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Abstract

Natural Metaphoric Optimization Algorithms

Kent Arthur Spaulding, M.S.E.

The University of Texas at Austin, 1998

Supervisors:  Calvin Lin and Craig Chase

In the current business climate the quest for profit in the face of lower

margins drives companies to be more efficient and more careful when making

decisions. Software systems need to enable users to state their goals and resource

constraints and then suggest an optimal plan that achieves that goal. Global

optimization techniques can provide these kinds of answers. Many global

optimization techniques are difficult to use. This report reviews promising and

accessible techniques for global optimization that are based on metaphors from

the natural sciences. We apply some of these algorithms to several test problems

using genetic programming and dynamic constraint optimization techniques.
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Introduction

MOTIVATION

The current business climate, with its raft of mergers and acquisitions, is

driving businesses to compete against one another for lower and lower profit

margins. This is true across many industries, including Telecommunications,

Cable and Broadcast Television, Computers, Consumer Electronics, Banking and

Consumer Credit. The quest for profit in the face of lower margins drives

companies to be more efficient, and hence more careful when making decisions.

To illustrate, consider the credit card industry where the need for good

decisions is profound. In the current business climate, the only way for a credit

card company to maintain profitability is to accept increased risk for the same

return. Hence, card issuers face a common dilemma.  How does one make

decisions in an environment where there is a great reward for being correct and

severe penalties for being wrong?

Software in the form of data-mining tools used for advanced data analysis

addresses this question by evaluating proposed plans of action. Data-mining

software finds patterns in vast data warehouses and is then used to predict the

probable outcome of a given proposed plan. This all well and good, but begs the

question, “If this is a good plan, then how can it be better?”

Some data-mining tools address this issue by using optimization

technologies to fine-tune a given plan. Imagine being able to state your goals

along with some set of resource constraints and have software suggest an optimal
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plan that achieves that goal while minimizing consumed resources. Global

optimization techniques can provide these kinds of answers; the better the

optimization algorithm, the better the plan and the higher the rewards.

What’s the downside? Many global optimization techniques are difficult

to comprehend, and hence difficult to use.

Given the current business climate and the need for optimization, there is a

trend to incorporate more and more intelligence into software (Watson 97). Given

this trend, it clearly behooves Software Engineers to understand optimization

technologies.

This report investigates a couple of promising and accessible techniques

for global optimization.

OBJECTIVES

This report has two primary objectives. First, to build a broad

understanding of the field of non-linear programming, which incorporates a wide-

ranging variety of ‘global optimization’ tools and techniques. The second

objective is to learn to apply interesting optimization techniques to a meaningful

problem. Finally, we keep an eye towards using optimization technologies in

future software engineering projects.

Extending the state-of-the-art is not an objective; this research is being

undertaken in order to provide the author with an understanding of global-

optimization techniques and the beginnings of a process to follow for learning and

applying new techniques to novel problems. In other words, this research should

result in the ability to answer high-level questions regarding chosen techniques.
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For example, what are the relative strengths and weaknesses of a given method?

What kinds of problems are best suited for attack via this technique? How

difficult (or easy) is it to map a given problem into a given technique? How easy

is it to incorporate a given technology into a software system? As optimization

becomes more and more useful, these questions will need to be answered on an

on-going basis.

Generally, this report should provide the beginnings of a process to follow

for learning about, evaluating, and applying new optimization techniques as they

are discovered and appear in the literature.

APPROACH

The methodology used to compile this report was quite straightforward. It

started with an interest in ‘metaphoric optimization techniques,’ that is,

techniques based on observations of physical phenomena. More specifically, this

interest is focused on algorithms grown from studies of biological systems. These

techniques are in contrast to purely mathematically based techniques like the

popular Generalized Reduced Gradient (GRG2) method or even branch and

bound techniques. The descriptions of metaphoric optimization techniques are

rooted in familiar terminology, which make them more accessible than many

other techniques.

The next step was to review the literature and find specific metaphoric

optimization techniques of interest. Grammar-Based Genetic Algorithms (GBGA)

and Ant Colony Optimization (ACO) were selected from a plethora of options.

These appeared to be the most accessible methods, and have also demonstrated
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promising results when applied to standard test problems (Antonisse 91)(Colorni

91).

Next, it was time to find a problem to solve. We settled on the game of

MasterMind1. Why MasterMind? First, it has several variations and hence a

variety of search spaces and strategies to choose from. Second, many variants do

not have known optimal solutions. Third, there are some published results for

certain variants for both a straight genetic algorithm and a simulated annealing

solution. Fourth, MasterMind can be tackled with the chosen optimization

techniques in interesting ways. Finally, MasterMind should be illustrative of the

various strengths and weaknesses of the GBGA and ACO algorithms.

MasterMind serves as an excellent test bed, and yes, it is fun.

Why not a business problem? In the end, access to appropriate and

publishable data became an issue. All of the stated research goals are met just

using MasterMind.

The remainder of the research was simply of matter of finding or

developing code to use for the evaluation of the techniques and performing

experiments that attempt to solve the test problems.

OVERVIEW

This report is divided into five major sections. This introduction is first. A

section covering the current literature on selected optimization techniques follows

the introduction. This section focuses on Natural Metaphoric Optimization

Algorithms, with an extra emphasis on Ant Colony based techniques and

                                                
1 MasterMind is a trademark of Invicta Plastics, Inc.



5

Grammar-Based Genetic Algorithms. The third section provides an introduction

to the test problems and their anticipated experimental solutions. Section four

focuses on the experiments, including lessons learned during the process and the

experimental results. The fifth major section provides a conclusion. It also

considers additional research and discusses the possibilities for future work based

on this research.
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Literature Review

INTRODUCTION

This section provides a brief literature review covering the optimization

techniques and technologies that were investigated while formulating solutions

for MasterMind. This review is by no means intended to be complete; rather, it is

intended to serve as a brief introduction to some of the concepts involved in

Nonlinear Programming2 (NLP) and optimization techniques. It should also serve

to define terms and techniques used and discussed in the remainder of the report.

This section begins by providing a high-level technical overview of NLP

and optimization.  This section is largely a consolidation of the overviews by

Fourer and Greening (Fourer 97)(Greening 92).  After the technical overview, this

section discusses several Natural Metaphoric Optimization Algorithms at a high-

level. Grammar-Based Genetic Algorithms and Ant Colony Optimization are then

discussed in more detail. Finally, we look at other non-metaphoric techniques that

might be of interest to Software Engineers.

TECHNICAL OVERVIEW

Optimization and global optimization techniques fall into a field of study

called Nonlinear Programming (NLP). NLP is used to find good solutions to

problems that can be expressed in terms of an objective function and a number of

                                                
2 In this context, the term, "Programming", does not refer to act of developing code, but rather the
act of "planning."
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constraint functions. An objective function takes a vector of input values as an

argument and returns a vector of output values.

The objective function describes the search space in which one wants to

find a minimum or maximum set of output values. It is often convenient to think

of objective functions as defining an n-dimensional landscape, where n is the

number of input values over which one wanders in order to find the high or low

point. Constraint functions limit the search of this landscape to specific areas.

Simply put, all optimization problems are just a search for the best combination of

input values to an objective function that, given some constraints, produce the

optimal set of output values.

While it sounds simple in concept, it is actually very difficult to find good

general solutions for all sets of possible objective and constraint functions. First,

these search spaces are very large. Additionally, many problems have a number of

local minima or maxima that are difficult to locate and/or hard to distinguish from

one another.

To illustrate the concept of multiple local minima, consider the following

minimization problem. Imagine that you are walking on a ranch and have the task

of finding the lowest point on the ranch so you can drill a well (objective

function). You know the boundaries of the ranch when you see them (constraint

functions), but have no map to follow. You decide to traverse the ranch, but how

do you know that you are at the lowest place on the ranch? When you are in

depressions you cannot see over the hills around you. You can keep notes, so one

strategy might be to stand on the highest hill you can find, look around for
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promising depressions, and then search each one for depth. Assuming you can

find the highest hill, you might not be able to see all of the depressions to search

and there may a large number of depressions. The task is clearly not easy.

It should be clear from the ranch example that even though optimization

sounds simple, it is often quite difficult. However, the basic concept is simple;

you search a landscape to obtain an objective.

A Few Search Strategies

There are many strategies for searching, including exhaustive, random,

greedy and heuristic searches. The next few paragraphs look at these gross

strategies at a very high-level.

In an exhaustive search, every possible set of inputs is tested to find the

one that results in the best, as judged by some measure, set of outputs.

In a random search we just randomly generate and test combinations of

inputs until we find a set of inputs that is good enough. Random search hopes to

quickly find a good answer. Naturally, it is not always quick and is always sub-

optimal. Random search amounts to random guessing.

A greedy search is related to a random search, but employs some

intelligence. Like a random search, a greedy search randomly generates and tests

combinations of inputs; however, when it finds a good combination it sets it aside

and then begins testing other combinations of inputs in the same vicinity as the

current best result. The term "greedy" connotes a strong preference for better

solutions, and is applied to many algorithms. It follows that whenever a greedy

search finds a better result, it sets it aside, and continues search in that local area.
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It stops after a set number of tries or when it has found a solution that is sufficient.

It has the same weaknesses as random search, but on average can finds solutions

that are good enough more rapidly than straight random guessing.

A heuristic search follows some strategy, like a human might. For many

searches, one could follow a strategy of always moving in an uphill direction,

hoping to find better and better results. If the results get better for some time and

then start to get worse, you have reached a summit. This is the hill climbing

strategy.  It is commonly used in NLP systems. The use of a strategy makes hill

climbing a heuristic search. Hill climbing is more complicated then it sounds. If

you reach a summit, how do you know it is the highest summit? There are,

naturally, other strategies available.

An as-of-yet unstated goal of searching is to find a near-optimal solution

in a search space in a reasonable period of time. All four types of searches may

fail to find a good solution, but can find good approximations. How long do we

have to wait for a good approximation?  In all cases, one could search forever

unless some preset time limit is imposed. It may not be immediately obvious as to

why exhaustive searches may take forever. It suffices to say that even for simple

sounding problems, one could have an infinite number of possible input

conditions. For example, one of the inputs may be a real number.  There are an

infinite number of real numbers, therefore, a function taking real numbers as input

has an infinite number of possible combinations of inputs.  One cannot possibly

test all input combinations for these functions.
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Optimization problems are broken into two general classes, based on the

type of inputs to the problem. Problems with an infinite number of input or output

values are referred to as continuous optimization problems. Problems that have a

limited set of possible input values (no matter how big the set) are called

combinatorial optimization problems, or sometimes discrete optimization

problems.

Continuous Optimization

Continuous optimization problems are the most difficult form of

optimization. Note that this is the case, even in the presence of constraints on the

inputs. These problems can be very difficult to solve.

Imagine a simple case where one is searching for the maximum value of y

given the Cartesian coordinates x and y (from the set of Real numbers), where

x=y and x < 1. This function defines a line of slope 1, from the origin to the

coordinates (1,1) exclusive. It is bounded by the constraint x < 1, but it has no

maximum value since given any x, we can always pick another that is closer to

12. Obviously, exhaustive search is not possible. If we try a random search we run

into the problem that the odds of randomly generating values of x that are very

close to 1 are extremely low. Random search could take an unbounded amount of

time to find good answers, even in the presence of constraints. We could use a

heuristic search, assuming our heuristic can tell us what value is good enough.

If we can construct an example as simple as x = y, then it should be clear

that continuous optimization problems are very difficult to solve3.

                                                
3 Strictly speaking, this is not a fair example. The given function has no true optimal value.
Objective functions are generally unimodal or multimodal, meaning that they have one true
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Combinatorial Optimization

Many other optimization problems can be characterized as a search for the

best combination of a finite set of discrete values to meet a given set of goals.

