically varied, from 0.005 to .25.

The parameters are largely the default for the system, witlbxteption
of generations, population size, mutation, and crossover. The default crossover
ratios and mutations rates have been shown to be good starting poimtsnfpr
problems using a GA, but did not function well in this case. The space may just be
too large.

There are two strategies that can be used when removing thditleast
individuals from a population. These are called ¢htst strategy and theon-
elitist strategy. In the elitist strategy, all individuals less fit tlaadimit are
discarded. The elitist strategy is very strict with regaalghe fithess of the
population. On the other hand, the non-elitist strategy allows some sub-par
individuals to survive, usually in the hopes that their genotype may be hiding
some useful genes for future populations. It allows a bit more randomteefise
system.

The next two subsections discuss the best results for the non-elitist
strategy and the elitist strategy. These experiments were perfoafwed hltering

the mutation and crossover rates.
Non-Elitist, Default Crossover and Mutation

The non-elitist solution used all of the above parameters and followed a
strategy that allows some poorly fit individuals to survive onto the next
generation.

This setup arrived at a solution of 9.3 guesses per game. This isthetter
the brainless version, but not as good as might be expected.

64

The top performer was:

RO Y2,Y2,Y0,Y2,Y0,GlL YO GL,GlL YO RO, Rl

Y2, a, , G @, , ,

RO Y2,Y2,Y0,Y2 Y0,GlL YO GL,GL YO RO, R1

,Y0, ,R2 Y2,Y0O Gl Rl, ,R2, R0 O Y1

Y1 G & & G &,¥Y2 Rl YO,RL Y2,Gl G1,GL YO,Y2 YO,Y1l Y1 &
,&0 R2 YO,Y1 & Y2, , ,R0O @ R2,Y2 RO,GL GL GL
, &0 R Y0, Y1 & Y2, , RO R,Y2 RO,GL GL GL
,Y0, ,R2 Y2,Y0O Gl Rl, ,R2, R0 0 Y1

GlL Y1, , RO R, (0, 0, Rl Y2,

RO Y0, ,& Y2,Gl R1 R2,R1,R2,R2 Y1,G1 & Rl
&0, Y2,R0 YO, ,Rl YO, ,R1,Y2

& Y2 Y2, ,R1,Y2 R2, ,Gl, ,GL

&,R1,Rl,R2 GI,GL RO &, ,Y0,R0 GL

RO, Y0, O R, ,& YLR,&X G R

YO G2,Y1 RL Y2,Y0 YO YO, Y1, Yl R, RO, ,YO

,& Y0,Y0 RO, YO,R2 RO &, Y2,R0, Y2 GL YO
RO RO, &0, YO, RO, , &0 YO YO0, 0, Y1
,& RL, Y0 Y2,Y2 GL RI,R1 RL Y1,Y2 G, Rl Gl YO,R2 R2 RO

Rl, @ Y2, ,Y2 &0,R1, Y0 Y2 GL, R0, R0 R2 R2

,Y0, ,R2 Y2,Y0 G1L Rl, ,R2,R0 &0 Y1

Yl R2,R1,Y1 YO &, ,Y2,R0O RO RO,R2 RO, Gl

Yl Yl YO,Gl G1,Y1 Y1 Rl, ,RZ RO Y2, Rl R2, ,&0 Yl R2
Y2,&0 Y1 R, , ,Yl1 R2Z,R0 & 0, R1,

,Y0, ,R2 Y2,Y0 G1L Rl, ,R2,RO Yl

Gl Yl, , ,RO R, 0,Q0,RL Y.

Q0
2,
,& Y0,Y0 RO, Y0O,R2 RO &, Y2,R0, Y2 GL YO
YO G2,Y1 RL Y2,Y0 YO YO, Y1, Yl Rl

Figure 4: The Best Early Non-Elitist Performer

Elitist, Default Crossover and Mutation

The elitist strategy has the same criteria, but keeps thenoestiuals. It
always discards unfit individuals.

The results were 10.6 guesses per game. This was not particukaty gr
either, but still better than average.

