
Copyright

by

Teck Bok Tok

2007

The Dissertation Committee for Teck Bok Tok

certifies that this is the approved version of the following dissertation:

Removing Unimportant Computations in

Interprocedural Program Analysis

Committee:

Calvin Lin, Supervisor

Kathryn S. McKinley

James C. Browne

Greg Lavender

Samuel Z. Guyer

Removing Unimportant Computations in

Interprocedural Program Analysis

by

Teck Bok Tok, B.Sc.(Hons.), M.Sc.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2007

To my wife, Gim Gee

Acknowledgments

I am indebted to many people for helping me become who I am today. First, I

would like to thank my supervisor, Calvin Lin, for his constant support, guidance,

patience, and encouragement throughout the years. He has enthusiastically invested

the time and energy in my research.

I would like to thank my committee members for all their insightful feedbacks

and suggestions: Kathryn McKinley, James C. Browne, Greg Lavender, and Samuel

Guyer, whose Broadway compiler was indispensable in my research. I also wish to

express my gratitude to the Department and its Faculties and Staff, for an excellent

graduate program, conducive learning environment, and the opportunity bestowed

on me.

I would also like to thank my colleagues, whom I worked with closely and

whose assistance proved to be invaluable. I greatly enjoy and appreciate: Adam

Brown, Walter Chang, Ben Hardekopf, Maria Jump, Alison Norman, and former

colleagues, Samuel and Daniel Jiménez.

I also owe much to my family and extended family, whose confidence and

support has enabled me to focus and strive.

Last but not least, to my wife and best friend, Gim Gee, whose confidence,

support, patience, and understanding helped me survive the trials and tribulations,

and whose love and company without which I cannot imagine.

v

Teck Bok Tok

The University of Texas at Austin

August 2007

vi

Removing Unimportant Computations in

Interprocedural Program Analysis

Publication No.

Teck Bok Tok, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Calvin Lin

Existing solutions to program analysis problems often trade between scala-

bility and precision. We propose new techniques to improve scalability of interproce-

dural high-precision program analyses without sacrificing precision. The key insight

is that there is a high volume of unimportant computations in these analyses. Our

way to improve analysis time is by identifying and reducing these computations.

We identify unimportant work in three classes of program analyses: flow-

sensitive dataflow analysis, context-sensitive dataflow analysis, and reachability-

based analysis. We propose new algorithms to reduce this inefficiency. We are

interested in analysis problems and programs that involve pointers, because they

vii

are used in many modern languages. Their presence sometimes complicates the

analysis problems, and they sometimes raise the problem size due to large points-to

sets in the program.

Our solutions include an improved worklist management algorithm used in

flow-sensitive interprocedural analysis that drastically reduces the amount of work

placed on the worklist. We introduce Relevance-Based Context Partitioning, a new

algorithm that groups contexts together in a way such that only important infor-

mation will be computed precisely, and that the number of contexts to analyze is

considerably smaller. For the class of reachability-based analysis, the way to im-

prove scalability is to reduce the graph used in the analysis. The nodes in the graph

represent dataflow facts, while the edges represent flow functions. The analysis

problem is then reduced to a reachability problem. Compared to existing efficient

algorithms, we present two new algorithms that significantly reduce the size of the

graphs. The first idea uses the graph to represent data dependences instead of the

more indirect control dependences that are typically used. The second idea iden-

tifies nodes that can be eliminated, because they do not contribute to solving the

analysis problem.

We evaluate our ideas by applying our algorithms to five error-checking anal-

yses and by comparing results against state-of-the-art algorithms, using a large suite

of 19 open-source programs. We are able to improve performance significantly. Our

new algorithms for flow-sensitive analysis achieve approximately 2× speedup, on

average. For context-sensitive analysis, our technique sometimes also allows the

new algorithm to solve cases that previously could not be solved due to run out

of memory. For other cases, the average speedup is 7.0× and can be more than

200× in some cases. Finally, our new algorithms for reachability-based analysis can

produce graphs that are just 6% the size of the original graphs. Consequently, more

benchmarks can be analyzed successfully, and the average analysis time speedup is

viii

as high as 5.5× faster.