This does not make them easy, but one might argue that they are easier than

continuous optimization problems.

The search space for a combinatorial problem can still be quite large. For

example, imagine trying to find the substitution values of 0 and 1 for a given

Boolean equation such that the result of the equation is true. It has been shown

that as the number of terms in an arbitrary Boolean expression increases, the

equation is exponentially more difficult to solve. This is, in fact, a well-known

NP-Complete problem. Therefore, searching can still take an enormous number of

tries before arriving at a solution.

As another example of a combinatorial optimization problem, consider a

pharmaceutical salesperson that has a fixed number of expensive samples for

several different products to give away to doctors. If the right combinations and

quantities of samples go to the right doctors and in turn their patients, the doctors

will write more prescriptions on average and the salesperson’s company will

realize more profits. Therefore, this salesperson would like to know how to best

allocate combinations of samples for each doctor in order to maximize the overall

effectiveness of the samples.

One might also imagine a case where a program is trying to decrypt an

encoded message by guessing a key. If the program had a means to evaluate how

                                                                                                                                    
optimum or many, respectively. This example is simply meant to be illustrative of the problems
with the various strategies.
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close its current guess is to the actual key, it could use combinatorial optimization

techniques to arrive at the correct sequence of characters in the key.

The solutions to a wide class of problems are simply the appropriate

sequence of characters or combination of items. The search for discrete

combinations, given a set of goals, is called combinatorial optimization.

Metaheuristic Searching

Clearly, random guessing is not the best strategy for finding solutions.

There are several improvements that can be made by following a heuristic that we

use to make strategic decisions. In the simplest case, we want to avoid making the

same guess more than once. We therefore need to keep a history of guesses in

order to avoid this. Next, we could make ’educated’ guesses. Simply adding the

abilities to only try guesses once and to make ’educated’ guess improves our

situation quite a bit.

We can make educated guesses in a couple of ways. First, we could strive

to make better guesses based on the results of previous guesses, or even previous

attempts at solving similar problems. This implies a need for a history of those

previous attempts. Second, we could improve our guessing by knowing more

things about the search space. If we are looking for wild elephants, we should not

search Canada.

Optimization techniques that employ these capabilities are said to be using

heuristic search. Optimization techniques that can employ a number of different

heuristics, based on context, use metaheuristic searching. Heuristic searching

allows a given technique to quickly locate regions of the search space that contain
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good solutions. Metaheuristic searches decide how to make these decisions during

the search process.

One can think of a metaheuristics as a top-level general strategist that

guide other heuristics to search for feasible solutions. The other heuristics can be

thought of as tacticians.

The use of a metaheuristic is not always explicit. Examples of

metaheuristic techniques that incorporate the metaheuristic into their algorithms

are simulated annealing, genetic algorithms, evolutionary programming, and Tabu

Search. None of these use an explicit metaheuristic - most are driven by a

metaphor that serves as the metaheuristic.

Global and Local Searching

Many algorithms use one method to search the solution space in the large,

and another algorithm to search within local regions of the space that look like

they contain good solutions. Searching the space in the large is called global

searching. Limiting the search to nearby areas is called local search. When

hunting a particular elephant, you consult a book that tells you to go to Africa.

When you get there, you hire a local guide to help you find the elephant you want.

This is an example of global versus local search.

In general terms, optimization algorithms have been developed to allow us

to find good solutions to problems with very large search spaces, without having

to wait forever. According to Levy, researchers from a diverse set of disciplines,

from astronomy to economics and population studies to mathematical theory have

developed these algorithms (Levy 94).
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Naturally, all of the known algorithms have their own strengths and

weaknesses. For example, some are easier to use than others and some perform

better on one class of problems versus another.

The most interesting and successful searches employ heuristics and/or

metaheuristics to rapidly converge on good solutions.

NLP is simple in concept, complex in implementation and use. This

section provided a brief overview of the concepts. The web is a good place to get

a deeper overview and pointers to a variety of resources.  The web provided much

of the information in this section (Fourer 97).

The next section discusses some easily accessible NLP methods.

METAPHORIC OPTIMIZATION ALGORITHMS

Most NLP techniques are rooted in theories of Mathematics, and are

therefore difficult to comprehend without a strong mathematical background. This

section introduces terminology for techniques that are based on metaphors from

domains outside of computer science and mathematics.

’Metaphoric Optimization Algorithms’ are based on observations of

physical phenomena like autocatalytic processes in chemistry or evolutionary

biological systems. These techniques are in contrast to purely mathematically

based techniques like GRG2 or many linear and non-linear programming

solutions. The descriptions of metaphoric optimization techniques are rooted in

familiar terminology, which make them more accessible than many other

techniques.
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NATURAL METAPHORIC OPTIMIZATION ALGORITHMS

Natural Metaphoric Optimization Algorithms (NMOA) are Metaphoric

Optimization Algorithms that are based on metaphors derived from the Natural

Sciences. NMOA’s are a subclass of MOA’s.

The next few subsections discuss several Natural Metaphoric Optimization

Algorithms. There are a wide variety of NMOA’s available; these subsections

give a brief overview of several of these techniques and discuss their general

strengths and weaknesses.

Genetic Algorithms

John Holland, from the University of Michigan, first described the Genetic

Algorithm (GA) in 1975. This section describes the Genetic Algorithm and then

discusses its strengths and weaknesses.

Genetic algorithms use principles from biology to provide an efficient

means of searching a large search space for a set of near optimal solutions. The

possible solutions in the search space are represented as fixed and uniform length

chromosomes, as one might expect in a biological system. The chromosomes are

built up from genes. The genes typically encode the set of variables that compose

a solution. Optimal solutions are found by creating a population of chromosomes

and playing survival of the fittest from one generation to the next.

The basic algorithm generates a population of chromosomes representing

some random portions of the search space. It then ranks all individual

chromosomes using a fitness function. Next, it discards some portion of the least

fit chromosomes and then randomly mutates some of the population to introduce
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some random wandering through the search space. After this the algorithm

replaces the discarded individuals by randomly combining – using a crossover

function - the best-fit chromosomes with one another. This results in a new

generation. The algorithm repeats; continuing until the average level of fitness

stops changing or some preset number of generations has passed.

To give a simple example, if we are searching the x,y plane for the

maximum value along a curve defined by the function foo(x,y), a chromosome

might consist of two genes representing x and y.

Fitness functions assign values within some range to chromosomes, based

on the genotype or the phenotype. The genotype is simply the set of genes, as they

stand. It can be evaluated by applying some heuristic that has knowledge about

good sequences of genes. Evaluating the phenotype means looking at the

functionality of the genes. When evaluating phenotypes, the contents of the

individual genes do not matter. What matters is how the individual behaves

according to some criteria.

If we are evaluating strings, the genotype can be thought of as the bits in

the string of values. The phenotype can be thought of as the characters identified

by the bits.

In the foo(x,y) example, we evaluate the phenotype. We favor x and y

values that result in high positive distances from the x-axis and rank them ahead

of those that result in smaller distances. This ranking serves as the fitness function

for the algorithm.
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The least fit chromosomes are discarded from the gene pool and some of

the remaining population is mutated. Mutation randomly changes a few bits in a

few chromosomes. Again in our example, the mutation function may toggle a few

of the bits in the x and y values of the individuals.

Next, new chromosomes are created to take the place of the discarded

individuals. A process like mating creates these new chromosomes by using a

crossover function to swap some of the genes of two of the more fit chromosomes

into a new instance. The genes are typically swapped somewhat randomly - just

like in real cells. For our example, we might choose to create children by crossing

the x and y values in the parents to create two new chromosomes.

The GA can be seen as a hill-climbing algorithm. The fitness function

defines the ’landscape’ of hills. The GA keeps track of where it has been in the

genes of the population of chromosomes. Mutation and crossover allow for some

level of backtracking in the space.

Antonisse and Merelo provide a good overview of Genetic Algorithms in

their works (Antonisse 91)(Merelo 96).

Strengths and Weaknesses of GA’s

Genetic algorithms can be faster than more traditional search methods,

especially when run on parallel hardware.  The fitness function takes the most

processor time in a normal application of the GA.  It is easy to distribute the

population of chromosome across many machines, letting each machine evaluate

the fitness a sub-population of the global populace.  Each machine can also

independently apply the mutation operator to its sub-population. Crossover is the
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only time that the machines need to communicate about the global population.

They can do this and then start independently evaluating the next generation of

chromosomes.  The GA is a natural candidate for distribution across machines or

for execution on parallel machines.

These issues complicate the use of GA’s.

GA’s find a near optimal solution, but not the optimal solution. They are

not good at finding the one best solution, but are good at making quick

approximations and therefore do not do true global optimization.

Representing the search space as a chromosome is difficult since

chromosomes are essentially long fixed length strings. Long strings do not

intuitively map to many problem domains. This is especially true if all of the

chromosomes need to be of a uniform length.

GA’s also suffer from the problem that many illegal chromosomes are

created by both mutations and crossover. This effectively increases the search

space because portions of it are searched more than once. This is called the illegal

chromosome problem, and can be addressed by using custom crossover functions

and/or robust fitness functions.

Evolutionary Programming

This section introduces the Evolutionary Programming optimization

technique and then discusses its relative strengths and weaknesses.

Evolutionary Programming is conceptually related to Genetic Algorithms.

It is illustrative to discuss the two techniques in terms of one another, so some the
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terminology used here is used in both this section and the Genetic Algorithms

section. See Fogel for details (Fogel 95)(Fogel 97).

Lawrence J. Fogel invented Evolutionary Programming (EP) in 1960. EP

is based on an observation of evolutionary biology, at the species level. If you

consider generations of a species and its competitors within an ecological niche as

’solutions’ for occupying that niche, you can understand the general idea behind

EP.

EP leverages the notion that solutions, serving something like parents, can

be mutated to produce new more viable solutions as their ’offspring.’ In GA’s,

’individuals’ are like individual organisms. The ’individuals’ in EP are species, not

individual animals.

The evolution of species (and sometimes subspecies) into better and better

solutions is realized in the EP paradigm by the following process:

1. Randomly generate a set of finite automata machines to serve as a

population of solutions. This is the first group of parents.

2. Copy each of the solutions into a new population of offspring and then

apply a mutation operator that alters the behavior of the individuals in

the new population. The behavior of each offspring is compared to that

of its parent in order to achieve the appropriate distribution of changes.

3. Evaluate each known individual (from parents and offspring) for

fitness. Fitness can be defined by its ability to achieve a certain goal

(like recognize a given input sequence). Keep some number of

individuals to serve as the next generation of parents.



20

Steps 2 and 3 continue until you have a set of finite automata that achieve

the desired goal.

EP is thus similar, at least conceptually, to Genetic Algorithms. However,

EP differs in several key aspects.

First, EP is focused on the behavioral differences between parents and

their offspring rather than the representation of the individuals. Any

representation of individuals can be used, whereas GA’s typically represent

individual solutions as strings. In other words, EP operates in the domain of the

phenotype, rather than the genotype. It is not the structure of the genes that

matters, but rather their expression and their impact on the behavior of the

’animal’, in this case, a finite automaton or a program.

Second, EP handles mutation differently than Genetic Algorithms. The

mutation operator still randomly alters the individuals, but it is defined in a way

that favors mutations that create small variances in behavior versus those that

create large variances. Additionally, as the algorithm progresses and good

solutions are being found, the mutation operator favors small variances even more

than in early generations.

Third, EP systems typically compare individuals against each other in a

tournament setting. GA’s typically rank individuals based on their performance

when provided as input to the fitness function.