The top performer was:

RL G RO, ,Y1XR,G XR, ,RLG YO,& R @

Rl GL,R0, Y2, Q0 Y2, & Y1,Gl, QO G, Y2

Y1, & Y0,GlL 0V,Gl G, R, YO,R1, Yl GL

R2 Y2 Y1,Rl, ,& YO0,R0,R0O & R1,Y0 RO, R2 Gl

& Y0,Y0 @ RO,Y0O,R1 RO,& Y0 G1,Y2 Y2,& RO GL,GL & YO
Y2, R0 Y2,Y0 Y2 GL,Y1 YO,& Y2 R2,Y2 QO,R0 &0,Gl RZ Rl
R2 Y2 Y1,Rl, ,&0 YO,R0,R0 & R1,Y0 RO, R2 Gl

Y0 RO, & (0, Gl, & R1, Y0, GL @0, Y2 Y2,

R2 Y2, /RO & R2,Y2 RO R2, R0 Y0, Y2 RO &0, R2, YO

(0))
o

RL @ RO, ,Y1 &,G1L & R, ,RL Gl YO,& R2 (U,

& Y0,Y0 G RO,Y0,R1 RO,& YO GL,Y2 Y2,& RO GL,GL GO YO

& Y0,Y0 G RO,Y0,R1 RO,& YO GL,Y2 Y2,& RO GL,GL GO YO
, » » YL, Y2 RO &R, RLRL G, R RO

R2 Y2, RO @ R2,Y2 RO R2, RO YO, Y2 RO &0, R2, YO

Rl RL,RL, , , ,& RO Y1, Y2 YO,Y2 R2 Y1

Yl Yl YO,Gl G1,Y1 Y1 Rl, ,R2 RO Y2,Rl1 R2, ,&0 Yl R2

Y0, Gl, &0, RO YO,R2 R1, &, YO Rl @O,

YO0, Y1 Y0, (0, G, Gl & R1, ,Y2 G, YO

Y1, & Y0,Gl 0,Gl Gl,R2, @0 YO,R1, Y1 GL

Y1, Gl QO R2,Y2 RO, Y2, ,¥Y2 & D, Yl R2 Y1,

R2 Y2, RO @ R2,Y2 RO R2, RO YO, Y2 RO &0, R2, YO

RO, R, R2 R2 &0, X0 Y1 Y2,Y1l RO, ,R0 R2 &0, YO
Yl RO,GlL, YO & R1, , ,RO,Q0

R2, YO Y2, R0, YO, GL, Rl Y2,Y1, Y2 YO R2

Gl Y2 Y2,R0 & Gl,& G0,R0, ,Y1l G0 G0, & YO, YO YO

Gl R2,R0 Y2 Gl, ,&,Y2 Y1,R2 R1, & R1, YO

Yl R1,R0,Gl, ,R2 @0 VYl , , &

Figure 5: The Best Early Elitist Performer

These early results were encouraging, but it appeared that the syate
getting stuck in local minimums.
Given these results, from this point forward we use the non-aliteegy

exclusively.
Non-Elitist, 0.9 Crossover and 0.15 Mutation

After significantly altering the mutation rate, which introducedreag
deal of randomness into the system, the best program took an average of 4.37
guesses per game.

The top performer was:

R2,GL RL R1,Y2 YO &, ,R2,R2 Y1 YO,& RO Y0,GlL RO R1
Gl Gl1 &, & Y2 Y2, &, R, O R, & &,VY1

& RO YO, Y1l YO,G0,R0 RO &,Y0 RI,R2 R1 R2,R2 Y1 &, YO
,RL Y1 &,GL,GL RL Y],& RL RO, ,&,R2 GL

Y2 Y2 GI,R0O Gl R2, RO, ,&0 Y1l Y1,R1 RO Y1, ,

RlL &0,Y0 Y1 YO,GL, Rl & 0,&,3&,Y0 YO YO,RL &0 Y1
RlL RO, ,& YO &,Rl R2, @0, X0, Rl & YO, Y2

Rl &0,Y0 Y1 Y0,Gl, ,&,&,Y0 YO YO,R1 &0 Y1

6 We actually did periodically run the experimenigiwvihe elitist strategy, but it never faired as
well so the results are not reported.