ix

Contents

Acknowledgments v

Abstract vii

List of Tables xvi

List of Figures xviii

Chapter 1 Introduction 1

1.1 Observation . 6

1.2 Solutions . 8

1.2.1 Defining Unimportant Computations 9

1.3 Evaluation . 11

1.4 Contributions . 12

1.5 Outline . 13

Chapter 2 Algorithm Space 15

2.1 Basic Terms . 15

2.1.1 Analysis Algorithm and Analysis Problem 16

2.1.2 Lattice and Precision . 16

2.1.3 Computation Granularity and Precision 17

2.1.4 Soundness . 18

2.2 Properties of Program Analyses . 19

x

2.2.1 Scope of Analysis . 20

2.2.2 Flow-Sensitivity . 21

2.2.3 Context-Sensitivity . 24

2.2.4 Memory Model . 27

2.3 Selected Subset in Analysis Space . 30

2.3.1 Complexity . 31

Chapter 3 System Design and Evaluation Methodologies 33

3.1 System Design . 33

3.1.1 Overall System Architecture 33

3.1.2 Analysis Framework . 34

3.1.3 Precision Dimensions . 36

3.1.4 Memory Model . 37

3.1.5 Definitions and Uses . 38

3.1.6 Pointer Analysis . 40

3.1.7 Client Dataflow Analysis . 41

3.1.8 Precision and Accuracy . 41

3.1.9 Library Routines . 42

3.2 Implementations . 43

3.2.1 Program Representation . 43

3.2.2 Dominance Relation and Reaching Definitions 44

3.3 Evaluation Methodologies . 48

3.3.1 Metrics . 48

3.3.2 Client Analysis Problems . 49

3.3.3 Benchmarks . 51

3.3.4 Platform . 51

xi

Chapter 4 Efficient Flow-Sensitive Interprocedural Dataflow Analy-

sis 54

4.1 Introduction . 54

4.1.1 Contributions . 57

4.2 Analysis Framework . 57

4.3 DU : Worklist Management . 58

4.3.1 Structure of a Worklist Algorithm 59

4.3.2 Naive Worklist Algorithms 60

4.3.3 Worklist Algorithm Using Intraprocedural Def-Use Chains . . 60

4.3.4 Dynamic Def-Use Computation 60

4.3.5 Bundles . 62

4.3.6 Handling Interprocedural Def-Use Chains 64

4.3.7 Full Version of Algorithm DU 65

4.3.8 Exploiting Loop Structure . 66

4.4 Evaluation . 68

4.4.1 Benchmarks and Metrics . 68

4.4.2 Setup . 68

4.4.3 Empirical Lower Bound Analysis 69

4.4.4 Results . 70

4.5 Conclusion . 73

Chapter 5 Relevance-Based Context Partitioning 76

5.1 Introduction . 76

5.1.1 Contributions . 78

5.2 Our Solution . 79

5.2.1 What is in a Contour? . 82

5.2.2 Algorithm Overview . 82

xii

5.2.3 Analyzing a Procedure . 83

5.2.4 Computing the Partitioning Vector 85

5.2.5 Choosing a Contour . 89

5.2.6 Contour Refinement . 90

5.2.7 Reusing Contours Context-Insensitively 92

5.2.8 Precision and Accuracy . 93

5.2.9 Application to Client-Driven Pointer Analysis 94

5.2.10 Implementation . 95

5.3 Evaluation . 96

5.3.1 Methodology . 96

5.3.2 Context-Sensitive Analysis: RBCS versus FSCS 97

5.3.3 Client-Driven Analysis: RBCS-CD versus CD 101

5.3.4 RBCS versus PTF . 104

5.4 Coupled Analyses . 105

5.5 Conclusion . 108

Chapter 6 Reachability-Based Analysis 110

6.1 Introduction . 110

6.1.1 Contributions . 112

6.2 IFDS Baseline Algorithm . 115

6.2.1 IFDS Problems . 116

6.2.2 The Original IFDS Algorithm 116

6.2.3 Practical Issues and Modifications 118

6.2.4 Effects of Pointers on IFDS Analysis 122

6.3 Sparse IFDS . 124

6.3.1 Motivation . 124

xiii

6.3.2 Algorithm . 125

6.4 Variable-Pruning IFDS . 126

6.4.1 Algorithm . 127

6.4.2 Difference from Sparse IFDS 128

6.4.3 Difference from Demand IFDS 130

6.4.4 Analysis Configurations and Feedback-Based Analysis 133

6.5 Evaluation . 135

6.5.1 Methodology . 136

6.5.2 Effects of Pointers on IFDS Analysis 138

6.5.3 Results of Sparse IFDS . 140

6.5.4 Results of Variable-Pruning IFDS 141

6.5.5 Results of Feedback-based Variable-Pruning IFDS 146

6.5.6 Detail Comparisons . 150

6.5.7 Comparing Best IFDS Algorithm with Dataflow Analysis . . 157

6.6 Cycle Elimination . 157

6.6.1 Motivation . 158

6.6.2 No Speedup: Too Much, Too Late 159

6.6.3 Early Detection: Too Little, Not Enough? 160

6.7 Conclusion and Future Work . 162

Chapter 7 Related Work 164

7.1 Worklist . 164

7.1.1 Other Approaches . 166

7.2 Sparse Analysis . 167

7.3 Context-Sensitive Analysis . 167

7.3.1 Partitioning Contexts . 167

xiv

7.3.2 Other Context-Sensitive Analyses 169

7.3.3 Context-Loss Problem . 170

7.3.4 Coupled Analysis . 170

7.4 Reachability-Based Analysis . 171

7.4.1 Relation to Other Analyses 171

7.4.2 Variable Pruning . 172

7.5 Cycle Elimination . 174

Chapter 8 Conclusion 175

8.1 Contributions . 175

8.2 Future Work . 176

Bibliography 177

Vita 200

Index 201

xv

List of Tables

2.1 Analysis properties and examples of their possible values. 20

3.1 Some features in the analysis framework. 34

3.2 Properties of the benchmarks. 52

3.3 Properties of the benchmarks, continued. 53

5.1 Number of distinct flow values per variable in the client analyses. . . 96

5.2 Relevance-Based Context-Sensitive analysis vs. FSCS analysis, part 1. 98

5.3 Relevance-Based Context-Sensitive analysis vs. FSCS analysis, part 2. 99

5.4 Relevance-Based Context-Sensitive analysis vs. FSCS analysis, part 3. 100

5.5 Relevance-Based Context Sensitive with Client-Driven analysis vs.

Client-Driven analysis, part 1. 102

5.6 Relevance-Based Context Sensitive with Client-Driven analysis vs.

Client-Driven analysis, part 2. 103

5.7 Relevance-Based Context Sensitive with Client-Driven analysis vs.

Client-Driven analysis, part 3. 104

5.8 Results of simulations of one PTF on selective programs. 106

6.1 Setups for applying Variable-Pruning (VP) to IFDS analysis. 134

xvi

6.2 Effects of various new IFDS algorithms on exploded graphs. 142

6.3 Effects of using feedbacks in Variable-Pruning IFDS algorithm. . . . 150

6.4 Comparing different Sparse, Variable-Pruning, and Feedback IFDS

algorithms. 151

6.5 Percentages of loop nodes in flow graphs and exploded graphs. . . . 159

xvii

List of Figures

3.1 Analysis framework: Algorithm to analyze a procedure. 35

3.2 Node numbering on a dominator tree. 46

4.1 A loop example. 55

4.2 An example CFG. 59

4.3 Initial version of algorithm DU . 61

4.4 Maximum and average ratio r = C/(B + 1), in log scale. 63

4.5 Efficient Rbundle that uses bundles. 63

4.6 Full version of algorithm DU . 66

4.7 Three loop examples. 67

4.8 Performance results of DU and its variant, on CI pointer analysis

(part 1). 71

4.9 Performance results of DU and its variant, on CI pointer analysis

(part 2). 72

4.10 Performance results of DU and its variant, on CS pointer analysis

(part 1). 74

4.11 Performance results of DU and its variant, on CS pointer analysis

(part 2). 75

xviii

5.1 Partitioning call sites. 78

5.2 Call graph example. 80

5.3 RBCP: Analysis on a procedure. 84

5.4 RBCS Analysis Algorithm. 86

5.5 Example of computing the Partitioning Vector. 88

5.6 Example illustrating the need for contour refinement. 91

6.1 Constructing exploded graph. 117

6.2 Constructing exploded graph. 121

6.3 Effect of pointer analysis precision on IFDS analysis. 123

6.4 Constructing sparse exploded graph. 125

6.5 Variable-Pruning IFDS Algorithm. 128

6.6 Difference between Sparse IFDS algorithm and Variable-Pruning IFDS

algorithm. 129

6.7 Difference between Demand IFDS algorithm and Variable-Pruning

IFDS algorithm. 132

6.8 Effects of pointer analysis on IFDS algorithms. 139

6.9 Performance results of Sparse-IFDS relative to IFDS 141

6.10 Results of Variable-Pruning IFDS against baseline IFDS 143

6.11 Results of Variable-Pruning IFDS relative to Demand IFDS algorithm.145

6.12 Results of Feedback-based Variable-Pruning IFDS algorithm, relative

to baseline algorithm. 147

6.13 Results of Feedback-based Variable-Pruning IFDS algorithm, relative

to non-Feedback Variable-Pruning IFDS algorithm. 148

6.14 The two best IFDS algorithms relative to Client-Driven analysis, us-

ing total analysis time. 157

xix

6.15 Breakdown of IFDS analysis time into initialization, graph construc-

tion, and reachability analysis. 161

xx

Chapter 1

Introduction

The objective of static program analysis is to gather information at compile-time

regarding the run-time behavior a program [100]. The gathered information is used

for many purposes, including program understanding, verifying that it follows spec-

ifications, improving its performance and finding bugs and security vulnerabilities.

These applications are used to increase productivity, raise competitiveness of prod-

ucts, and improve the public image of institutions.

Examples of program analysis techniques include type analysis, dataflow

analysis, and reachability-based analysis. Type analysis is used in polymorphic

programming languages to discover possible run-time type information in order to

facilitate optimizations [82, 61, 129, 135, 31]. The purpose of dataflow analysis is

to (statically) gather global information about possible sets of values calculated at

various points in a program or how a program manipulates its data [100]. Among

other applications, it is used to discover program code that is never executed (dead

code analysis) and how each assignment affects other statements (reaching definition

analysis). Reachability analysis is a technique that encodes an analysis problem as

1

a graph where the node represents possible program states at statements, and the

problem is reduced to figuring out what nodes are reachable from nodes representing

the initial program state [121].

Given the large space of analysis algorithms, two qualities are typically used

to choose an algorithm: precision and scalability. These are relative qualities so that

it is possible to compare two algorithms using each quality. We informally describe

each quality below.

Precision

The precision of an analysis measures how closely its results reflect the run-time

behavior of the input program. The exact meaning of precision deserves detailed

explanation, which we will discuss in Chapter 2. At this time, we will relate it to

the abstraction model used by an analysis.

The abstraction model provides the compiler with a means to statically rep-

resent the potentially unbounded run-time program states. The model has a set of

attributes, which include how the program and flow values are represented. The

possible values of each attribute offer different granularities of detail for that par-

ticular attribute so that the set of chosen values for each affects how closely, or

precisely, the states generated by the model resemble the run-time program states.

Consequently, each attribute is also referred to as a precision dimension, and the

chosen attribute values constitute the precision of the analysis. Note that we use

the term “dimension” because it has been previously used in the literature [130],

even though the dimensions are not necessarily orthogonal.

A precise analysis tends to be more useful than one that is imprecise. For

example, an imprecise analysis can miss optimization opportunities, which can lead

2

to inferior products. Another analysis that identify security vulnerabilities that do

not exist in reality can cause programmers to waste valuable time doing manual

inspections. Therefore, an analysis should be as precise as possible, but only if the

additional precision can actually improve results. For example, if the objective is

to find all zero integers and only multiplications are allowed, then the analysis only

needs to model integers as zero or non-zero, rather than calculating possible actual

values (too precise).