Strengths and Weaknesses of EP

EP is a useful method for optimization when other techniques like GRG2

cannot be applied. EP is most useful for combinatorial optimization, and can be
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used for continuous optimization, especially when there are many potential

solutions as opposed to one global solution. These are the same classes of

problems that are well suited to a Genetic Algorithms approach.

EP’s main advantage over GA’s is the ability to represent solutions to the

problem at hand in a more flexible manner.

Simulated Annealing

Simulated Annealing is a Metaphoric Optimization Algorithm that stems

from the theories of Thermodynamics. It is widely used in a variety of

applications, including VLSI circuit design and distributed scheduling problems.

Simulated Annealing has even been used to play MasterMind (Bernier 97).

Aarts and Korst give detailed coverage to Simulated Annealing and a

relative, the Boltzmann Machine, in their book (Aarts 89).

This section describes annealing at a very high level in order to give the

reader some insight into the metaphor. It then discusses the Simulated Annealing

Algorithm and some of its relative strengths and weaknesses.

The Process of Annealing

Annealing is a generic term describing a process of treating a material to

improve or enhance certain properties. In the annealing process, one heats a

material to a given temperature, holds it there until it reaches quasi-equilibrium,

and then allows cooling at a slow rate through phase transitions. This process

allows materials to seek a lowest energy state.

Annealing is frequently used to soften metallic materials. It can also

simultaneously produce desired changes in other properties. In the case of metals,
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these changes may be an improvement in workability, facilitation of cold work,

and/or improvement of mechanical or electrical properties. The annealing process

can influence other properties as well. For example, silicon wafers are sliced from

large cylindrical blocks of silicon. Before slicing, the blocks are annealed in order

to ensure that the distribution of materials within the blocks is even across all

regions.

How does annealing work? When a material is heated, the atoms of the

various elements in the material are excited to varying degrees. When the material

is cooled at specific rates, the material slowly approaches temperatures near phase

transitions (e.g. water to ice). At these transition points, the atoms tend to ’settle’

into configurations that can be determined ahead of time. The specific

configuration of material depends on the rate of cooling. Since the process is

somewhat deterministic, by altering the rate of cooling one can effectively control

the microstructure of the material.

How do optimization algorithms take advantage of this? According to

Greening (Greening 95), simulated annealing mimics the physical annealing

process in software.

Simulated Annealing is a modification of the "greedy algorithm", which is

a well-known heuristic used to find approximate solutions in NP-Hard searches.

In the very simplest terms, the "greedy algorithm" simply makes a random guess

to determine a trial-state. It checks this state against its current best state and if the

cost of the trial-state is better, it keeps it. It then keeps guessing in a nearby area

until some stopping criteria is met - typically a criteria like ’no improvement has



23

been seen for several iterations.’ Like many optimization algorithms, it is easy for

the greedy algorithm to get caught in local minima.

Simulated annealing combats this weakness in the greedy algorithm by

adding the notion of a ’temperature’ to the algorithm. Whenever the cost of a trial-

state is compared and the ’temperature’ is high, the algorithm is likely to choose to

keep the state with the higher cost. This tends to throw the algorithm out of local

minima. As the temperature is reduced, the algorithm is less likely to choose a

new state with a higher cost over a state with a lower cost. In other words, as the

temperature goes from high to low, the algorithm tends to explore smaller and

smaller valleys in the objective function’s surface.

The likelihood of choosing higher cost states over lower cost states is

determined by the temperature function, which, given a time, returns a

temperature. This function is usually monotonically decreasing. Variants of the

algorithm use different temperature functions, some slow the rate of temperature

change near phase transitions (the tops of peaks in the landscape). The algorithm

stops when the trial-state and the best state exhibit a distribution of state

transitions that fit the Boltzmann distribution. This distribution is straight out of

the study of Thermodynamics and implies that the system has reached quasi-

equilibrium for a given state. The Simulated Annealing algorithm is simply a

simulation of a thermodynamic system.

Strengths and Weaknesses of SA

Simulated annealing makes good approximations for many applications. It

makes better approximations when given more time. Results are also affected by
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experimentation with the temperature function. Despite that, it still get caught in

local minima, so does not do true global optimization.

Simulated Annealing works reasonably well, but it is computationally

expensive. In fact, there is not a theoretical basis for the claim that it solves NP-

Hard problems in polynomial time. However, under certain conditions it

converges on solutions in polynomial time (Greening 95).

In the web-based MasterMind solution, Simulated Annealing does not

perform as well as Genetic Algorithms (Bernier 97). In many other areas, it

performs better.

Genetic Programming

This section presents Genetic Programming and then briefly illustrates the

strengths and weaknesses of the technique.

John Koza, from Stanford, is the researcher most frequently associated

with Genetic Programming. Genetic programming is a specialized form of a

Genetic Algorithm. In general, GP systems search through a set of programs

looking for one that solves a particular problem. GP systems represent programs

in a number of ways, but they all basically reduce down to lists of symbols that

are interpreted as program instructions (Antonisse 91).

Genetic Programming systems have been applied to problems like

planning, minimax gaming strategies, data mining applications (function

matching), and emergent behavior problems. They can be quite effective in these

areas.
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Strengths and Weaknesses of GP

Most GP systems have the same strengths and weaknesses as Genetic

Algorithms. However, some GPs allow for variable length solutions, which gives

them an edge for some problems.

The crossover techniques are usually very specific to the problem at hand,

especially considering the variable length strings. Unfortunately, this makes it

harder to do crossover so there is a trade-off for allowing some variation in

length.

Genetic Programming systems have been used to solve some very difficult

problems. In fact, they have performed well on problems that were thought to be

almost intractable. However, they are not generally easy to use. They cannot be

generally applied to large classes of problems. In other words, they require a great

deal of effort to set up and execute.

Grammar-Based Genetic Algorithms

This section discusses a specialization of the GA, called a Grammar-Based

Genetic Algorithm (GBGA). The GBGA is the focus of this report, and is simply

introduced here. The sections regarding the experiments go into more detail. This

section is intended to serve as an introduction.

The Grammar-Based Genetic Algorithm is a generalized form of Genetic

Programming (Antonisse 91). A GBGA represents the set of chromosomes using

a formal grammar. The grammar is typically context-free and thus represented in

BNF. This grammar defines a search space contoured by an objective function

implemented as a parser for the BNF grammar.
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The BNF grammar can serve as a set of constraints that define a set of

programs, each of which is an expression of the phenotype of legal individuals.

These strings are the phenotypes and the parse-tree is considered to be the

genotype.

An individual is some legal combination of terms from the BNF. These

individuals are ranked for fitness using an objective function that either walks the

parse tree (genotype) for an individual or sends the string representation

(phenotype) to an interpreter that judges relative fitness.

The GBGA finds optimal solutions in the set of legal grammars based on

some fitness criteria.

What about the crossover function? A GBGA system uses a generalized

parse-tree crossover function to create new individuals in a population. Basically,

sub-trees of two mating individuals can be swapped. This is guaranteed to create

two new legal individuals, thus avoiding the illegal chromosome problem found

in some GA systems.

Mutation can be accomplished by changing the terminal nodes of the parse

tree to some other legal value from the grammar.

Strengths and Weaknesses of GBGA’s

GBGA’s simplify the representation of the search space by allowing it to

be expressed in a BNF.

GBGA’s simplify the crossover function by allowing for the crossing of

grammar trees. Usually, the developer can simply use the general crossover

function.
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GBGA’s do not suffer from the illegal chromosome problem, so the search

space is effectively smaller.

Like all GA systems, a GBGA finds a good solution, not necessarily the

best solution.

ANT COLONY OPTIMIZATION SYSTEMS

Ant Colony Optimization systems are the most interesting and recent

NMOAs. This section discusses several of these algorithms in some detail.

The general Ant Colony Optimization algorithm is based in part on the

natural behavior of ant colonies, and was first discussed in the work done by

Dorigo, Maniezzo and Colorni (Colorni 91). This section discusses the metaphor

for the algorithm, the general algorithm itself, and some of the systems based on

this work.

Ant Colony Behavior

Given the ubiquity of ants, it is safe to say that we have all spent time

watching real ants forage for food. Ants are nearly blind and appear to wander

aimlessly, but when an ant finds food and begins to carry some back to the nest

other ants are sure to arrive shortly. Before long there is a highway of ants taking

food back to the colony’s nest.

When there is highway of ants carrying food, what happens if we now put

an obstacle in the trail? The ants quickly navigate around the obstacle, and

eventually, almost all of the ants take the shortest path around it.

How do animals like ants manage to find any path to food, let alone the

shortest path between food and the nest?
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Edward O. Wilson discovered that ants communicate by using chemical

signals (Holldobler 90). Ants deposit chemical markers, which are called

pheromones, on the ground as they travel. The pheromones are deposited in

varying quantities and act like a trail of breadcrumbs that other ants can follow.

Ants use pheromones to communicate their trail to other ants.

A single ant moves at random, and upon encountering a pheromone trail, it

may decide to follow it based on the amount of pheromone on the trail. If it does

follow the trail, it deposits more chemicals, thus reinforcing the trail. The more

ants that follow a trail, the more likely it becomes that other ants will follow it.

The probability of an ant following a trail is related to the number of ants that

previously followed that trail.

It should be clear how trails of pheromone allow ants to find food and

cooperate once they have discovered it; however, the exact mechanism for taking

the shortest route around obstacles is not quite so obvious.

When ants arrive at a new obstacle, there is no established trail of

pheromones so they are just as likely to choose one direction or the other. Having

chosen one, they continue on until they find the nest.  They drop their food, and

return to the food source. As they return, they again encounter the obstacle, but

they take the path with the most pheromone on it.

Why does one path have more pheromone than the other path? Imagine

that ants lay pheromones down at a constant rate, one unit per inch of travel, and

ants move one inch every second. Now consider a food source and a nest that are

ten inches apart. There is a four-inch wide obstacle in between the food and the
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Illustration 1: Ants and Obstacles

nest. The obstacle is situated so that if the ants go to one side they travel a total of

sixteen inches for a one-way trip. If they

go the other way, they travel twelve

inches one-way. Pheromone will

accumulate more quickly on the short

side, since a round trip on that path

deposits 24 units, which over one

minute corresponds to 60/24 units per

inch per ant. The longer trail only has

60/32 units per inch per ant of

pheromone. Over time, more ants will

take the shorter path and even more

units of pheromone will accumulate. This explains why more pheromone

accumulates on the shorter path. This extra accumulation allows ants to find the

shortest paths.

Note that in the real world, food sources get consumed and eventually

exhausted. Once a source is exhausted, ants stop going there because the

pheromones on the trail evaporate. This is an important aspect of the behavior of

ants.

The observation that ants find shortest paths led Dorigo, Maniezzo and

Colorni to develop an optimization algorithm based on ant behavior. As it turns

out, there is a class of optimization problems ideally suited for ant colony

techniques (Colorni 91).
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The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a very difficult NP-Hard

problem and many different techniques have been developed to solve it. The TSP

is defined as follows: "Given a set of N cities and the distance between each pair

of cities, find the shortest trip that includes each city exactly once and ends with

the city of origin." A number from 1 to N can represent each city. A matrix d is

created such that dij gives the distance from city i to city j. A trip can then be

shown as a vector of N numbers, and the distance traveled is simply the sum of

the distances between the cities in the vector.

There are two flavors of the TSP, symmetric and asymmetric. Symmetric

TSP uses the same cost (distance) for both directions of travel between any two

cities.  It is represented using undirected graphs.  Asymmetric TSP allows the cost

of travelling from Austin to Buda to differ from the cost of travelling from Buda

to Austin.  It is represented using directed graphs.  Asymmetric TSP is a more

difficult problem.