66

R2 RO, Y1 YO, 30,R0 RO G,Y0 RI,R2 Rl R2, R2 Y1 &, YO
& RO YO0, Y1l Y0,3,R0 RO &,Y0 RI,R2 R1 R2,R2 Y1 &, YO
RlL &0, Y0 Y1 Y0,Gl, ,&,&,Y0 YO YO,R2 R2 YO
R2 RO, Y1 YO, 30,R0 RO G,Y0 RI,R2 Rl R2, R2 Y1 &, YO
& &,Y0 RO, ,Rl Y2 Y0,Gl R2 Gl, ,R1,
Rl &0, Y0 Y1 Y0,Gl, ,&,&,Y0 YO YO,R2 R2 YO
Rl &0, Y0 Y1 Y0,Gl, ,&,R0 RO G,Y0 YO YO,RlL & Y1
Y2,R0,Y2 R2, ,Y0 YO Y2,G1 RO &, ,G1 & Rl
Y2 Y2 Gl,R0 G1 R2, RO, ,Y1l YO,Rl RO Y1, ,
Rl Y1 &,Gl,GL RL YI,& RL RO, ,&0,R2 GL
Rl & Y1,R0 GIL R2, R0, ,Y1l YO,RlL RO Y1, ,
,Gl, A0 YO &, &X YO &, , &0 & Yl
Rl Y1 &,Gl,GL RL YI,& RL RO, ,&0,R2 GL
R2 RO, Y1 YO, 30,R0 RO G,Y0 RI,R2 Rl R2, R2 Y1 &, YO
RlL &0, Y0 Y1 YO,GL, Rl & &0,&,&,Y0 YO YO,RL & Y1
,Gl, ,R2 Gl, ,R2, X0 Y2
Gl,R2 Y1l,& Gl, ,R2, ,R0,Gl &
Y2,R0,Y2 R2, ,Y0 YO Y2,G1l RO &, ,G1l & Rl
Y0 Y1,Gl, RO RO Y1,Y2 0,& RO, Gl, Y2 &, Y1 Y2

Figure 6: The 4.37 Result

Note that this solution used a Crossover ratio of 0.9 and an extremely high
mutation rate of 0.15. We also ran for 2000 generations. Relying on mutation to
this extent is atypical, but sometimes necessary with large search spaces.

It is quite interesting given the monstrous search space thatBGAG
allowed the algorithm to find a decent result in finite time. Wey @avaluated
140,000 individuals over the course of the run. This is miniscule portion of the

space.
Analysis of the 4.37 Result

This seems to be a promising result. Although, there is no known
minimum, by extrapolating from Merelo’s results we suspect the obtiaiae
for 3-3 MasterMind is somewhere between 3 and 4.

There are few caveats and complicating factors.

After evaluating the outputs one more time, .it was clear that he 4.3% resul

was obtained reasonably early in the process, and yet nothing bettéyuwnes

67

This could mean that 4.37 is very close to optimal, or it could mearthbat
system might still be getting stuck on local minima.

We are searching a larger than necessary space. First, our sdog®n
not use sets for the list of pruning operators because this would réopkre
ahead from the parser. The GPK only accepts BNF grammars, sohleai{-e
out of the question. Second, we are not accounting for impossible responses.
These two factors introduce noise into our search space, effeatnading it
larger than necessary. We could try to specify the grammaleantittre precisely,
by at least removing the illegal responses from the grammar.

After analyzing the solution, it became apparent that less pruning is
required than originally anticipated. In fact, the 3-3 solution canceces to the

following program.

, Q0, R2,R2, ,Y1
YO0,
,,,,,,,, Gl
,Gl, ,RO, ,VY1, VY1, ,
, 0, , ., YO,
VRO,

, 0, , ., YO,
RO, , , ., ., R2, ,
,,,,, X, @2
RO,
,,,,, &,

with the remaining lines enpty

Figure 7: The Reduced 4.37 Result

This seems to indicate that we should be able to use one operateflpe

from a set of 10. The search space is therefolg10'%3.

68

Reanalyzing the 4.37 Result

When considering the use of one operator per cell and how the table
worked, it was clear that at least two operators per cell skadiola better tables,
at least in very specific cases. For example, if the firssgue RRR and the
response is BB then the target had 2 reds in it. In this casprageam should
prune all guesses with exactly 1 red and all guesses with 0 redsvétpwging
this did not improve our result!

As it turns out, the interpreter had an error. Sometimes additional
operators in a cell would put pruned guesses back into the list! Inwathds,
the interpreter was not evaluating the fitness properly.

The process of discovering this error led to the discovery of the aptim

first row in the table. The optimal first row is given in Figure 8.