Scalability

Scalability refers to the analysis’ ability to handle increasing amounts of work due to

growing program size. Assuming that the analysis has to inspect the entire program,

an ideal algorithm has an analysis time that grows linearly with the input program

size. Since many algorithms use iterative approaches to compute fix-point solutions

for non-trivial problems, linear algorithms are typically not available.

As modern programs are large and complex, with no trend of getting any

smaller, scalable analysis is necessary to complete analysis on large programs using

limited resources. Without any aid from the analysis, programmers must spend

many man-hours (or days) to manually inspect large programs [15].

One common method to measure scalability is to compute the theoretical

worst-case complexity of the algorithm. This method is flawed in that the worst-

case scenario may be uncommon, and in practice, the average analysis time is not

as expensive. Two algorithms may have the same asymptotic complexity, but in

practice, one of them is significantly faster for most real programs. Therefore, it is

just as important to evaluate and compare algorithms by using a large suite of large

benchmarks.

3

Precision vs. Scalability

For some analysis problems such as computing intraprocedural liveness analysis

and dead code analysis, there exist algorithms that are both very precise and very

efficient [70]. However, there are two reasons why these two qualities are at odds

for problems such as pointer analysis:

➤ The analysis focuses on tracking properties of data structures that span proce-

dure boundaries, sometimes spanning the entire program. Using an intrapro-

cedural analysis would require making very conservative assumptions at call

sites that eventually hurt analysis precision. The alternative, interprocedural

or whole-program analysis, is more precise. However, common programming

practices, such as modular programming, encourage separation of concerns,

making interprocedural analyses more complex and time-consuming.

➤ The analysis uses models to represent the data structures and operations in

the programs, as well as states of program executions. A sophisticated model

is sometimes necessary for precise analysis, but it is usually more complex and

expensive. For example, complex graphs are necessary to accurately capture

the points-to relations at each statement. Using an imprecise model can lead

an analysis to report bogus results such as many false positive bugs—bugs

that do not actually exist in the programs—so that programmers have to

waste many hours inspecting the analysis report.

Faced with such reality, analysis algorithms are compelled to choose either

precision or speed. For example, consider the problem of finding Remote Access

vulnerability in programs—errors that allow a remote hacker to gain control of

sensitive components in programs. A fast analysis may produce many false positives

4

that overwhelm programmers, while a more precise analysis producing fewer or no

false positives can take hours to complete [54].

Because modern programs are large and complex, the tension between pre-

cision and scalability is critical. In addition, large programs also tend to have a

higher demand for precise analysis, because: (1) many slow programs are large pro-

grams, and using precise techniques, such as interprocedural analysis, can expose

more optimization opportunities such as library-level optimizations [51]; and (2)

large programs have higher tendencies to contain bugs and security holes.

The Pointer Factor

The widespread use of pointers in modern programs makes the task of program

analysis even more challenging. Many analysis problems need pointer information

so pointer analysis needs to be solved first, but the pointer analysis problem is

known to be undecidable. If an imprecise pointer analysis is used, the output often

contains larger points-to sets that lead to spurious flow values in the other analyses.

As a result, it appears that tradeoffs between precision and scalability in analyzing

modern programs are inevitable.

Existing Algorithms

Many existing efficient algorithms scale well to large programs, but they often suffer

from one or more limitations:

✢ They improve scalability by arbitrarily sacrificing precision in one or more di-

mensions. An example is the way some algorithms address context-sensitivity

which is a precision dimension. A context-sensitive analysis respects the se-

mantics of procedure call-return: for each procedure, the analysis distinguishes

5

arguments from different contexts in which the procedure is executed; the anal-

ysis also ensures the return value at a call site is not improperly propagated to

other call sites. Such an analysis is expensive due to the exponential number

of contexts. A context-insensitive analysis is less precise because it merges all

contexts while analyzing a procedure, but it is also linear with respect to the

number of procedures. The k-CFA approach [138] is a family of algorithms

seeking compromise: each choice of a fixed k induces an algorithm that merges

different contexts, so that the greater k is, the better precision and higher com-

plexity the algorithm is. The problem with this approach is that because an

arbitrary k is chosen and used throughout analysis, the predetermined level of

precision is not sufficient all the time.

✢ Other approaches may be precise in one dimension but not in another. For

example, the use of Binary Decision Diagrams data structure (BDD) enables

context-sensitive analysis to scale very well [146, 157], but these algorithms

are flow-insensitive. To date, it is not clear if this tradeoff between preci-

sion dimensions is due to the inherent limitation of the technique or that the

limitation will be overcome in due time.

1.1 Observation

What is needed is a more principled approach that, while being applicable to mul-

tiple dimensions of precision, improves analysis scalability without sacrificing preci-

sion. We observe that many precise algorithms are inefficient, because they perform

many unimportant computations. These computations come in two forms: (1) the

same computations are repeated many times without any new updates, and (2) con-

siderable unimportant or irrelevant information is computed precisely when their

6

precision does not affect the output quality of the final analysis result. Section 1.2.1

will further discuss this concept of unimportant computations.

The notion of unimportant computation is not new, but no previous work

specifically studies unimportant computations as a general problem in program anal-

ysis. All previous work uses the notion implicitly, and there is no formal definition.

Both types of unimportant computations can be found in many dimensions

of precisions. We briefly give two examples:

Flow-sensitive analysis: In a flow-sensitive analysis that uses a worklist, the way

the worklist is managed directly affects how frequently the same computations

are repeated. For example, when the Hind and Pioli algorithm [67] is applied

to the nn program (approximately 36K lines of C), we find that only 3% of the

basic block visits are useful—the others repeat same computations without

any flow value updates.

Context-sensitive analysis: In context-sensitive analysis, a procedure is analyzed

separately for its different calling contexts. While such analysis is more precise

because it distinguishes the differences among contexts, there often exist sub-

stantial similarities among the contexts. By exploiting the similarities, much

of the same information need not be computed repeatedly. This insight is the

basis of previous work such as Partial Transfer Function (PTF) [153] and the

use of BDD’s [146, 157].

Unimportant computations also exist in other forms of program analysis. For

example, in a reachability-based analysis, a graph is used where the nodes represent

dataflow values at statements, and edges represent flow functions. Analysis of a

graph is reduced to reachability of the nodes [121]. We find that as much as 94% of

7

the nodes are redundant, so a significant fraction of computations during reachability

analysis is not important.

1.2 Solutions

The high-level goal of this dissertation is to improve the scalability of precise inter-

procedural program analysis without sacrificing precision. We achieve this goal by

identifying, understanding, and reducing the high volume of unimportant computa-

tions in high-precision analyses. This class of high-precision analysis algorithms is

defined later in Chapter 2.

This dissertation has three components. The first two components focus on

two dimensions of precision: flow-sensitivity and context-sensitivity. These compo-

nents present techniques targeted to program with pointers. The third component

focuses on a reachability-based analysis. In all three components, we will define

and identify sources of unimportant work in existing techniques, and we will mea-

sure or estimate them using appropriate metrics. We will propose new algorithms

that will reduce or eliminate unimportant computations. We will then measure how

much that elimination helps reduce consumption of space and time resources. In

some cases, we will show that some analyses that could not complete with previ-

ous techniques (because they run out of memory) can now complete with our new

techniques.

The first component of our study improves the basic worklist algorithm used

in flow-sensitive interprocedural dataflow analysis. We introduce a technique that

drastically reduces the amount of work placed on the worklist. Our technique is

similar to that proposed by others [117, 118, 147], but ours is the first that applies

to programs that require pointer analysis.

8

The second component reduces computations of unimportant and duplicate

information in context-sensitive dataflow analysis. Our technique works when a

pointer analysis is combined with a client analysis—the latter depends on pointer

information provided by the former. Based on information provided by the client,

our technique groups similar contexts together in a way such that only important

information will be computed precisely, and the number of contexts to consider

is substantially reduced. Consequently, the pointer analysis scales better to large

programs.

The third component improves a reachability-based analysis by removing

unimportant nodes from the graphs. These removed nodes either do not carry

useful information or do not contribute to the solution of the analysis problem.

This dissertation demonstrates that the identification and removal of unim-

portant computations effectively improves the scalability of precise program analyses

on large programs. Even though we will consider only two dimensions of precision

in dataflow analyses, and one reachability-based analysis, our experience can benefit

improvements in other dimensions or other forms of program analyses as well.