Evolution of Ant-Based Algorithms

Since its inception, Ant Colony Optimization has been successfully, and

repeatedly, applied to TSP. It has also been applied to other combinatorial

optimization problems like Job Shop Scheduling and the Quadratic Assignment

Problem.

The behavior of ants first appeared in optimization algorithms in 1991

(Colorni 91). One of the authors of this paper, Marco Dorigo, is most often

associated with this concept as it was the main contribution of his PhD thesis
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(Dorigo 92). Dorigo’s thesis covers the first functional ant based system, Ant

Colony Optimization (ACO). ACO has been refined over the years, improving

performance and becoming applicable to a wider variety of problems.

Figure 1: Historical Progression of Ant-Based Algorithms

The next few sections discuss the progression of Ant based algorithms.

The defining characteristics of the original algorithm (ACO) are captured in all

the other algorithms, so it is not discussed.

Í Ant Colony Optimization

Í Ant System

Í Ant Colony System

Í MAX-MIN Ant System

Í Continuous Ant Colony Optimization



32

The Ant System Algorithm

This section describes the Ant System (AS) and how it applied to the

Traveling Salesman Problem. This section paraphrases a number of papers

(Dorigo 97b)(Dorigo 96)(Wodrich 97).

The Ant System is an improvement on the original ACO. Some of the

features of the algorithm are tailored to the TSP, but the same approach can be

applied to other combinatorial problems.

The algorithm is used to solve TSP as follows. Given a set of N towns, the

matrix d is created to contain the distance between towns. There are a constant

number of m ants dispersed among the cities, so that at time t there are bi ( t) ants

in town i. Initially ants may be dispersed randomly among the cities, or all in the

same city. Assume that random dispersion is used. Ants move to another city at

the start of each time unit. They select which city based on the level of the

pheromone on the edges of the graph and the distance between their current city

and its neighbors. Initially, the level of pheromone on the trial is set to the same

small value for all edges so all ants will select cities with equal probability.

Each ant acts according to these rules:

1. An ant chooses a next step as a function of the distance and the amount

of pheromone on the connecting edge.

2. Ants always make legal round-trips by storing a list of the cities that

the ant has already visited.



33

3. After completing a trip of the cities, pheromone is deposited on the

routes traveled and then the list is cleared. This is done for each ant.

If τ ij (t)  is the amount of pheromone trail at time t on the route linking

cities i and j, then the equation for updating the trail is given by :

τ ij (t + n) = ρ ⋅ τij (t) + ∆τ ij

where ρ ∈ [0,1] is a constant governing the rate of pheromone evaporation,

and

∆τ ij = ∆τ ij
k

k=1

m

∑

where m  is the number of ants, and
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where Q is a constant, and Lk  is the tour length of the kth ant.

The amount of pheromone added to the trail is inversely proportional to

the distance traveled. This makes shorter routes more attractive. So, the ants

quickly start following similar routes. Like real ants, they all eventually converge

towards the shortest route found.

In practice, ants do not actually converge on the shortest route all that

quickly. However, it is possible to give the ants a heuristic to accelerate the
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process. At any given junction, ants should favor towns that are closer. If the ants

use the distance between towns in their decisions they find shorter routes sooner.

The probability of an ant selecting a valid town is given by:

[ ] [ ]
[ ] [ ]

p t
t d

t d
ij

ij ij

ik ik
k

( )
( ) /

( ) /

=

∉
∑

τ

τ

α β

α β

1

1
Tabu List

The use of this formula allows the ants to use all of the information

available to them. This tends to make the ants “greedy.” It makes for a more

efficient search.

As shown in Figure 2, the AS algorithm is simple even when using the

heuristic.

Figure 2: The Ant System Algorithm

1. Initialize pheromone trail on all routes.
2. Place ants at random locations and clear the lists of cities in

each ant.
3. For t = 1 to N, select which city each ant moves to next and add

it to the ant’s list of cities.
4. Compute the length of ant’s tour and save the shortest tour

found so far.
5. Evaporate some of the pheromone.
6. For each ant, add pheromone trail to the routes used by the ant.
7. Repeat steps 2 through 6 until a maximum number of iterations

have passed or the ants stop finding shorter trips.



35

There are slightly more complex variations that alter the way pheromone

trail is added; but the basics are just that, basic. This makes the algorithm very

accessible.

The Ant Colony System

The Ant Colony System (ACS) is a refinement on the Ant System (Dorigo

97a). This algorithm has three differences when compared to AS. In ACS, only a

single ant updates the pheromone level at the end of the process, rather than all

ants. The function used to determine the probabilities that an ant chooses a known

good city versus taking a random choice is tunable, and finally, as ants walk they

locally update the pheromone level on trials.

These differences allow the user to tune the algorithm and behavior of the

ants, which gave it some measurable improvements over AS.

Dorigo and his colleagues showed that ACS outperforms SA and EP for

the TSP, in both its symmetric and asymmetric forms. It performs fairly well

when compared to specialized TSP algorithms, like opt-3, but it is not the best

performer to date.

MAX-MIN Ant System

The MAX-MIN Ant System was developed by Stutzle and Hoos (Stutzle

97) as an improvement to the Ant System. It differs from the Ant System in two

key aspects. First, when an ant completes trip, only the best ant deposits

pheromone on its path, rather than all of the ants. In other words, only the ant that

took the shortest trip for this round deposits pheromone. This is similar to the

approach in ACS. Second, the system also allows the definition of a maximum
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and a minimum amount of pheromone allowed per trail, hence the name. These

variances allow the MMAS to provide an extra parameter that helps avoid

premature convergence on good trips in large TSP problems. The authors were

able to tackle larger problems than the AS could.

The MMAS and the Ant System algorithm solve combinatorial problems.

They cannot be directly applied to problems where there are both discrete and

continuous variables. However, a more recent algorithm allows searches in

continuous spaces.

Continuous Ant Colony Optimization

Mark Wodrich and George Bilchev have developed an algorithm suitable

for problems containing continuous input and/or output variables (Wodrich 97).

This algorithm is interesting because it combines some notions from GA’s with

notions from the Ant System in order to solve continuous optimization problems.

It solves them fairly well, and we cover this in some detail.

The Continuous Ant Colony Optimization (CACO) algorithm uses the ant

metaphor, but also borrows from GA’s. It divides the set of ants into two classes.

One type of ant is used to perform a global search for promising regions of the

search space. The global search employs concepts from GA’s and is performed by

global ants. The other ants are used to perform local search within the most

promising regions. These local ants follow an algorithm derived from the Ant

System. The two sets of ants combine to do true global optimization.

This section gives an overview of the system. For more details, see

Wodrich and Bilchev (Wodrich 97).
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Global Search in CACO

A subset of the ants (about 80%) handle the Global Search. There are two

aspects to global search. First, the ants must be able to search a finite space.

Second, they need to avoid local extrema. CACO has an interesting approach to

handling both of these issues.

In the Ant System, the ants select destinations from a finite set of

possibilities. The probability of selecting a destination is based on pheromone

level. To map the continuous space to a finite space, the CACO algorithm divides

the search space into a finite set of regions. Each region acts as a destination for

the local ants to explore and serves as a trial solution.

Regions’ positions are typically represented as a vector of real numbers.

Initially, the regions are distributed randomly in the search space. They evolve

over time due to the actions of the ants so that they slowly move towards areas of

high fitness.

To avoid local extrema the global ants have to be able to search wide areas

around the regions. The algorithm uses aspects of Genetic Algorithms to allow

regions to exchange information. The end result is that ants can move regions

large distances by employing a crossover-like function. This is also like the

mechanism used in Population Based Incremental Learning (PBIL) algorithm,

which has been shown to give good global search characteristics (Baluja 94).

Note that the global technique has no metaphoric link to ant colony

behavior. This link is provided in the local search technique.
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Local Search in CACO

The local ants are responsible for local search and comprise about 20% of

the population of the ants. These ants provide the metaphoric link to ant colonies.

Global ants recruit local ants to search promising regions by using

pheromones. This allows collaboration between the two groups. Pheromones

focus attention on promising regions of the search space.

The basic outline of the search process is as follows:

1. An ant selects a region with a probability proportional to the

pheromone value of that region. This is as if the ant went from a

virtual nest to the region.

2. After arrival the ant moves a short distance and calculates the fitness at

this point.

3. The region maintains the direction of the last ant. If the last ant

improved the fitness, the new ant goes the same way.  If not, it goes a

random direction.

4. If the ant finds a higher fitness value, the region is moved and the ant

deposits pheromone in proportion to the improvement made in the

fitness. The region has a counter that is decremented.

5. If the ant does not find a better value, the counter is incremented. This

will cause the next step in that direction to be smaller.

The algorithm provides parameters that control a function that controls the

size of the step made by an ant in a local search. This function makes the step size

depend on the region’s counter. The step size decreases as the counter grows. This
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enables ants to refine the area of the local search and improves convergence if a

higher fitness is repeatedly found in the same direction.

Bilchev and Wodrich point out that one of the weaknesses of this approach

is that ants can mistakenly search a region more than once. It would be very

expensive in large spaces to maintain a history of regions. In other words, since

local search moves regions, regions can move back to a previously exhausted

local maximum.

Constrained Optimization in CACO

As described, the CACO algorithm does not handle constrained

optimization problems. However, Bilchev and Wodrich show that with a few

modifications, it can be adapted to effectively handle constraints.

The primary adaptation is the incorporation of the concept of constraint

violation. Given a set of constraints, every trial solution can be tested to determine

whether it lies within the feasible region. A constraint violation is a measure of

how far outside legal a solution lies. The violation is expressed as the sum of the

violations of each given constraint.

During local search, ants search for local improvements in fitness. The

improvement in fitness acts like a food source that is exploited by the ants. With

the constraint handling mechanism, a point is only accepted as a "food source" if

its constraint violation is below an acceptable threshold. Like temperature in SA,

the acceptable constraint violation is changed over time, decreasing linearly from

an initial value to the desired final constraint tolerance. This causes ants to be

move back into feasible regions as the search progresses. They effectively pay
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more and more attention to the constraints over time. The increasing enforcement

of constraints allows limited exploration within non-feasible regions at the start of

the algorithm. This helps avoid premature convergence.

In the CACO algorithm was shown to perform quite well when compared

to other published algorithms over a fairly wide set of test problems (Wodrich

97). It also looks to be reasonably easy implement and to incorporate into an

application solution.

ANOTHER GLOBAL OPTIMIZATION ALGORITHM OF INTEREST

From the perspective Software Engineering, there is another optimization

technique worth mentioning. This section very briefly introduces GRG2, which is

a well-known, oft-used, and relatively fast algorithm that can be embedded into

many software systems.

GRG2

GRG2 is an algorithm that solves nonlinear optimization problems using

Generalized Reduced Gradient methods (Lasdon 78). Leon Lasdon and others

developed it over the last couple of decades. GRG2 can be found in many

software systems, including Microsoft Excel and Borland’s Quattro Pro. It is very

fast, and should be in a Software Engineer’s toolbox.

GRG2 can solve problems that seek to minimize or maximize some

function, gp(X), subject to glbi ≤ gi(X) ≤ gubi where i=1,...,m, i ≠ p and xlbj ≤ xj ≤

xubj where for j=1,...,n.

X is a vector on n variables, x1 ,...,xn, and the functions g1 ,...,gm all depend

on X. Any of these functions may be nonlinear. Any of the bounds may be infinite
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and any of the constraints may be absent. If there are no constraints, the problem

is solved as an unconstrained optimization problem. GRG2 uses first partial

derivatives of each function gi with respect to each variable xj. These are

generally computed by finite difference approximation.