11R1R0111R2R0111R2R1

Figure 8: The Optimal First Row for 3-3

All further experiments take advantage of this discovery and useptue
grammar for the GPK system to specify partial solutions usingpéimal first
row.

After fixing the interpreter and running all of the experiments afyeimg
an optimal first row) we found the results to be consistent withfitee run
through the experiments. Each solution was marginally improved.

Rerunning the experiments resulted in a program with an average of 3.93

guesses per game.

69

The winner (reduced) was:

,RL RO, , ,RR RO, , R RL
YL

JGL o,

‘Y2 Gl . . YL, YL YO,

&, , ., ., ., €]
JORIINY -

< T

Y2 GL Y1,

with the remaining 12 |lines enpty

Figure 9: The Reduced 3.93 Result

Analysis of the 3.93 Result

This result was found with the following parameters.
* The Crossover ratio was .85.
* The Mutation rate was 0.09.
* The algorithm ran for 2000 generations.

Figure 10 shows the progress made during the execution of the algorithm.

70

Average Guess

2.00
0.00
A N M < IO O I~ 0 O O 0 N M < 10 © N~
N < ©O 00 O N < © O 4 M IO I~ 0O 4 ™M
—A N M < O ~~ 00 O O N MM < 1IHh © 0o O
Lo I o B o I R IR B o |
Generation

Figure 10: A Graph of Progress Towards the 3.93 Result

The final result of 3.93 guesses per game was reached after 1726
generations. It represented an improvement of .04 guesses per ganmaedhss
that is used 1 less move to play all possible games. The prior 3.96 cana
after 1151 generations. Clearly, progress has bottomed out.

This reduced solution is very sparse. It has had a significant number of
operators removed because they had no impact. The items they prunedosere

likely already pruned, so those operators were redundant.

71

From these results, it seems clear that it should be worthwchiley a
using a few searches with the last 10 lines empty and only 2 opgratassll. A

better table may exist in this space.
Comparison with Published Solutions

None of the published solutions we looked at did 3-3 MasterMind, but the
6 peg, 6 colors version of Merelo’s used between 5.4 and 5.8 guesses per game.
The Simulated Annealing version (by Bernier) averaged between 5.6 and 6.1
guesses. These results are according to the web pagétt@t/kal-

el.ugr.es/mastermind/

Intuition tells us to expect results between 3 and 4 guesses fopttheal
3-color version. Our GBGA search got close to this result, at 3.93co@&e,
intuition is not always accurate. The optimal solution is stilknown. The
GBGA and the MML approach clearly workhe question is still “How well do

they work?”
4-6 MASTERMIND RESULTS

This section captures our results using the GBGA and the 4-6 “gyess

guess” solution.
GBGA Results

This is still under construction. So far, we can play, but poorly.

72

SUMMARY OF EXPERIMENTAL RESULTS

All of the GBGA results illustrate the idea that the powethaf Genetic
Algorithm comes as much from making the user think about the problem in novel

and precise ways as much from the algorithm itself.

73

Conclusion

This section concludes the report. It discusses the main findings and
limitations of this research. It also discusses opportunities ancestimus for

follow-on work.
MAIN FINDINGS

Natural Metaphoric Optimization Algorithms are accessible atatively
easy to apply to combinatorial optimization problems. From a Software
Engineering perspective, GBGAs and ACO algorithms are the most gangmi
recently developed algorithms.

Given that NMOAs are accessible and perform well, it is ingmbrto
monitor the research in the natural sciences in the hopes of finding othe
applicable metaphors. The process of evolution has had a long tinmel teofid
optimization strategies. There are undoubtedly many more metaphorguire Na
that can be leveraged by software engineers and computer scientists.

Having said that, it could be argued that the power of Genetic Algorithm
based systems, which include Genetic Programming systems, comesh&om
thought processes they require of the user, not the algorithm itseif.allow the
user to solve hard problems because they force the user to knowobienp
domain extremely well in order to get good results from the systeey h
essence force the user to think about the problem in a differentalighthe
search for a solution simply becomes frosting.

Naturally, this observation has both good and bad aspects.