1.2.1 Defining Unimportant Computations

We consider unimportant computations to be those that do not contribute to the

accuracy of the analysis results. Here we provide definitions of these two terms.

The two terms accuracy and precision both describe analysis qualities, but

they are different in their usages. The main problem with the term precision is,

for some analyses, such as pointer analysis, there is no universally accepted metric

that measures precision. To cope with this problem, we look at the “effectiveness”

of pointer analysis when it is used for other applications, which leads us to the

9

definition of accuracy.

The meaning of the term accuracy depends on the analysis or combination of

analyses. For the case of a single analysis, the term describes the analysis’ primary

output—the output that meets the objective of the analysis. For example, the

output of a dead code analysis is the set of statements that are never executed,

while the output of a tool that finds security vulnerabilities is a list of security

vulnerabilities. The term provides a way to compare two analyses that solve the

same problem. For example, if the set of dead codes computed by algorithm X is

sometimes larger and never smaller than that computed by algorithm Y, and all

computed dead codes are in fact dead in reality, then algorithm X is more accurate

then algorithm Y.

The definition is extended to a combination of two analyses. If analysis X

depends on analysis Z and the output of the combined analyses Z+X is the output

of X, then the accuracy of the combined analyses is the accuracy of X. Similarly,

the accuracy of Z with respect to the combined analyses is also the accuracy of X.

For example, suppose two pointer analysis algorithms P and Q are used

independently by a dead code analysis D, and there is no difference in the output

by D; then as far as D is concerned, the two pointer analyses are considered equally

accurate. If P sometimes causes D to produce a larger set of dead code but never

smaller, and all outputs are in fact dead code in reality, then P is more accurate

than Q.

We will use the concept of accuracy to define unimportant computation. It

is one that fits one or both characteristics as follows:

1. Repeated computations: Consider an example of flow-sensitive analysis. Dur-

ing each visit to a program statement, there is a computation to evaluate a set

10

of flow values. If between two consecutive computations on the same state-

ment, the output flow values do not change, then the second computation is a

repeated computation. It is redundant because removing it will not cause any

effect on the final analysis result of the entire program.

We extend this definition to other precision dimensions. For example, we can

also find repeated computations on procedures in a context-sensitive analysis,

when consecutive computations on a procedure produce same output.

2. Computing unimportant information precisely. The precision of some infor-

mation has no effect on the accuracy of an analysis. Therefore, computing this

information precisely only adds overhead (space and/or time) to the analysis.

One reason the idea of unimportant computations has received little or no

attention in the past is due to the confusion between accuracy and precision. The

distinction is, in a nutshell, between what we want to get in the end and how we

get there.

1.3 Evaluation

We evaluate our ideas by implementing new algorithms that eliminate or reduce

unimportant computations, by applying them to a set of non-trivial analyses prob-

lems and by analyzing an extensive suite of large benchmarks. These problems

and benchmarks allow us to measure and compare precision, accuracy, and scal-

ability. We measure the volume of unimportant computations and performance

improvement provided by our new algorithms, using analysis time, memory usage,

accuracy, and other metrics where appropriate. We evaluate our new algorithms

by comparing with outputs produced by existing to-date algorithms. In particu-

11

lar, part of the comparisons is to verify that our new algorithms are not sacrificing

accuracies.

We use a pointer analysis and five error-checking analyses [54] that use

the pointer analysis. These five analyses are important analysis problems, includ-

ing the identification of Format String Vulnerability [104] and File State errors—

interprocedural analyses that generally yield better accuracy with higher precision.

We use the Broadway compiler [52] because its infrastructure allows us to

adjust precision of analyses, thus enables us to perform a wide range of experiments.

Additional details on the evaluation methodologies can be found later in

Section 3.3.

1.4 Contributions

This research makes the following contributions:

1. We identify and eliminate the source of repeated computations in flow-sensitive

analysis by using a new worklist-management algorithm that removes a consid-

erable amount of redundant computations. Our technique differs from previous

work [117, 118, 147], because ours is the first that applies to programs that

require pointer analysis. When we apply our algorithm to a pointer analysis,

the analysis time is reduced by half on average with up to 10× speedup.

2. We present Relevance-Based Context Partitioning, a principled approach to

context-sensitive analysis that limits the number of contexts to be analyzed.

Our technique is applicable when a pointer analysis is combined with another

analysis that requires pointer information. Based on information gathered

during analysis, the technique groups similar contexts together in such a way

12

that only important information are computed precisely. This approach sig-

nificantly reduces the amount of computations on unimportant and duplicate

information, avoiding the high cost of context-sensitive analysis. Without our

technique, only seven out of our 19 benchmarks successfully complete; with

the new technique, all benchmarks successfully complete. Among those seven

benchmarks, the average speedup is 7.0× and is more than 200× in the best

case. The technique also uses 4× less memory.

3. We present a sparse algorithm and a pruning algorithm that reduce the graph

used in a reachability-based analysis. These two techniques are orthogonal,

and the combined algorithm reduces graph size to just 6% of the original

graphs on average, which leads to speedups of 5.5× on average.

All our new algorithms are designed to replace existing to-date high-precision

algorithms, so that the output qualities of the analyses are not sacrificed. All perfor-

mance evaluations of the new algorithms are based on comparing with those existing

algorithms.

1.5 Outline

The rest of this dissertation is organized as follows. Chapter 2 describes the space

of algorithms for program analysis and specifies the class of algorithms this disser-

tation focuses on. Chapter 3 describes a taxonomy of the compiler system used by

all analyses in our experiments, implementation details, and evaluation methodolo-

gies. It includes definitions and terminologies. The next chapter presents our new

worklist algorithms and their results. Chapter 5 presents Relevance-Based Context

Partitioning. Chapter 6 presents our new algorithms that improve IFDS analyses.

13

Chapter 7 reviews related work, and finally, Chapter 8 wraps up with a summary

and conclusion.

14

Chapter 2

Algorithm Space

This dissertation proposes techniques that improve the scalability of existing precise

analysis algorithms without sacrificing precision. In order to evaluate our work, it is

necessary to understand the space of analysis algorithms and the subset of precise

algorithms in this space. This in turn also requires defining basic terminologies such

as analysis precision. This chapter begins with defining the basic terms. Section 2.2

presents the space of analysis algorithms by categorizing their different properties.

Section 2.3 specifies a subset in this space that is the focus of this dissertation. It

also briefly compares the complexity of existing algorithms in this subset with that

of our new algorithms.

2.1 Basic Terms

This section defines various basic terms such as lattice, precision, and soundness,

which are useful later when we describe different analytic properties. There are two

aspects of precision, which we explain in Sections 2.1.2 and 2.1.3. Section 2.1.4 then

defines soundness.

15

2.1.1 Analysis Algorithm and Analysis Problem

An analysis is an algorithm applied to a given abstraction of a program, with the

objective of statically gathering information regarding the run-time behavior of the

program.

An analysis problem is the result sought from an analysis. For example, a

dead-code analysis aims to find out code fragments that are never executed. Other

examples include the liveness analysis, the reaching definition analysis, and the

pointer analysis.

2.1.2 Lattice and Precision

In this section, we describe what a lattice is and explain how it is used to define

precision.

Dataflow analysis is a type of program analysis that uses an algebraic struc-

ture called a lattice. The elements in a lattice are flow values representing abstract

properties of variables, expressions, or other entities in a program. Specifically, the

lattice consists of a partially ordered set L and a meet operator ⊓. The partial order

L has a finite height with a unique upper bound ⊤ called top and a unique lower

bound ⊥ called bottom. The meet operator has the property that for any x, y ∈ L,

there exists a unique z ∈ L such that x ⊓ y = z. If x 6= z, then x is greater than z,

and hence, x is higher than z in the lattice.

The meet operation x⊓y acts as a merge operation on the abstract properties

x, y. When x 6= y, the result of the merge represents a less precise value than either

x or y. Thus for any two elements x, y in the partial order L, if x is greater than y

(x is higher than y in the lattice), then x is more precise than y.