GRG2 works with a set of input functions.  These functions are used in

some calculation that finds some output value. It can optionally be given a list of

upper and lower bounds on the values of the input functions. Given this set of

inputs and the optional list of bounds, GRG2 can find maximum or minimum

output values. It finds the set of values for all of the input functions that produces

a minimum or maximum final value.  This set of values will never contain any

values outside the bounds given in the optional list of bounds.

The algorithm operates in two phases. Phase I finds legal solutions and

Phase II finds optimal solutions.

Phase one is structured as an optimization problem in its own right. It is

only run if the initial values of the variables do not satisfy all of the gi constraints.

The Phase I objective function is the sum of the constraint violations. It can also

include a fraction of the true objective. The Phase I optimization terminates either

with a message that the problem is infeasible, or returns with a legal and feasible

solution.

Phase II begins with a legal solution and attempts to optimize the true

objective function. At the conclusion of Phase II, an optimal value has been

found.
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Strengths and Weaknesses of GRG2

GRG2 can solve problems involving up to 200 variables, which makes it

applicable to many problem domains. However, it can get trapped in local

extrema, requiring a restart with slightly different inputs.  The algorithm cannot

tell that it is stuck. Most implementations of GRG2 monitor the algorithm for a

timeout period and then restart the algorithm with slightly different inputs when

the timeout expires.

The GRG2 algorithm is relatively fast and is fairly simple to integrate into

software products. It is therefore widely used.

SUMMARY OF LITERATURE REVIEW

We looked at a number of optimization techniques and introduced some

new terminology. Almost all of the techniques discussed are all classified as

Metaphoric Optimization Algorithms, with most being members of a subclass

called Natural Metaphoric Optimization Algorithms. We also looked at one very

commonly used algorithm called GRG2. All of these techniques are interesting

because they are easily accessible and understandable.

It is important for Software Engineers to be aware of these techniques.

They are fairly easy to incorporate into software systems with a need for

optimization.
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An Introduction to MasterMind and Possible Solutions

INTRODUCTION

This section introduces the game of MasterMind, defines two variants of

the game, and finally frames the approaches that can be used to solve each of the

variants. These variants of MasterMind serve as test problems. Their solutions

involve distinctly different attacks.

We formulate solutions for these variants using GBGA approaches and

ACO approaches. In order to try some hands-on experimentation, we implement

one of the solutions using a GBGA. The next major section covers the

experimental results.

MASTERMIND AND ITS VARIANTS

MasterMind is a relatively straightforward two-player guessing game.

Assume we have players A and B. Player A selects a fixed length sequence of

colors from a set of available colors. Player A’s initial sequence is called the

target sequence. It is saved and hidden from Player B who then repeatedly tries to

guess the target sequence. Player A responds to each guess with a set of chips

indicating how close the guess is to the target. When Player B has finally guessed

the target, B receives a score based on how many guesses were taken. Obviously,

low scores are better than high scores.

Let’s look at the response to guesses in a little more detail. After each

guess, Player A responds with a sequence of Black and White chips. Black chips
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state how many places in the guess are exactly correct. White chips indicate how

many colors are correct but not in the right position.

The response defines constraints on the next guess, so Player B uses this

information to make an informed decision. Based on the response from a guess

and the history of guesses made previously, Player B knows that certain guesses

are not reasonable.  Furthermore, Player B knows that some reasonable guesses

are better than others; they should lead to more information in the next response.

The ultimate goal is to find to next best guess that meets the constraints imposed

by the response. The problem boils down to a constraint-based search for the next

best guess.

MasterMind is typically played with a sequence of four items and six

possible colors. This is the 4-6 version, with the first cardinal number representing

the number of items in a guess and the second number representing the number of

possible colors. We selected two variants, 3-3 and 4-6, as our test problems and

provide two different approaches for solving these problems.

SOLVING 3-3 MASTERMIND

We use a genetic programming approach to solve a 3-3 version of

MasterMind. This section introduces the programs that we use to play 3-3

MasterMind. These programs are captured in a static table that can play all

possible games of MasterMind.

The Mini MasterMind Language

As discussed, the response to a guess specifies constraints on the next

guess, so the game boils down a constraint-based search for a next guess. One
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way to implement a constraint based search is to prune all of the solutions in a

search space that do not meet the given constraints and then choose from the

remaining solutions. This is the “guess and prune” approach.

In terms of MasterMind, a player simply makes a guess, prunes the set of

possible remaining guesses according to the response from the previous guess,

and then makes another guess.

To use genetic programming, we have to first define the notion of a

program. The Mini-MasterMind Language (MML) captures this notion of “guess

and prune” in a string representing a program. MML can thus be used to define

programs that play the game.

Since this game is about making a guess and eliminating any unreasonable

next guesses, the MML language simply defines a table of guesses, in a fixed

order, and pruning operators for each possible response to a guess. The MML

interpreter maintains a list of unused guesses, and after each response, removes

any guesses from the unused list that do not make sense based on the response. It

then moves to the next guess in the list and offers it as the new current guess.

An Implicit Strategy for MML

All of the MML programs follow a strategy. They always try to maximize

the number of black pegs in a response in order to pin down the colors in the

target. This strategy to “maximize the black pegs” is followed by minimizing the

number of different colors in a guess.

To do this, the first row of a MML table always represents a guess of

RRR. This has the effect of identifying the number of reds in the target. By
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guessing RRR a player is guaranteed to get a response containing only black

chips, one per red item in the target. If we know how many reds are in the target,

then we should certainly never make follow-on guesses that do not have exactly

that number of reds. This allows us to eliminate a large percentage of the guesses

after we get our first response.

How can we guarantee that we only guess the correct number of reds from

this point on? We use pruning operators to remove guesses from a list of unused

guesses. Applying the correct pruning operators for a given response will remove

all of the guesses with the wrong number of reds from our set of unused guesses.

Now we just make any guess from the remaining set.

It should be noted that this strategy works for variants of the game with a

small difference in the number of positions and the number of colors. When there

are significantly more colors than positions, one should probably try to maximize

the number of different colors in a given guess. This could be called the

“maximize white pegs” strategy.

Since MML programs only play 3-3 MasterMind, the “maximize black

pegs” strategy serves as a common heuristic for all MML programs.

MML in More Detail

Each possible MML program represents a ‘maximize black pegs solution’

to 3-3 MasterMind. These programs are very similar to finite state machines

(FSM).

Consider a specific MML program that represents a specific FSM. In this

FSM, the most recent guess represents the state and the response to that guess
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represents an event. Events cause actions that prune the search space to eliminate

invalid next guesses. The state machine is, in essence, dynamically updated so

that only ‘valid’ next guesses are achievable. After pruning, the current state is

updated to the next guess.

For the 3-3 variant, MasterMind programs are represented as a table that

has one row per possible guess and one column per possible response. These

tables therefore have 27 rows and eight columns.

Each cell in the table contains a list of zero to three pruning operations.

Pruning operations are used to remove particular types of guesses from the list of

unused guesses. For example, the operator “Red 1” (R1) would remove all

guesses containing exactly one red chip. Since we have three positions, we want

operators that can prune guess with 0, 1, or 2 chips of a given color. In the case of

red, we have operators R0, R1, and R2. This implies that we have 9 operators in

total, 3 per color. This is not sufficient. It may be the case that we do not want to

prune anything for a given response to a guess. What should we prune if we guess

RYG and get one black chip as response? For these cases, we need a no-op. This

leaves us with 10 pruning operations.

Table 1: A Representation of a 3-3 MasterMind Program

BWW BB BW WW B W WWW None
RRR {op} {op} {op} {op} {op} {op} {op} {op}
RRG {op} {op} {op} {op} {op} {op} {op} {op}
RRY {op} {op} {op} {op} {op} {op} {op} {op}
RGR {op} {op} {op} {op} {op} {op} {op} {op}
RGG {op} {op} {op} {op} {op} {op} {op} {op}
RGY {op} {op} {op} {op} {op} {op} {op} {op}
RYR {op} {op} {op} {op} {op} {op} {op} {op}
RYG {op} {op} {op} {op} {op} {op} {op} {op}
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RYY {op} {op} {op} {op} {op} {op} {op} {op}
GRR {op} {op} {op} {op} {op} {op} {op} {op}
GRG {op} {op} {op} {op} {op} {op} {op} {op}
GGR And so on until YYY

The first column represents the set of possible guesses (not all guesses are

shown.) The row headers represent the set of responses. The cell values,

represented by {op}, are any non-repeating combination of the pruning

operators, including no-ops. Applying a pruning operator removes some set of

matching guesses from the set of available guesses. Note that ‘BBB’ is not shown

since this response indicates a win.

The next figure shows an example of a very small portion of an MML

program. Table 2 shows the first row of table, complete with a few pruning

operators.

Table 2: An Example Row with Pruning Operators

BWW BB BW WW B W WWW None

RRR R1 R0 R2 R0 R0

The row in Table 2 specifies the actions to take for a given response to a

guess of RRR. If the response is BB then we know that there are two reds in the

target and we can apply pruning operators that throw away all guesses that have

either exactly 1 red and all guesses that have exactly 0 reds. It should be clear that

by providing pruning operators for all 27 possible guesses and their responses, we

build programs that play MasterMind.
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A near-optimal solution for 3-3 MasterMind should exist as one of these

programs and the problem can now be restated: Among the set of all MML

programs, find the program that is the best, on average, at playing the game.

Estimating the 3-3 MasterMind Search Space

This search space is huge. There are 27 times 8 cells in the table (216).

There are up to 3 of the 10 operators in each cell so each cell can be thought of as

holding a 3-digit, base 10, number. The entire table is therefore a string of 216*3

digits (648). It therefore appears that there are 10648 possible solutions.

The space is actually quite a bit smaller than that. Note that the cells of the

table contain sets of operators. Therefore, no operator should be repeated and the

order of operators within each cell does not matter. These factors significantly

reduce the number of possible combinations per cell. This in turn reduces the

search space.

Since we want to disallow combinations of digits within each group of 3,

we could assume that we can use (10 choose 3) as the number of possible

combinations per cell. However, we want to allow the no-op to be repeated.

Therefore, for our analysis, we define a total of 3 no-ops to go along with the 9

pruning operators. This effectively allows the no-ops to repeat. We have a total of

12 operators and use (12 choose 3) as the number of items per cell. There are 440

possible combinations per cell.

This leaves 216 cells with 440 possible combinations per cell. This is a

total of 440216 combinations, which is a search space of roughly 10218

combinations. This is still a huge search space, but certainly not as bad as before.
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We can gain even more ground by noting that there is noise in this

representation. Some of the responses for a given guess are not possible. For

example, the guess ‘RRR’ will never result in a response containing white chips.

Table 3 identifies the impossible responses.

Table 3: Impossible Responses in an MML Program

BWW BB BW WW B W WWW None
RRR
RRG
RRY
RGR
RGG
RGY
RYR
RYG
RYY
GRR
GRG
GRY
GGR
GGG
GGY And so on until YYY

Table 3 shows that the WWW response can only occur when all three

chips in the guess are a different color. There are 3! (6) possible guesses in which

all of the color are different. Subtract 6 from 27 total rows and there are 21 cases

that can be removed from consideration. Furthermore, responses with white chips

cannot occur when all the chips are the same color. This adds 12 more cases to the

total of impossible responses. There are a total of 33 responses that cannot occur

and hence should not count as part of the search. This further reduces our search

space to just 440183, or 10185. This is still a huge space, and it does not appear to
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be reducible4. Given the apparent size of the space, it cannot be searched

exhaustively. Therefore, we did not attempt to compute the optimal solution.

When using MML, the lower bound on guesses per game of the 3-3 variant is

unknown.

An Approach to Solving 3-3 MasterMind Using a GBGA

Since GBGA’s use a formal grammar, in Backus-Naur-Form (BNF), to

define a search space we defined the Mini MasterMind Language (MML) as a

BNF grammar and built an interpreter to serve as the objective function.