74

Original Contributions

This report makes some original contributions. The MML-based approach,
with its notion of dynamically updated finite state machines, is al rsmbetion
for MasterMind. The MML experiments produced promising early reswhde
only searching a miniscule portion of the overall space. Additionallygtnsgral
notion and approach appear to be applicable to other Genetic Programming tasks.
The guess-to-guess approach, while simply a variation of previous
research, also gave interesting results, albeit very preliminargptesents an
interesting general framework for solving problems with potentially segech
spaces. This work on the guess-to-guess approach also led to an apparentl
unknown application of GBGA'’s to constraint-based optimization problems. This
application is discussed in the Opportunities for Further Work sechiah t

follows.
LIMITATIONS

This report serves more as a survey than as experimentaiatesklany
more experiments, on a wide variety of problems need to be performed to

properly assess the value of Grammar-Based Genetic Algorithms.
OPPORTUNITIESFOR FURTHER WORK

The results for both 3-3 and 4-6 MasterMind using a GBGA are quite
encouraging, but leave several unanswered questions and possibilifieshier
research. This section looks at these opportunities, covering thosedhatta
solution-specific or approach-specific and then those that apply hovaaant of

MasterMind used for this report.

75

Solution- and Approach-Neutral Possibilities

First and foremost, it would be interesting to implement and teAiC4h
algorithm for several variants of MasterMind and then compareethéts with
those found here.

With regards to the GBGA-based experiments, several other avenues of
research should be followed.

The GBGA we use leverages the transposition operator in crossoaer t
extreme. It may be illustrative to try additional operators in botiants of the

game.
TheMML Approach

In the MML solution, one could try to optimize each row individually and
then test the results of a program that combines all of the rows.

Another MML approach would use 2 phases of GA’s. The first phase
would approximate optimal rows and then use slight variants of these t@f@opul
the starting population of a second phase. This could be run in parallel fosthe
phase, and may allow the exploration of more of the search space. finese-
approach might also provide interesting results by allowing the combination of

various optimization techniques for each phase.
The Guess-to-Guess Approach

This approach will scale to larger variants of the games, e.g. Th7awi

space of magnitude 10/e may investigate these variants in follow-on research.

76

We might also want to compare the approach taken here againsttedlir
search that explicitly incorporates our heuristic. It would beresteng to

compare this approach for both the 3-3 and 4-6 variants to the results found here.
Dynamically Specifying Constraints Using a Grammar

Two observations about GBGA'’s and the approaches taken here lead to a
very intriguing insight and opportunity for follow-on research. First, all
Grammar-Based Genetic Algorithms share one major strength ahihity to
specify and restrict the search space using a grammar that allows ¢natigenof
legal chromosomes. Second, Genetic Algorithms are not particularly agood
constraint-based optimization since the constraints can be diffcceakpress in
the fitness function. These observations lead to the following insightGlibss-
to-Guess approach to MasterMind might be significantly improved if we
dynamically capture the constraints in a new grammar for each guess.

For example, if we guess “RRRR” and get no blacks in response, we know
there are no Reds in the solution. We could generate a new grananeaflects
this and use it to drive the search for the next guess. This rethecesarch space
and simplifies the fitness function, which can now focus simply on théeuof
blacks and whites and not the colors involved. Generating new grammatls base
on a heuristic and observation of constraint is non-trivial, but deservegaattia

follow-on work.

77

References

Antonisse, H.J. (1991). A Grammar-Based Genetic Algorithm. In G.J.Elirigaw
(ed.), Foundations of Genetic Algorithnipp. 193-204). San Mateo, CA:
Morgan Kaufmann Publishers.

Aarts, J., and Korst, E. (198%imulated Annealing and Boltzmann Machines.
John Wiley & Sons.

Baluja, S. (1994)CMU-CS-94-163 Population-Based Incremental Learning: A
Method for Integrating Genetic Search Based Function; Optimization and
Competitive LearningRittsburgh: Carnegie Mellon University.

Bernier, J.L., et al. (1996). Solving MasterMind Using GAs and Simulated
Annealing: A Case of Dynamic Constraint Optimizati®npceedings of
PPSN, Parallel Problem Solving from Nature, I{pp. 554-563). LNCS
1141, Springer-Verlag.

Bohm, W., and Geyer-Schulz, A. (1997). Exact Uniform Initialization fonetie
Programming. In R.K. Belew and M. Vose (edBgundations of Genetic
Algorithms 4(pp. 379-407). San Francisco: Morgan Kaufmann.