To give a specific example, suppose x and y represent an even and an odd

16

integer, respectively, and they are at the same height of a lattice; then the merge

result z = x ⊓ y represents any integer, which is less precise than either x or y.

An analysis problem may be solved by multiple algorithms that differ in the

way flow values are computed: they can assign different values to each variable, or

they can differ in the way values are propagated from one statement to the next. We

say that algorithm A is more precise than algorithm B if (1) algorithm A computes

more precise values than algorithm B for some non-empty set of input programs,

(2) both compute same values for other input programs, and (3) algorithm A never

computes less precise values.

2.1.3 Computation Granularity and Precision

The lattice used by an analysis only defines one aspect of precision. The other

aspect depends on the granularities used by the analysis algorithm when computing

flow values. This section briefly explains the relationship.

For instance, suppose algorithm A computes only one flow value x0 for each

variable x, while algorithm B computes one value xi for the same variable and for

each statement i (i > 0). Algorithm B is more precise because it distinguishes

value of x for different statements, while the value x0 computed by algorithm A is

typically the less-precise merged value of all xi (i > 0). This example of granularity

is called flow-sensitivity, which we will discuss further in Section 2.2. Other forms

of granularities are also possible, such as context-sensitive, which distinguish flow

values based on procedure calling contexts.

The different possible granularities not only affect analysis precision but also

complexity. They are analysis properties that define some dimensions of program

analysis taxonomy. Note that these properties are not orthogonal, but we are using

17

the term “dimension” since it has been used in the literature. We will discuss these

properties further later in Section 2.2.

For the rest of the dissertation, unless otherwise stated, the term precision

shall have the meaning with respect to lattice values as defined in the previous

section.

2.1.4 Soundness

The notion of precision, defined in previous sections, provides a way to compare flow

values computed by an analysis. What is still lacking is a way to relate analysis re-

sults to the run-time behavior of a program. For example, an algorithm that always

uses the top value ⊤ is the most precise by definition, but it does not correctly re-

flect run-time program behavior unless the program computes nothing. This section

explains how the notion of soundness is used to fix this problem.

A program analysis is conservative or sound if it uses estimation techniques

that always err on the safe side with respect to the program’s concrete semantics.

Depending on the problem, a sound analysis may over- or underestimate the solution.

For example:

• In liveness analysis, if a variable is live but the analysis reports that it is not,

then the analysis is not sound. Otherwise the analysis is sound. This is true

even if a variable is not live but the analysis reports that it is, in which case

the analysis overestimates the set of live variables.

• In available-expression analysis, if an expression is not available but the analy-

sis reports that it is, then the analysis is not sound. Otherwise, the analysis is

sound. This is true even if an expression is available but the analysis does not

report that it is, in which case the analysis underestimates the set of available

18

expressions.

• In an analysis that searches for security vulnerabilities, a false negative is an

error that the analysis fails to find. A false positive is an error that the analysis

finds but actually does not exist. A sound analysis may overestimate the set

of errors in a program, so the result may contain some false positives but never

any false negatives.

To ensure soundness, the analysis often has to use less-precise flow values using a

lattice (defined previously in Section 2.1.2). In the extreme, an analysis that by

default always uses the bottom value ⊥ is sound and fast but is also probably too

imprecise to be useful. Therefore, it is important to design sound algorithms that

are as precise as computationally feasible.

For the rest of this dissertation, we will focus only on sound analysis and

ignore all unsound algorithms. Consequently, we will only be comparing algorithm

precision in all our discussions.

2.2 Properties of Program Analyses

The space of analysis algorithms can be described by the dimensions of a program

analysis taxonomy. The dimensions are not orthogonal. Each algorithm in this

space can be identified using a value with respect to each dimension, and these

values constitute the properties of the algorithm.

It is beyond the scope of this dissertation to rigorously identify all analysis

dimensions. Instead, we identify only the subset relevant to our work. Table 2.1

summarizes the dimensions we identified, their possible values, and examples of

previous work. The subsequent subsections will describe in detail each property,

19

including a motivation for the need of the property, and how the possible values

affect precision and cost.

Analysis Dimension Examples of Possible Values

Scope of analysis Intraprocedural [99, 118, 3, 48];

Interprocedural [98, 93, 49]

Flow-sensitivity Flow-insensitive [140, 84, 33, 85, 7];

Flow-sensitive [16, 147, 24, 17];

Subset [54]; Local; Region-based

Context-sensitivity Context-insensitive [137, 138, 108, 58, 79, 24, 84]

Context-sensitive [136, 80, 153, 121, 47, 21]

Bottom-up; Top-down; Subset [54]; Context merge;
Object sensitive [95]

Memory model-array Singleton; Complex [91, 14, 45]

Memory model-field Field-sensitive; Field-insensitive; Field-based [110]

Memory model-heap Singleton; Allocation site; Allocation context

Memory model-heap layout Shape analysis [81, 68, 20, 64, 44, 43, 134, 151, 122,
26, 72, 88, 57, 123, 124]

Table 2.1: Analysis properties and examples of their possible values. For dimen-
sions such as flow-sensitivity and context-sensitivity, the example values are not
exhaustive because these dimensions have many possible values.

2.2.1 Scope of Analysis

There are two types of analyses that define the scope of analysis: intra- and in-

terprocedural. An intraprocedural analysis tracks properties local to a procedure,

so that each procedure is analyzed in isolation. Assuming no pointers and refer-

ence parameters, then computing liveness of local variables is one such analysis.

Other examples include dead code analysis, available expression analysis, partial

redundancy elimination, and register allocation. Intraprocedural analysis is sim-

ple because the analysis at the procedure does not grow with program size. It is

also sufficiently precise for analysis problems such as the liveness analysis and other

20

examples mentioned above, in the sense that an interprocedural analysis will not

improve their precisions.

On the other hand, programs with pointers and reference parameters al-

low data structures to span across procedures. Intraprocedural analysis then has

to make conservative assumptions about effects of procedure calls on flow values.

Consequently, the analysis becomes very imprecise.

To avoid making such conservative assumptions, these programs require in-

terprocedural analysis that will apply the analysis results of a procedure to the

analysis of another. Generally, interprocedural analysis tends to be more expensive;

for example, programs with large call graphs and many recursive calls cause the

analysis to take a longer time to reach a fix-point.

2.2.2 Flow-Sensitivity

Flow-sensitivity is a property of program analysis concerned with whether control-

flow plays a role in the analysis. This section explains the differences between a

flow-sensitive and flow-insensitive analysis, and explores other options.

An analysis computes flow values for variables, expressions, or some well-

defined entities; without loss of generality, we assume that the analysis is computing

solutions for variables. For each variable, the analysis can either compute the state-

ments for which a value holds, or it can compute a value that holds for the entire

program. These two choices are known as flow-sensitive and flow-insensitive analy-

ses, respectively. They and other options are granularities of details called levels of

flow-sensitivity. These details have direct impact on the precision and complexity

of analysis. The following example illustrates the difference:

21

x = 5;

y = x;

x = 8;

A flow-sensitive analysis will determine that the variable x has value 5 at

the second statement and a value 8 at the last statement. Consequently, it also

determines that the variable y has value 5 after the second statement. On the other

hand, a flow-insensitive analysis cannot determine a unique value for x so that both

x and y will have an unknown value at all statements.

Flow-sensitive analyses can be further divided into two types, depending on

how the dependences between flow values are represented. For example, dependences

between two flow values x, y can be represented as pairs of attributes in the form

[(x = a∧y = b) or (x = c∧y = d)]. Jones and Muchnick refer to this type of analysis

as relational-attribute analysis [73]. In contrast, the analysis may choose to ignore

the dependences and represent the values as [(x = a∨x = c) and (y = b∨y = d)]; this

type of analysis is called independent-attribute analysis. The second form trades-off

precision for efficiency

Although a flow-insensitive analysis is generally less precise, it is sufficient

for certain applications. For example, the experiments by Hind and Pioli [67] and

by Stocks et al. [141] suggest that a flow-sensitive analysis improves little or no

precision on some programs compared to a flow-insensitive analysis, because the

flow values are seldom changed. On the other hand, evidence from other previous

work [145, 54] shows that flow-sensitive analysis is crucial to achieve precise results.