MML programs are executed via this interpreter that was built using flex

and yacc. As expected, the interpreter actually maintains a list of possible guesses,

and after each response, removes any guesses from consideration that were

specified by the pruning operations for that response.

Note that partial solutions can be expressed in this grammar. For example,

we know that certain cells are never ‘hit’ so we can write the grammar to provide

empty operator lists in those cells.

The ability to provide partial solutions allows the user to run preliminary

experiments, learn something unexpected about the problem, and hopefully

provide a partial result that helps reduce the search space.

Rather than implement an entire GBGA system, we used the Genetic

Programming Kernel (GPK) which is freely available on the Internet. Helmut

Hoerner developed the GPK, which is a Grammar-Based-Genetic Algorithm

                                                
4 It is, but we will let the story unfold as the report progresses.
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system that applies the general Genetic Algorithm to populations of individuals as

defined by a BNF grammar representing the search space.

The code is free for educational and research use. It is implemented in

C++ and is delivered as source. The code is available at the web site for The

Austrian Institute of Economics, Vienna, Austria. The free code was last updated

in 1996. A more recent version of this system is available as a commercial

ActiveX control. Hoerner based the code on research by Andreas Geyer-Schulz

(Geyer 97)(Bohm 97).

The GPK system is fairly easy to use, and seems to work well enough to

satisfy our goal of learning to apply these algorithms to actual problems. There

were naturally some issues. These are discussed in the Experimental Results

section.

An Approach to Solving 3-3 MasterMind Using ACO

The table used by the GBGA can also be seen as a very long number of

183 digits in base 440. Therefore, we could use one of the ACO algorithms to

search the range of possible numbers from 0 to 440183 for good values that play

MasterMind well.

This approach allows us to reuse the MML interpreter as the objective

function for the algorithm. Our objective function simply takes a number,

converts it to MML, and then runs it through the interpreter; just like we do in the

GBGA approach.

One option might be to use the CACO algorithm. The CACO algorithm

searches promising regions of the search space for optimal solutions. It might be
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applied to search our space, although it will require is to define 185 variables for

use.

Additionally, it is not clear that our problem space can be searched by hill-

climbing. The values our variables take (from 0 to 439) do not relate to each

other. More specifically, they do not define a total or even a partial order amongst

themselves. This implies that the ‘direction’ of travel for a given variable is not

particularly helpful. In other words, given the way the variables in our table

interact, the notion of ‘direction’ is meaningless. This implies that hills cannot be

defined so that we cannot possibly climb them in any reasoned fashion. Therefore,

we chose to propose a solution using the MAX-MIN Ant System.

The MAX-MIN Ant System was designed to solve Traveling Salesman

Problems (TSP) and other graph-based problems. It is fairly easy to restate our

problem as a graph that can be traversed with a goal of finding the best path

through the graph.

Naturally, there is more than one way to graph this problem. In any

method the graph will be huge.

As a small example of a graph that can be used, consider a similar

problem in which we find 2 digits, each with 3 possible values. This is

significantly easier to represent than 183 digits with 440 values each, but it is

essentially the same problem. Figure 3 shows the problem of finding 2 digits with

3 possible values as a TSP problem.
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Figure 3: Finding 2 Digits with 3 Values Using TSP

Each column of nodes represents a digit; each node in the column

represents a specific value of that digit. All distances in the graph can be set to the

same value. The objective is to find the shortest route from the start to the start, by

traversing the graph. This will result in an ordering of nodes, and hence a number

that can be used to generate an MML table.

This representation would be very large for the full MML case, but would

allow the MMAS algorithm to yield results. Note that this representation does not

take advantage of the distance heuristic used in MMAS, so it may converge quite

slowly. However, this representation is quite flexible. This makes it possible to

use partial solutions as a starting point.

In fact, partial solutions can be presented in two manners. First, if certain

subsequences are known to be optimal, this knowledge can be represented in the

graph by removing invalid digits within the column representing those sequences.

In other words, edges that are known to connect sub-optimal sequences can be

Back to start.
Start
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removed. Second, one could add and then alter distances for the edges to give the

ants a preference for certain routes.

The ability to use partial solutions as a starting point should allow a more

rapid discovery of good programs.

SOLVING 4-6 MASTERMIND

The MML-based solutions try to solve all possible games of 3-3

MasterMind with one search. This approach will not work for 4-6 MasterMind

because the search space is very large. Each increase in the number of colors or

the number of chips increases the search space in three dimensions. The search

space correlates directly to the table size. Each increase in colors or chips results

in an increased in number of rows, number of columns, and number of operators

per cell in the table. Therefore, the “guess and prune” search space for 4-6

MasterMind is completely intractable.

We can dramatically reduce our search space if we run our search

algorithm once for each guess in each game. This new approach solves one guess

at a time, and illustrates some other properties of the search algorithm, e.g. its

performance under constraints and the ease of incorporating a decision heuristic

into the game.

The Dynamic Constraints Approach

The 4-6 solution plays “guess by guess.” The basic algorithm is simple. At

every guess search for a best next guess based on constraints defined by all of the

responses to previous guesses. This is in line with the experiments by Merelo in
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genMM (Merelo 96). This approach dramatically reduces the size of the search

space for each execution of the optimization algorithm.

How can we define the constraints based on a response to a guess? Black

chips identify the exact number of chips in the guess that are correct. If b

represents the number of black chips in the response, then we must assure that all

‘next-guesses’ have at least b chips in the exact same position. Furthermore, if w

represents the number of white chips in the response then we must ensure that the

next guess has w colors that are the same. These constraints on the next guess are

composed, with black chips taking precedence. Additionally, we should never

make the same guess twice. So, a matching rule is defined as a guess and its

response. We need to maintain a list of these as we progress. We also maintain a

list of prior guesses. By using the information in these two lists, we can search for

a next best guess amongst the set of possible guesses.

During each search for a next guess, we want to consider all matching

rules. Our fitness function will calculate how close a potential guess is to each

rule, and return the summation of these calculations.

Our solution differs from Merelo’s in one key aspect. We try to follow a

similar strategy to that used in our MML solution. First, we define an order in

which we will try to identify colors. For example, if the colors in 4-6 MasterMind

are Red, Orange, Yellow, Green, Indigo, and Purple, then we can try to pin them

down in that order. We start with RRRR guess and then when selecting a next

guess from the set of guesses that match as many of our rules as possible, we

favor the guess with the most of the next color in our order, Orange. This drives
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us towards maximizing the number of black chips in the responses. In theory, the

addition of this strategy will garner better results.

Estimating the 4-6 MasterMind Search Space

The search space is small. There are 4 chips of 6 colors, or a base 6

number with 4 places. This gives 64 combinations. There are 1296 possible

combinations, so the space has a magnitude of only 103.

Genetic Algorithms find a near-optimal solution, so we do not expect this

algorithm to obtain the theoretical optimum. For the 4-6 game, this has been

posited to be either an average of 4.34 guess per game if 6 guesses are allowed

(Koyama 94) or to have a slightly higher average taking a maximum of 5 guesses

(Knuth 76-77). Koyama’s solution uses an exhaustive search.

Why don’t we use an exhaustive search? This is a solved problem so we

do not expect to learn anything new from an exhaustive search. Since our goal is

to learn about optimization algorithms and different approaches to similar

problems we use the techniques under investigation.  We then compare any

experimental results to the known optimum for the 4-6 variant in order to judge

the effectiveness of our solution.

Solving 4-6 MasterMind with a GBGA

The implementation using a GBGA is fairly straightforward.

First, we need a grammar that defines a current guess. This is trivial since

the population consists of 4 digit strings of base 6.

Merelo’s solution relies heavily on a crossover technique called

transposition. Transposition boils down to the ability to swap digits in the string.
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Therefore, the generic crossover function for the GBGA appears to be ideal for

this application.

Next, we need a fitness function that provides a range of fitness given the

prior guesses and the responses to the prior guesses. For a given matching rule,

we count the number of identical matches to the prior guess and the number of

colors that are same and then, favoring blacks, return a value that is 10 * the

identicals + the same color values. We do this for each matching rule and overall

fitness is simply the sum of these values.

The difficult item is to incorporate the color-ordering heuristic. Basically,

we add one additional point to fitness for each chip in a matching rule that is the

same color as our current focus. Focus progresses as we try guesses of all one

color, so it is initially R, then follows a progression. We move to the next color

when we cannot find any black pegs in a response to guess containing the current

focus color.

We also throw out any next guess that is in the list of all prior guesses.

This composition of evaluation techniques should perform reasonably. We

do not expect it to be optimal, since the GBGA does not generally find the

optimal answer, but rather a close approximation.

Solving 4-6 MasterMind with an ACO Algorithm

It is not clear how this can be tackled with an ACO algorithm. Minimally,

an approach would require a graph representing the possible guesses. This would

be like the graph seen in the MML-Based ACO approach.
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It is conceivable that the distances on the edges in this graph could be

manipulated from guess to guess to incorporate the various matching rules that we

have discovered so far. We could then essentially add pheromones from one ant

based on results of the same fitness function as the GBGA solution.

It is not clear exactly how to do this, which may outline a weakness in the

idea of using ACO for this problem.
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Experimental Results

INTRODUCTION

This section presents the results of the experiments with the two variants

of MasterMind. We discuss the 3-3 results and then the 4-6 results. For each

variant and each optimization technique, we generally follow a progression of

topics including experimental setup, intermediate results, tuning the

implementation, and finally an analysis of the final results. When available we

make a comparison against other research’s published results.

By ‘tuning the implementation’ we mean that these discussions also report

on any issues encountered during experimentation and any changes from the

original framework of the solution that were required. These changes were made

in order to get the best solution possible within the project’s limited timeframe. In

other words, this section will read somewhat like a laboratory notebook capturing

the results and observations made during the experiments.

When discussing performance, we will normally talk about the number of

executions of the objective function that were required, rather than timing data.

However, when appropriate, we will discuss run lengths for the various

experiments. For reference, the experiments were performed on a Dell Dimension

266MHz Pentium II machine with 128MB of RAM and a 512K L2 cache.
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3-3 MASTERMIND RESULTS

This section covers the results of the experiments with a GBGA and the

AS algorithm for the 3-3 variant of MasterMind. We begin, as usual, with the

GBGA results and follow with the AS results.

3-3 GBGA Results

As mentioned earlier, this solution was implemented using the Genetic

Programming Kernel. The GPK system is a bit unwieldy to use since it requires

the recompilation of the entire code set into one executable in order to run the

GA. This required many cycles of build, run, rebuild, run, and so forth. Every

change to the GA parameters (like elitist vs. non-elitist strategies or population

size) required rebuilding the executable.

The GPK system was designed to use an input grammar to define a search

space and to naturally use an interpreter as the objective function. Despite this, we

found that integrating the MML interpreter was quite difficult. We used common

tools (flex and yacc) for development and expected a cleaner integration between

the GPK and the interpreter. The objective function, a parser, had to run many

times per execution. This required us to enable the interpreter to restart many

times within a single execution. Flex and yacc are not normally used in

environments like this, so knowing this in advance would have been helpful.

Thankfully, a ready-made solution was available (Levin 92).

Integrating the interpreter was also complicated by the fact that GA and

interpreter live in the same executable. We needed to repeatedly rebuild the entire

GA executable for each bug fix in the interpreter.
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The GPK does not use the yacc grammar as input for the BNF. Initially,

this seemed like a flaw since we had to specify the grammar twice. However,

since the grammar is specified in a separate file from the GA, it can be

manipulated to only search portions of the search space without having to change

the interpreter. For example, the GPK input grammar can be written in such a way

that the cells in the table that cannot exist are left empty. It can also be written to

fix the values at a certain row or column in our table. Specifying the grammar

twice turned out to have great advantages.