Colorni A., M. Dorigo & V. Maniezzo (1991). Distributed Optimization by Ant
Colonies. In F.Varela and P.Bourgine (Ed®jpceedings of ECAL91 -
European Conference on Artificial Ljfg,pp.134-142). Paris, France,
Elsevier Publishing.

Dorigo, M., and Gambardella, L.M. (1997). Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman ProblefBEE
Transactions on Evolutionary Computatidn,1, 53-66.

Dorigo, M., and Gambardella, L.M. (1997). Ant Colonies for the Travelling
Salesman ProblerBioSystems43, 73-81.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The Ant System: Optimisation
by a Colony of Cooperating AgentEEE Transactions on Systems, Man,
and Cyberneticart B, 26, 1-13.

Fogel, D. (1995). A Comparison of Evolutionary Programming and Genetic

Algorithms on Selected Constrained Optimization Problegmsulation,
64, 397-404.

78

Fogel, L. J. (1997). "What's Evolutionary Programming (EP)?". WorldWide
Web, Available at ftp://ftp.Germany.EU.net/pub/research/softcomp/EC/F-
AQ/supplements/what-is-ep.

Fourer, R. and Gregory, J. W. (1997). "Linear Programming FAQ". WorldWide
Web, Available at http://www.mcs.anl.gov/home/otc/fag/nonlinear-
programming-fag.html.

Geyer-Schulz, A. (1997). The Next 700 Programming Languages for Genetic
Programming. In J.R. Koza, W. Banzhaf, et al. (ed$gnetic
Programming(pp. 128-136). San Francisco: Morgan Kaufmann.

Greening, R. (1995B5imulated Annealing with Error®hD Thesis. Los Angeles:
University of CaliforniaDepartment of Computer Science.

Holldobler, B., and Wilson, E.O. (1990)he AntsBerlin: Springer-Verlag.

Koyama, K., and Lai, T.W. (1994). An Optimal Mastermind Stratdgurnal of
Recreational Mathematics

Knuth, D. (1976-77). The computer as Master Middurnal of Recreational
Mathematics9, 1-6.

Lasdon, L. (1978). Design and Testing of a Generalized Reduced Gradient Code
for Nonlinear Programming.ACM Transactions on Mathematical
Software March 1978, 34-50.

Levin, J.R., Mason, T., and Brown, D. (1998x & yacc. Sebastopol, CA:
O'Rellly and Associates.

Levy, S. (1992). Artificial Life - A Report from the Frontier Where Computers
Meet BiologyNew York, NY: Random House, Inc.

Merelo, J.J. (1996). GeNeura Technical Report G-96-1 Genetic Mastermind, a
Case of Dynamic Constraint OptimizatioiGranada: University of
Granada, Spain.

Stitzle T., and Hoos, H. (1997). Improvements on the Ant System: Introducing
the MAX-MIN Ant System. ICANNGA97- Third International Conference
on Artificial Neural Networks and Genetic Algorithnuniversity of East
Anglia, Norwich, UK, Wien: Springer Verlag.

79

Wodrich, M., and Bilchev, G. (1997). Cooperative Distributed Search: The Ants
Way. Control and Cybernetic26, 413-446.

Watson, M. (1997)Intelligent Java Applications for the Internet and Intranets.
San Francisco, CA: Morgan Kaufmann Publishers.

80

Vita

Kent Arthur Spaulding was born in Denver, Colorado, on September 28,
1965. His parents are Arthur D. Spaulding (deceased) and Jennifer Ddiggaul
In 1990, Kent completed a Bachelor of Arts degree majoring in Computer Science
Applications in Russian at The University of Colorado. During much ofithe
in undergraduate school, Kent worked as a student co-op for IBM Bouleee wh
he developed an interest in object-oriented and distributed systemsudd to
Austin, Texas in 1990 and began working for The Continuum Company where he
was part of team that developed a three-tiered object-requéstrlatevelopment
and runtime system for integrating legacy applications and business groces
objects. In 1993, Kent became Principal Engineer at Zephyr Technologies, and
ported the SOMobjects Toolkit to Win32 as support for the OpenDoc pragect,
well as developing a communications framework for handheld computers. In
1996, Kent worked at Texas Instruments on a novel JavaBeans composition tool.
Kent currently works at Trajecta, Inc, a small data-mining and greeli

optimization startup.

Permanent address: 4510 Avenue B

Austin, TX 78751

This report was typed by the author.

81