In terms of complexity, flow-sensitive analysis is computationally more ex-

pensive. A relational-attribute analysis can have exponential complexity [102] due

to the possibly large set of dependent attributes, while a flow-insensitive analysis

can be as fast as almost linear [140]. For example, between a flow-sensitive and

22

a flow-insensitive pointer analysis, currently only the latter can scale to programs

with millions of lines of code [60].

Fortunately, flow-sensitivity is also a spectrum of which the two ends are the

two options described above. A non-exhaustive list of levels of granularities includes:

• Flow-sensitive (FS): a flow value is computed for every variable in each state-

ment.

• Flow-insensitive (FI): a single flow value is computed for every variable for the

entire program.

• Subset: flow values for a subset of variables are computed flow-sensitively,

while those of the remaining variables are computed flow-insensitively.

• Local: flow values for all variables are computed flow-sensitively within a

segment of code, but they are computed flow-insensitively outside the segment.

For example, for each variable x, the values xi, i = 1 . . . n are computed for

the n statements of a segment of code (one value per statement), and a single

value x0 is computed for all statements outside the segment.

• Region-based: a single flow value is computed for every variable in each re-

gion (such as a procedure), but different value can be computed for different

regions. For example, for each variable x, a single value xp is computed for

each procedure p.

Note that except for FS and FI (which are the two ends of the spectrum), other

options are not necessarily mutually exclusive. For example, Subset and Local can be

combined so that flow values for a subset of variables are computed flow-sensitively

within a segment of code, whereas flow values for other variables or for outside the

segment are computed flow-insensitively.

23

This flexibility in the spectrum proves to be important in designing fast and

precise algorithms. For example, the Client-Driven algorithm [54] can determine

the subset of variables that are essential to solving a given problem, so that they

are analyzed flow-sensitively while other variables are analyzed flow-insensitively.

2.2.3 Context-Sensitivity

This section explains the differences between precision and complexity among the

different types of context-sensitivity.

Context-sensitivity is another property of program analysis concerning the

use of calling contexts of a procedure to compute solutions. The use of calling

contexts helps to improve analysis precision in two possible ways: the bottom-up

context-sensitivity receives the attention of most previous work, while the top-down

context-sensitivity is discussed less frequently. These two options and others are

occasionally referred to as the levels of context-sensitivity. We will now explain

their differences.

Bottom-up context-sensitivity focuses on eliminating propagations along un-

realizable paths. A path is realizable if at every return-edge, the callee returns to the

caller that invokes it. One way to ensure only realizable paths is to independently

analyze each procedure for each of its calling contexts, where a context is the chain

of call sites starting from a call in the root procedure. This method has exponential

costs. Many methods have been proposed to reduce the cost, such as the Reps et

al.’s algorithm [121], the use of Binary Decision Diagrams [150, 157], and the use of

Partial Transfer Functions [153].

Top-down context-sensitivity aims at preventing the context-loss problem,

which is imprecision in the callee due to the merging of flow values from different

24

calls. Consider the following example:

main() {
a=2; b=3;

foo(a,b);

foo(b,a);

}
foo(x,y) {
z=x+y;

printf("%d", z);

}

Based on the two calls to foo, the parameters x, y can have values 2 and 3,

so that the variable z can hold values 4, 5, or 6. However, if the two calls are

analyzed separately, then z can only have value 5. One way to prevent the context-

loss problem is to analyze each call separately. Previous work, such as Reps et al.’s

algorithm, cannot prevent such a problem.

In contrast, a context-insensitive analysis can propagate flow information

along unrealizable paths, and it also does not prevent the context-loss problem. It

is therefore less precise, but it is also less expensive in space and time, because it

does not distinguish calling contexts when analyzing a procedure.

There are two reasons why a context-insensitive analysis may be chosen in-

stead of its context-sensitive counterpart. First, context-sensitive analysis is expen-

sive due to the exponential number of possible contexts, while in a context-insensitive

analysis, the number of contexts is the same as the number of procedures. Hence, a

context-insensitive analysis is more feasible for large programs. Second, a context-

insensitive analysis provides sufficient precision for certain applications, such as in-

traprocedural versions of liveness analysis, reaching definition analysis, and constant

propagation.

Nevertheless, context-sensitive analysis is sometimes preferred, as it evidently

25

improves analysis precision [145, 156, 54, 83]. Other results also suggest a context-

sensitive analysis is not necessarily prohibitively expensive [141].

Like flow-sensitivity, context-sensitivity is also a spectrum, so that there

are other levels of context-sensitivity besides the options described above. A non-

exhaustive list of context-sensitivities includes:

• Fully context-sensitive (CS): every invocation context is analyzed separately.

• Context-insensitive (CI): every invocation of a procedure is analyzed using

same context information.

• Bottom-up: excludes unrealizable paths in the propagation of flow values.

• Top-down: analyzes invocation contexts in such a way that prevents context-

loss problem.

• Subset: every invocation of a subset of procedures is analyzed separately, while

other procedures are analyzed context-insensitively.

• Context merge: partition invocation contexts of each procedure so that con-

texts in each group are analyzed using same context information. This tech-

nique is the focus of our Relevance-Based Context-Sensitive analysis, which

we will describe in Chapter 5.

• Object sensitive: in object-oriented languages, each method is analyzed sepa-

rately for the different receiver and parameter types [95].

Note that except for CS and CI (which are the two ends of the spectrum), other

options are not necessarily mutually exclusive. For example, Subset, Bottom-up,

and Top-down can be easily combined. Such flexibility proves to be important in

26

designing fast and precise algorithms. For example, the Client-Driven algorithm [54]

uses the Subset context-sensitivity to improve scalability of pointer analysis while

maintaining a high level of precision.

2.2.4 Memory Model

In order to approximate the run-time behavior of a program, static program analysis

needs to estimate the layout and/or contents of memory locations, including that

of heap-allocated variables. For example, it has to find out the possible values of

pointer and reference variables in order to compute liveness analysis or reaching

definitions. This section explains the need for a memory model and how the various

options influence analysis precision and cost.

The memory locations used by a program consist of local variables, global

variables, heap variables, and derivative locations such as array elements and fields

of aggregates. At runtime, a program can request an unlimited number of mem-

ory locations (bounded only by available virtual memory). Since resolution of all

memory references requires execution, it must use an abstraction model.

We assume the model uses an abstract object to represent one or more vari-

ables. The level of detail in this model influence the precision of the analysis. For

example, if a single abstract is used to represent all heap variables, then assignment

to any pointer dereference *p will modify the value of another pointer *q. A more

precise memory model will discover that the two pointers have disjoint points-to

sets, hence avoiding the superfluous update.

Since programs use different types of variables, the memory model has dif-

ferent options that affect these variables:

• Arrays:

27

The simplest way to represent array elements is to use a single abstract object

(Singleton) to represent all elements of an array. In this model, operations

on any element are assumed to apply to all elements of the same array. A

more precise model is needed to parallelize a program or to verify correctness,

such as ensuring array accesses are in bounds. Such model uses additional

techniques to compute the array indices or properties of array elements [91,

14, 45]. Previous work on these techniques did not discuss their complexities.

• Field-Sensitivity:

Modern programming languages offer aggregate data structures, such as C’s

struct and union. There are at least three options on how to deal with them.

A field-sensitive analysis treats each field of a struct as if it is a separate

variable. Such details are useful for many programs whose aggregate fields

carry useful information for the analysis. A field-insensitive analysis discards

field information so that a single variable is used to represent the aggregate.

This lack of details may be appropriate if, say, the analysis only needs to focus

on scalar variables. A field-based analysis [110] treats all instances of a field

as a single variable.

These options can be useful for different purpose. For example, a thread escape

analysis [154] can use a hybrid approach that focuses on fields of the Runnable

type in Java and ignore fields of other types.

Among these three options, field-sensitive analysis is the most precise but

is also the most expensive in space. Previous work reports faster analysis

time when field-insensitivity is used [110], though no complexity comparison

is reported. Interestingly, based on our own experience, a field-insensitive

analysis can be either more or less expensive in time. It is more expensive

28

when it artificially introduces dependences between fields so that the analysis

takes longer to converge to a fix-point.