The GPK system works, but it could make it easier to set up problems by

making it clear how to use common tools to develop interpreters.

Objective Function

We measured fitness by passing the phenotype for each individual to the

MML interpreter for every possible target sequence. In other words, the

interpreter was used to play all possible games. The sum of all of the resulting

number of guesses was returned as a measure of fitness. Lower totals of guesses

were rated as more fit than larger totals.

In order to give a measure of fitness, the total number of guesses for all

games was subtracted from the upper bound of 729. It would normally be 756 (27

games times 28 for a very bad program). Given our strategy, we know that at least

one guess (RRR) always results in a score of 1. This leaves 756 – 27 as the upper

bound.

The interpreter is used for our objective function, so it needed to execute

as quickly as possible. It maintains a list of guesses and an array specifying if a
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given operator prunes a particular guess. This makes pruning very easy and very

fast since it is simply a lookup on the table5.

Intermediate Results

We ran the GA many times, varying the input parameters based on

observations of each run. It took a lot of searching to find a ‘good’ solution. The

parameters fed into the GA can make a big difference on the results.

While there are no solid heuristics for determining what parameters to use,

early runs appeared to get stuck in local minima. The solutions converged early in

the run and stopped making much progress. We therefore slowly increased the

amount of mutation present in the system in order to introduce more randomness

and climb out of these valleys.

Recall that the empty solution (no pruning at all) requires an average of 14

guesses.

Almost all runs started with 70 individuals, ran for 1200 generations, and

had the following parameters the same:

•  They used a Selection Strategy based on Linear Ranking. This just takes the

top performers.

•  They use Stochastic Sampling for the initial population generation.

•  They use Random Permutation for the Mating Strategy.

•  The mating pairs are selected using the (Selection Heuristic) that selects the

mates from adjacent quartiles of the population (pow2).

•  The Crossover ratio was varied between .85 and .9.
                                                
5 Despite this, there was a bug in the first implementation, discussed later.
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•  The Mutation rate was dramatically varied, from 0.005 to .25.

The parameters are largely the default for the system, with the exception

of generations, population size, mutation, and crossover. The default crossover

ratios and mutations rates have been shown to be good starting points for many

problems using a GA, but did not function well in this case. The space may just be

too large.

There are two strategies that can be used when removing the least fit

individuals from a population. These are called the elitist strategy and the non-

elitist strategy. In the elitist strategy, all individuals less fit than a limit are

discarded. The elitist strategy is very strict with regards to the fitness of the

population. On the other hand, the non-elitist strategy allows some sub-par

individuals to survive, usually in the hopes that their genotype may be hiding

some useful genes for future populations. It allows a bit more randomness into the

system.

The next two subsections discuss the best results for the non-elitist

strategy and the elitist strategy. These experiments were performed before altering

the mutation and crossover rates.

Non-Elitist, Default Crossover and Mutation

The non-elitist solution used all of the above parameters and followed a

strategy that allows some poorly fit individuals to survive onto the next

generation.

This setup arrived at a solution of 9.3 guesses per game. This is better than

the brainless version, but not as good as might be expected.
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The top performer was:

R0 Y2,Y2,Y0,Y2,Y0,G1 Y0 G1,G1 Y0 R0,R1
Y2,G1, , ,G1 G0, , ,
R0 Y2,Y2,Y0,Y2,Y0,G1 Y0 G1,G1 Y0 R0,R1
 ,Y0, ,R2 Y2,Y0 G1 R1, ,R2,R0 G0 Y1
Y1 G1 G2,G2 G1 G2,Y2 R1 Y0,R1 Y2,G1 G1,G1 Y0,Y2 Y0,Y1 Y1 G2
 ,G0 R2 Y0,Y1 G2 Y2, , ,R0 G0 R2,Y2 R0,G1 G1 G1
 ,G0 R2 Y0,Y1 G2 Y2, , ,R0 G0 R2,Y2 R0,G1 G1 G1
 ,Y0, ,R2 Y2,Y0 G1 R1, ,R2,R0 G0 Y1
G1 Y1, , ,R0 R2,G0,G0,R1 Y2,
R0 Y0, ,G0 Y2,G1 R1 R2,R1,R2,R2 Y1,G1 G0 R1
G0,Y2,R0 Y0, ,R1 Y0, ,R1,Y2
G2 Y2 Y2, ,R1,Y2 R2, ,G1, ,G1
G2,R1,R1,R2 G1,G1 R0 G0, ,Y0,R0 G1
R0,Y0, ,G0 R2, ,G0 Y1,R1,G2 G1 R2
Y0 G2,Y1 R1 Y2,Y0 Y0 Y0,Y1,Y1 R1,R0, ,Y0
 ,G2 Y0,Y0 R0,Y0,R2 R0 G2,Y2,R0,Y2 G1 Y0
R0 R0,G0,Y0,R0, ,G0 Y0 Y0,G0,Y1
 ,G2 R1,Y0 Y2,Y2 G1 R1,R1 R1 Y1,Y2 G1,R1 G1 Y0,R2 R2 R0
R1,G0 Y2, ,Y2 G0,R1,Y0 Y2 G1,R0,R0 R2 R2
 ,Y0, ,R2 Y2,Y0 G1 R1, ,R2,R0 G0 Y1
Y1 R2,R1,Y1 Y0 G2, ,Y2,R0 R0 R0,R2 R0,G1
Y1 Y1 Y0,G1 G1,Y1 Y1 R1, ,R2 R0 Y2,R1 R2, ,G0 Y1 R2
Y2,G0 Y1 R1, , ,Y1 R2,R0 G2 G0,R1,
 ,Y0, ,R2 Y2,Y0 G1 R1, ,R2,R0 G0 Y1
G1 Y1, , ,R0 R2,G0,G0,R1 Y2,
 ,G2 Y0,Y0 R0,Y0,R2 R0 G2,Y2,R0,Y2 G1 Y0
Y0 G2,Y1 R1 Y2,Y0 Y0 Y0,Y1,Y1 R1,R0, ,Y0

Figure 4: The Best Early Non-Elitist Performer

Elitist, Default Crossover and Mutation

The elitist strategy has the same criteria, but keeps the best individuals. It

always discards unfit individuals.

The results were 10.6 guesses per game. This was not particularly great

either, but still better than average.

The top performer was:

R1 G0 R0, ,Y1 G2,G1 G2 R1, ,R1 G1 Y0,G2 R2 G0,
R1 G1,R0,Y2,G0 Y2,G2 Y1,G1,G0 G1,Y2
Y1,G2 Y0,G1 G0,G1 G1,R2,G0 Y0,R1,Y1 G1
R2 Y2 Y1,R1, ,G0 Y0,R0,R0 G2 R1,Y0 R0,G0 R2 G1
G2 Y0,Y0 G0 R0,Y0,R1 R0,G2 Y0 G1,Y2 Y2,G2 R0 G1,G1 G0 Y0
Y2,R0 Y2,Y0 Y2 G1,Y1 Y0,G2 Y2 R2,Y2 G0,R0 G0,G1 R2 R1
R2 Y2 Y1,R1, ,G0 Y0,R0,R0 G2 R1,Y0 R0,G0 R2 G1
Y0 R0,G2 G0,G1,G2 R1,Y0,G1 G0,Y2 Y2,
R2 Y2, ,R0 G0 R2,Y2 R0 R2,R0 Y0,Y2 R0 G0,R2,Y0
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R1 G0 R0, ,Y1 G2,G1 G2 R1, ,R1 G1 Y0,G2 R2 G0,
G2 Y0,Y0 G0 R0,Y0,R1 R0,G2 Y0 G1,Y2 Y2,G2 R0 G1,G1 G0 Y0
G2 Y0,Y0 G0 R0,Y0,R1 R0,G2 Y0 G1,Y2 Y2,G2 R0 G1,G1 G0 Y0
 , , , ,Y1,Y2 R0 G2,R1 R1 G1,R2 R0
R2 Y2, ,R0 G0 R2,Y2 R0 R2,R0 Y0,Y2 R0 G0,R2,Y0
R1 R1,R1, , , ,G2 R0 Y1,Y2 Y0,Y2 R2 Y1
Y1 Y1 Y0,G1 G1,Y1 Y1 R1, ,R2 R0 Y2,R1 R2, ,G0 Y1 R2
Y0,G1,G0,R0 Y0,R2 R1,G2,Y0 R1 G0,
Y0,Y1 Y0,G0,G1,G1 G2 R1, ,Y2 G1,Y0
Y1,G2 Y0,G1 G0,G1 G1,R2,G0 Y0,R1,Y1 G1
Y1,G1 G0 R2,Y2 R0,G0 Y2, ,Y2 G2 G0,Y1 R2 Y1,
R2 Y2, ,R0 G0 R2,Y2 R0 R2,R0 Y0,Y2 R0 G0,R2,Y0
R0,G0 R1,R2 R2 G0,G0 Y1 Y2,Y1 R0, ,R0 R2 G0,Y0
 ,Y1 R0,G1,Y0 G2 R1, , ,R0,G0
R2,Y0 Y2,R0,Y0,G1,R1 Y2,Y1,Y2 Y0 R2
G1 Y2 Y2,R0 G2 G1,G2 G0,R0, ,Y1 G0 G0,G2 Y0,Y0 Y0
G1 R2,R0 Y2 G1, ,G2,Y2 Y1,R2 R1,G0 R1,Y0
Y1 R1,R0,G1, ,R2 G0 Y1, , ,G0

Figure 5: The Best Early Elitist Performer

These early results were encouraging, but it appeared that the system was

getting stuck in local minimums.

Given these results, from this point forward we use the non-elitist strategy

exclusively6.

Non-Elitist, 0.9 Crossover and 0.15 Mutation

After significantly altering the mutation rate, which introduced a great

deal of randomness into the system, the best program took an average of 4.37

guesses per game.

The top performer was:

R2,G1 R1 R1,Y2 Y0 G2, ,R2,R2 Y1 Y0,G2 R0 Y0,G1 R0 R1
G1 G1 G0,G2 Y2 Y2, ,G2,R2,G0 R2,G2 G0,Y1
G2 R0 Y0,Y1 Y0,G0,R0 R0 G2,Y0 R1,R2 R1 R2,R2 Y1 G2,Y0
 ,R1 Y1 G2,G1,G1 R1 Y1,G2 R1 R0, ,G0,R2 G1
Y2 Y2 G1,R0 G1 R2,R0, ,G0 Y1 Y1,R1 R0 Y1, ,
R1 G0,Y0 Y1 Y0,G1,R1 G2 G0,G2,G2,Y0 Y0 Y0,R1 G0 Y1
R1 R0, ,G0 Y0 G2,R1 R2,G0,G0,R1 G2 Y0,Y2
R1 G0,Y0 Y1 Y0,G1, ,G2,G2,Y0 Y0 Y0,R1 G0 Y1