For weakly-typed languages where there is no explicit type declaration for vari-

ables, Ramalingam et al. [115] present a fast technique to discover aggregate

structures.

• Heap Model:

In the simplest heap model, a single abstract object (Singleton) is used to

represent all heap-allocation variables. This simple model is suitable for anal-

yses that are uninterested in any property of any heap variables. A more

precise model is to use an abstract object for each allocation statement (Allo-

cation site) in the program. This model can be improved further in a context-

sensitive analysis: if the procedure containing an allocation statement is an-

alyzed context-sensitively, then the new model uses one abstract object per

context for that allocation statement (Allocation context). This high level of

detail is sometimes necessary in order for the analysis to be precise [54, 105].

For example, after detailed examination of the behavior of an analysis that

searches for security vulnerabilities [54], we conclude that the precise heap

model is necessary to avoid false positives.

• Heap Layout:

For programs that extensively use heap-allocated data structures such as linked

lists or trees, the above models are not precise enough for applications such

as proving a tree is acyclic. These applications need a model such as that

provided by shape analysis [81, 68, 20, 64, 44, 43, 134, 151, 122, 26, 72, 88,

57, 123, 124], which is a collection of techniques used to statically determine

29

layout properties of heap-allocation data structures. Existing techniques vary

in their applicability to different types of data structures and in their precision.

Many of these techniques are also very expensive, up to doubly-exponential in

analysis time.

2.3 Selected Subset in Analysis Space

The previous section has defined a space of program analyses. This section explains

how and why this dissertation chooses a subset of algorithms to focus on. It also

briefly explains how our new techniques improve existing algorithms.

The space of algorithms contains a set of highly-precise analyses. Previous

work on analyses such as security vulnerabilities analysis provides evidence that

these properties are essential to achieve high precision [54]. Program slicing, an

important and useful tool for software engineering, is another analysis example

where flow- and context-sensitivity are very important for precise results [144].

It is this subset in the space of algorithms that this dissertation focuses on:

we aim to improve the scalability of these analyses while preserving high precision.

This subset can be described by the analysis properties. We recognize that some-

times, for specific analysis problems and input programs, modifying an analysis

property does not affect the precision provided by the analysis. Therefore, we focus

on algorithms that provide the same level of precision as an algorithm A with the

following properties:

• Flow-sensitivity: The analysis A is flow-sensitive, with no restriction on whether

relational attributes are used.

• Context-sensitivity: The analysis A provides at least bottom-up context-

30

sensitivity.

• Memory model: The analysis A is field-sensitive but does not distinguish ele-

ments in an array. In addition, separate abstract objects are used to represent

heap variables allocated by different statements and calling contexts.

2.3.1 Complexity

This dissertation aims to improve the scalability of analysis algorithms with the

chosen properties. Here we briefly state the best-known complexity of previous

algorithms with the chosen set of properties, and explain how our new algorithms

improve existing work.

The complexity associated with flow-sensitivity depends on the analysis prob-

lem: the analysis time can be as high as exponential time [102]. The experiments

in this dissertation consist of pointer analysis and analyses that search for secu-

rity vulnerabilities. If a context-insensitive analysis is used, then the analysis has

asymptotic complexity of PSPACE-Complete [18].

Context-sensitive analysis is also generally exponential in time due to the

number of possible contexts. Recently, the use of Binary Decision Diagrams [150,

157] enables analysis to grow with the number of procedures, but the technique is

not yet shown to be efficient for flow-sensitive analysis.

Complexity for the choice of memory model is as follows:

• The simple model to represent array elements adds constant time and space

overhead for each array.

• The space overhead due to field-sensitive analysis is linear with respect to

the number of fields per aggregate. While this translates to additional time

31

overhead, as mentioned before, it is unclear exactly how this model affects how

fast the analysis can converge to a fix-point.

• Since the heap model is tied to the number of contexts, the space and time

overhead is directly dependent on the adopted level of context-sensitivity.

Our new algorithms do not improve theoretical worst-case complexities of

existing algorithms. In practice, however, our experiments show significant im-

provements. This is because our techniques rely on certain features found in many

real programs so that the pathological worst-case scenarios seldom occur. Our three

techniques and their experimental results are presented in Chapters 4–6. To summa-

rize, our algorithms enable many analyses on large programs to complete successfully

when previous techniques run out of memory. For other programs, we achieve many

times speedup.

32

Chapter 3

System Design and Evaluation

Methodologies

3.1 System Design

This chapter describes the architecture and implementation of our compiler system.

We focus on describing the important unique features of our system, as well as

defining terms used in the rest of the thesis. These features and terminologies are

important in the evaluation of our contributions in this thesis.

The second part of this chapter describes some aspects of our evaluation

methodology that are common to many of our experiments.

3.1.1 Overall System Architecture

We evaluate our ideas by performing all our experiments using the Broadway infras-

tructure [56, 51, 53, 52]. At the core of the compiler is an iterative dataflow analysis

framework. It performs interprocedural and whole-program analysis, with features

33

including an integrated pointer analysis with configurable precision (Section 3.1.3).

If a client analysis is specified, it is also performed together with the pointer analysis

(Section 3.1.7). Table 3.1 provides a summary of the default behavior of important

features. We choose these default settings because they generally help us achieve

more precise results. The next few subsections provide details for other features.1

Feature Default Setting Other Options

pointers representation points-to sets using storage shape graph unification-based [140]

flow-sensitivity configurable

context-sensitivity configurable

assignments uni-directional bi-directional

memory model see Section 3.1.4

aggregate model field-sensitive field-insensitive, field-based [110]

pointer arithmetic limited to pointers within an object (assume program is correct)

arrays all elements represented by a single node

libraries uses Broadway annotations

Table 3.1: Some features in the analysis framework: Their default behavior and
other available options.

3.1.2 Analysis Framework

We assume an input program with a root procedure (e.g., the procedure main in C

programs). Each procedure is represented by a control flow graph (CFG) where

each node is a basic block. Figure 3.1 shows the pseudocode that highlights the

basic and essential features of the framework that drive the analysis on the input

program. As we discuss our work in later chapters, we will add more details or add

routines to this generic version. The code is recursive and iterative:

1. Starting with the root procedure, the routine analyzeProc processes each

procedure by using a worklist of basic blocks, one worklist per procedure.

1Note that Guyer is the principle designer of the compiler, and his thesis provides many other
details [52]. This chapter highlights several important compiler features relevant to the subjects of
this dissertation.

34

analyzeProc(proc) {
worklist = cfgNodes(proc) {
while worklist 6= ∅ do {

blk = remove front(worklist);

for stmt s in blk do {
apply ptr analysis on s;

if ∃ client analysis

apply client analysis on s;

if s is CALL then

analyzeCall(proc, s);

}
if changed then

addWorklist(worklist);

}
}

analyzeCall(proc, call) {
proc′ = callee(call);

if proc′ 6∈ callstack then {
callstack = callstack ‖ proc′;

import(proc, proc′);

if needReanalysis then

analyzeProc(proc′);

export(proc′, proc);

callstack = callstack − proc′;

} else {
import(proc, proc′);

}
}

Figure 3.1: Analysis framework: Algorithm to analyze a procedure.

2. When a block is removed from the worklist, the analysis processes the block’s

statements in consecutive order.

3. Each statement is processed according to the type of operations. Pointer

analysis is first performed on the statement, followed by a client analysis, if

any is specified (see Section 3.1.7). If any update by either analysis is detected,

additional blocks are added to the worklist.

4. If the statement is a procedure call, analyzeCall is invoked, which prepares

to analyze the called procedure:

• A stack is maintained to keep track of the current chain of calls.

• Flow values are imported from caller to callee.

• analyzeProc is called to begin analysis on callee.

• After analysis on callee is complete, flow values are exported back to

caller.

• The stack is updated by removing the callee.

35

The exception to the above steps is when recursion is detected by stack in-

spection, in which case analysis on the recursive call is skipped, except to

export the known side effects of the callee to the current caller. This export

is necessary to achieve soundness in the analysis of the recursive procedures.

5. Analysis on a procedure completes when its worklist is empty, at which point

the framework collects a list of updated flow values that need to be propagated

back to the caller. It then backtracks to the call site and resumes analysis on

the caller.