                                                
6 We actually did periodically run the experiments with the elitist strategy, but it never faired as
well so the results are not reported.
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R2 R0,Y1 Y0,G0,R0 R0 G2,Y0 R1,R2 R1 R2,R2 Y1 G2,Y0
G2 R0 Y0,Y1 Y0,G0,R0 R0 G2,Y0 R1,R2 R1 R2,R2 Y1 G2,Y0
R1 G0,Y0 Y1 Y0,G1, ,G2,G2,Y0 Y0 Y0,R2 R2 Y0
R2 R0,Y1 Y0,G0,R0 R0 G2,Y0 R1,R2 R1 R2,R2 Y1 G2,Y0
G2 G2,Y0 R0, ,R1 Y2 Y0,G1 R2 G1, ,R1,
R1 G0,Y0 Y1 Y0,G1, ,G2,G2,Y0 Y0 Y0,R2 R2 Y0
R1 G0,Y0 Y1 Y0,G1, ,G2,R0 R0 G2,Y0 Y0 Y0,R1 G0 Y1
Y2,R0,Y2 R2, ,Y0 Y0 Y2,G1 R0 G2, ,G1 G2 R1
Y2 Y2 G1,R0 G1 R2,R0, ,Y1 Y0,R1 R0 Y1, ,
 ,R1 Y1 G2,G1,G1 R1 Y1,G2 R1 R0, ,G0,R2 G1
R1 G0 Y1,R0 G1 R2,R0, ,Y1 Y0,R1 R0 Y1, ,
 , ,G1,G0 Y0 G2,G2 Y0 G2, ,G0 G0 Y1,
 ,R1 Y1 G2,G1,G1 R1 Y1,G2 R1 R0, ,G0,R2 G1
R2 R0,Y1 Y0,G0,R0 R0 G2,Y0 R1,R2 R1 R2,R2 Y1 G2,Y0
R1 G0,Y0 Y1 Y0,G1,R1 G2 G0,G2,G2,Y0 Y0 Y0,R1 G0 Y1
 , ,G1, ,R2 G1, ,R2,G0 Y2
G1,R2 Y1,G2 G1, ,R2, ,R0,G1 G2
Y2,R0,Y2 R2, ,Y0 Y0 Y2,G1 R0 G2, ,G1 G2 R1
Y0 Y1,G1,R0 R0 Y1,Y2 G0,G2 R0,G1,Y2 G2,Y1 Y2

Figure 6: The 4.37 Result

Note that this solution used a Crossover ratio of 0.9 and an extremely high

mutation rate of 0.15. We also ran for 2000 generations. Relying on mutation to

this extent is atypical, but sometimes necessary with large search spaces.

It is quite interesting given the monstrous search space that the GBGA

allowed the algorithm to find a decent result in finite time. We only evaluated

140,000 individuals over the course of the run. This is miniscule portion of the

space.

Analysis of the 4.37 Result

This seems to be a promising result. Although, there is no known

minimum, by extrapolating from Merelo’s results we suspect the optimal value

for 3-3 MasterMind is somewhere between 3 and 4.

There are few caveats and complicating factors.

After evaluating the outputs one more time, .it was clear that he 4.37 result

was obtained reasonably early in the process, and yet nothing better was found.
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This could mean that 4.37 is very close to optimal, or it could mean that the

system might still be getting stuck on local minima.

We are searching a larger than necessary space. First, our solution does

not use sets for the list of pruning operators because this would require look-

ahead from the parser. The GPK only accepts BNF grammars, so look-ahead is

out of the question. Second, we are not accounting for impossible responses.

These two factors introduce noise into our search space, effectively making it

larger than necessary. We could try to specify the grammar a little more precisely,

by at least removing the illegal responses from the grammar.

After analyzing the solution, it became apparent that less pruning is

required than originally anticipated. In fact, the 3-3 solution can be reduced to the

following program.

, ,R1, , ,R2, , ,R1
 ,G0, , , ,R2,R2, ,Y1
 ,Y0, , , , , , ,
 , , , , , , , ,G1
 ,G1, ,R0, ,Y1,Y1, ,
 ,G0, , , , , ,Y0,
 ,R0, , , , , , ,
 ,G0, , , , , ,Y0,
 ,R0, , , , ,R2, ,
 , , , , , , , ,
 , , , , ,G2,G2, ,
 ,R0, , , , , , ,
 , , , , , , , ,
 , , , , ,G2, , ,
 , , , , , , , ,
 , , , , , , , ,
 ,Y2, , , , , , ,

with the remaining lines empty

Figure 7: The Reduced 4.37 Result

This seems to indicate that we should be able to use one operator per cell,

from a set of 10. The search space is therefore only 10183 .
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Reanalyzing the 4.37 Result

When considering the use of one operator per cell and how the table

worked, it was clear that at least two operators per cell should allow better tables,

at least in very specific cases. For example, if the first guess is RRR and the

response is BB then the target had 2 reds in it. In this case, the program should

prune all guesses with exactly 1 red and all guesses with 0 reds. However, trying

this did not improve our result!

As it turns out, the interpreter had an error. Sometimes additional

operators in a cell would put pruned guesses back into the list!  In other words,

the interpreter was not evaluating the fitness properly.

The process of discovering this error led to the discovery of the optimal

first row in the table. The optimal first row is given in Figure 8.

, ,R1 R0, , ,R2 R0, , ,R2 R1

Figure 8: The Optimal First Row for 3-3

All further experiments take advantage of this discovery and use the input

grammar for the GPK system to specify partial solutions using an optimal first

row.

After fixing the interpreter and running all of the experiments again (using

an optimal first row) we found the results to be consistent with the first run

through the experiments.  Each solution was marginally improved.

Rerunning the experiments resulted in a program with an average of 3.93

guesses per game.
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The winner (reduced) was:

, ,R1 R0, , ,R2 R0, , ,R2 R1
 ,Y1, , , , , , ,
 ,G1, , , , , , ,
 , , , , , , , ,
 ,Y2 G1, , , ,Y1,Y1 Y0, ,
 ,G2, , , , , ,G0,
 , , , , , , , ,
 ,G2, , , , , ,G0,
 , , , , , , , ,
 , , , , , , , ,
 , , , , , , , ,
 , , , , , , , ,
 , , , , , , , ,
 , , , , ,G2, , ,
 ,Y2, , , ,G1 Y1, , ,

with the remaining 12 lines empty

Figure 9: The Reduced 3.93 Result

Analysis of the 3.93 Result

This result was found with the following parameters.

•  The Crossover ratio was .85.

•  The Mutation rate was 0.09.

•  The algorithm ran for 2000 generations.

Figure 10 shows the progress made during the execution of the algorithm.
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Figure 10: A Graph of Progress Towards the 3.93 Result

The final result of 3.93 guesses per game was reached after 1726

generations. It represented an improvement of .04 guesses per game. This means

that is used 1 less move to play all possible games. The prior 3.96 result came

after 1151 generations. Clearly, progress has bottomed out.

This reduced solution is very sparse. It has had a significant number of

operators removed because they had no impact. The items they pruned were most

likely already pruned, so those operators were redundant.
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From these results, it seems clear that it should be worthwhile to try a

using a few searches with the last 10 lines empty and only 2 operators per cell. A

better table may exist in this space.

Comparison with Published Solutions

None of the published solutions we looked at did 3-3 MasterMind, but the

6 peg, 6 colors version of Merelo’s used between 5.4 and 5.8 guesses per game.

The Simulated Annealing version (by Bernier) averaged between 5.6 and 6.1

guesses. These results are according to the web page at http://kal-

el.ugr.es/mastermind/.

Intuition tells us to expect results between 3 and 4 guesses for the optimal

3-color version. Our GBGA search got close to this result, at 3.93.  Of course,

intuition is not always accurate.  The optimal solution is still unknown. The

GBGA and the MML approach clearly work. The question is still “How well do

they work?”

4-6 MASTERMIND RESULTS

This section captures our results using the GBGA and the 4-6 “guess by

guess” solution.

GBGA Results

This is still under construction. So far, we can play, but poorly.



73

SUMMARY OF EXPERIMENTAL RESULTS

All of the GBGA results illustrate the idea that the power of the Genetic

Algorithm comes as much from making the user think about the problem in novel

and precise ways as much from the algorithm itself.
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Conclusion

This section concludes the report. It discusses the main findings and

limitations of this research. It also discusses opportunities and suggestions for

follow-on work.

MAIN FINDINGS

Natural Metaphoric Optimization Algorithms are accessible and relatively

easy to apply to combinatorial optimization problems. From a Software

Engineering perspective, GBGAs and ACO algorithms are the most promising

recently developed algorithms.

Given that NMOAs are accessible and perform well, it is important to

monitor the research in the natural sciences in the hopes of finding other

applicable metaphors. The process of evolution has had a long time to find solid

optimization strategies. There are undoubtedly many more metaphors in Nature

that can be leveraged by software engineers and computer scientists.

Having said that, it could be argued that the power of Genetic Algorithm

based systems, which include Genetic Programming systems, comes from the

thought processes they require of the user, not the algorithm itself. They allow the

user to solve hard problems because they force the user to know the problem

domain extremely well in order to get good results from the system. They in

essence force the user to think about the problem in a different light and the

search for a solution simply becomes frosting.

Naturally, this observation has both good and bad aspects.
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Original Contributions

This report makes some original contributions. The MML-based approach,

with its notion of dynamically updated finite state machines, is a novel solution

for MasterMind. The MML experiments produced promising early results, while

only searching a miniscule portion of the overall space. Additionally, this general

notion and approach appear to be applicable to other Genetic Programming tasks.

The guess-to-guess approach, while simply a variation of previous

research, also gave interesting results, albeit very preliminary. It represents an

interesting general framework for solving problems with potentially huge search

spaces. This work on the guess-to-guess approach also led to an apparently

unknown application of GBGA’s to constraint-based optimization problems. This

application is discussed in the Opportunities for Further Work section that

follows.

LIMITATIONS

This report serves more as a survey than as experimental research. Many

more experiments, on a wide variety of problems need to be performed to

properly assess the value of Grammar-Based Genetic Algorithms.

OPPORTUNITIES FOR FURTHER WORK

The results for both 3-3 and 4-6 MasterMind using a GBGA are quite

encouraging, but leave several unanswered questions and possibilities for further

research. This section looks at these opportunities, covering those that are not

solution-specific or approach-specific and then those that apply to each variant of

MasterMind used for this report.
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Solution- and Approach-Neutral Possibilities

First and foremost, it would be interesting to implement and test an ACO

algorithm for several variants of MasterMind and then compare the results with

those found here.

With regards to the GBGA-based experiments, several other avenues of

research should be followed.

The GBGA we use leverages the transposition operator in crossover to an

extreme. It may be illustrative to try additional operators in both variants of the

game.

The MML Approach

In the MML solution, one could try to optimize each row individually and

then test the results of a program that combines all of the rows.

Another MML approach would use 2 phases of GA’s. The first phase

would approximate optimal rows and then use slight variants of these to populate

the starting population of a second phase. This could be run in parallel for the first

phase, and may allow the exploration of more of the search space. This 2-phase

approach might also provide interesting results by allowing the combination of

various optimization techniques for each phase.

The Guess-to-Guess Approach

This approach will scale to larger variants of the games, e.g. 7-7 with a

space of magnitude 106. We may investigate these variants in follow-on research.
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We might also want to compare the approach taken here against a directed

search that explicitly incorporates our heuristic. It would be interesting to

compare this approach for both the 3-3 and 4-6 variants to the results found here.

Dynamically Specifying Constraints Using a Grammar

Two observations about GBGA’s and the approaches taken here lead to a

very intriguing insight and opportunity for follow-on research.  First, all

Grammar-Based Genetic Algorithms share one major strength - the ability to

specify and restrict the search space using a grammar that allows the generation of

legal chromosomes.  Second, Genetic Algorithms are not particularly good at

constraint-based optimization since the constraints can be difficult to express in

the fitness function. These observations lead to the following insight. The Guess-

to-Guess approach to MasterMind might be significantly improved if we

dynamically capture the constraints in a new grammar for each guess.

For example, if we guess “RRRR” and get no blacks in response, we know

there are no Reds in the solution. We could generate a new grammar that reflects

this and use it to drive the search for the next guess. This reduces the search space

and simplifies the fitness function, which can now focus simply on the number of

blacks and whites and not the colors involved. Generating new grammars based

on a heuristic and observation of constraint is non-trivial, but deserves attention in

follow-on work.
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