3.1.3 Precision Dimensions

The analysis framework provides configurable precision modes. As we mentioned

earlier, context-sensitivity and flow-sensitivity are two dimensions of precision.

In context-sensitive (CS) analysis, the framework analyzes each procedure in-

dependently for each of its calling contexts. On the other hand, in context-insensitive

(CI) analysis, flow information is merged at procedure entries, before analysis on

the procedure proceeds. After CI analysis on the procedure completes, its list of

updated flow values are collected, which are then propagated back to the callers.

The same happens in CS analysis, except the values are propagated only to the

calling call site. Context-sensitive analysis is more precise but also more expensive

in space and time.

Broadway also allows a subset of procedures to be analyzed context-sensitively,

while others are analyzed context-insensitively. The flexibility gives rise to a spec-

trum of context-sensitivity, which is sometimes described as different levels of context-

sensitivity. For convenience, when a procedure P is analyzed context-sensitively, we

say P is a context-sensitive procedure; otherwise, we call P a context-insensitive

36

procedure.

In flow-sensitive (FS) analysis, the analysis computes solutions of each vari-

able at each statement. In flow-insensitive (FI) analysis, only one solution is com-

puted for each variable by merging all its flow values and storing only the merged

value. Flow-insensitive analysis is generally less precise, but it consumes less space

and time.

Broadway also allows a subset of variables to be analyzed flow-sensitively.

This flexibility gives rise to different levels of flow-sensitivity. For convenience, if a

variable is analyzed flow-sensitively, we call it a flow-sensitive variable; otherwise,

we call it a flow-insensitive variable.

Broadway always performs sound analysis. That is, for any dataflow fact

that occurs due to an actual execution of the input program (e.g., “pointer p points

to variable x”), the result of the analysis must contain that fact.

3.1.4 Memory Model

This section explains how our compiler models the memory utilized by an program,

i.e., the abstraction used to represent the local and global variables and objects

allocated on the heap.

The system uses a data structure, called memoryBlock to represent program

variables. The data structure is used to store the flow values computed on the

variables. The memory model determines how the system creates new instances of

memoryBlock for the variables.

Two factors in the model are the type of variables and context-sensitivity

used in the analysis. There are three types of variables. The first consists of local

variables and formal parameters, the second is the global variables, and the third is

37

the heap variables, i.e., abstract representations for memory locations allocated on

the heap. The default treatment of each type of variable is as follows. For the local

and formal parameters, assuming the variable is local to procedure P , then there is

only one instance of memoryBlock if P is a context-insensitive procedure. Otherwise,

when P is a context-sensitive procedure, there is one instance of memoryBlock for

each calling context of the procedure. Each global variable has one memoryBlock

for the entire analysis. Lastly, the heap variables are treated like a local variable,

local to the procedure that contains the allocation site.

These treatments are the default behavior of the memory model, and we call

it the default memory model. Other options are:

• context-insensitive memory model: only one instance of memoryBlock for each

local variable or each allocation site, regardless of whether the enclosing pro-

cedure is context-sensitive.

• context-insensitive heap model: only one instance of memoryBlock for each al-

location site, regardless of whether the enclosing procedure is context-sensitive.

Sometimes, a model that uses fewer memoryBlocks can lead to less precise

results. Therefore, unless otherwise stated, we will use the default model for all

experiments in this thesis.

3.1.5 Definitions and Uses

The dataflow analysis needs a way to keep track of dataflow values. The obsolete

way to do this is to store all “incoming” flow values at a statement in an “IN” set.

Operations in the statement cause some side effects on these flow values, and the

net result is then stored in an “OUT” set, which is then propagated to the successor

statements. This method is highly inefficient because the IN/OUT sets can be large

38

for analyses such as pointer analysis. In addition, the side effect of each statement

is often small, so there is no difference in most flow values between the IN and OUT

sets of a statement.

Broadway uses the following data structures to store and propagate flow

values. Given a statement d containing modification to a variable, we use a data

structure called “def”, D, to represent the modification. Similarly, assume another

statement u containing reference to the same variable, we use a data structure “use”,

U , to represent the reference. If there is no other definition between the statements

d and u, then a use-def chain is created. Each chain is a pointer, stored in the use

U , pointing to the def D. Section 3.2.2 explains how use-def chains are computed.

Flow values for a variable are stored at the defs. To obtain the value at

a use site, the use-def chain is used to retrieve the flow value. Broadway uses

factored Static Single Assignment (SSA) [32] forms for all variables, including heap

variables. SSA has well-understood properties: every use U has a unique definition

D. To enforce this property, defs are also created at basic block entries and, in the

case of context-insensitive analysis, at procedure entries. These definitions serve to

merge flow values from different incoming paths to the blocks or procedures. These

defs are also know as φ-functions and interprocedural φ-functions, respectively. For

example, assuming a basic block has k predecessors, each φ-function has the form

D = φ(U1, U2, . . . , Uk) (3.1)

where D is the def, and each Ui is a φ-use, whose purpose is to store the pointer to

the def coming in from the ith predecessor.

Since we only compute a single (merged) flow value for each flow-insensitive

variable, the system creates only one def and one use for the variable, with a use-def

39

chain between the two. Any update to the variable leads to update of this unique

def, so that any reference to the variable will lead to the flow value stored in this

def.

Sometimes it is also useful to compute def-use chains. Such chains are point-

ers to uses, and they are stored in each def. Chapter 4 describes how def-use chains

develop efficient worklist algorithms.

3.1.6 Pointer Analysis

Broadway contains an integrated pointer analysis. The different levels of context-

and flow-sensitivity gives rise to a spectrum of pointer analysis algorithms. These

algorithms differ in time and space complexity. Among all possible instances are

four fixed-mode algorithms:

• FICI: all procedures are analyzed context-insensitively, and all variables are

analyzed flow-insensitively.

• FSCI: all procedures are analyzed context-insensitively, and all variables are

analyzed flow-sensitively.

• FICS: all procedures are analyzed context-sensitively, and all variables are

analyzed flow-insensitively.

• FSCS: all procedures are analyzed context-sensitively, and all variables are

analyzed flow-sensitively.

Note that the heap model can be varied independently of these precision modes.

Generally, the precision mode, or precision policy, of the algorithm directly

affects the quality, or precision, of the output. Given two sound pointer analyses with

the same memory model (see Section 3.1.4), if the results of algorithm A contains

40

larger points-to sets than that computed by algorithm B, we say the output of

algorithm B is more precise, and hence algorithm B is more precise. For example,

among the four fix-mode pointer analyses, generally the FICI pointer analysis is the

most efficient but is also the least precise, while the FSCS pointer analysis is the

most expensive and most precise.

3.1.7 Client Dataflow Analysis

If a client analysis is specified, Broadway will perform the pointer analysis and

client analysis side by side, as described in Section 3.1.2. We call it a client analysis

because it requires solutions to the pointer analysis.

Broadway has a few built-in client analyses, such as constant propagation

and liveness analysis. It also provides a lightweight annotation language [55] that

can be used to define new dataflow analyses and actions, such as transforming the

program or reporting an error [53].

These actions are triggered by the results of the analysis. Specifically, the

client analysis must define a set of queries at specific locations in the program (e.g.,

at all calls to a certain library routine). Each query checks if a specific dataflow

fact, or a combination of dataflow facts, is valid at that location. When the query

is evaluated to be true, the corresponding action or actions are triggered.

Section 3.3.2 will describe some client dataflow analyses that we use in our

study.

3.1.8 Precision and Accuracy

The quality of the output produced by the client analysis depends on the output

quality of the pointer analysis, as well as the precision mode used by the client

41

analysis. By default, unless otherwise stated, we will assume the client analysis uses

the same precision policy as the pointer analysis.

Section 1.2.1 defines the meaning of accuracy for combinations of analyses,

such as a pointer analysis and a client analysis. For example, for the same analysis

problem that finds security vulnerabilities in programs containing pointers, a com-

bined analysis that reports no errors in a program is more accurate than another

that reports multiple errors (assuming that both are sound analyses).

In a combined analysis, a change in precision policy does not always have

the same visible effect on the analysis accuracy for all input programs. For example,

compared to using a FICI pointer analysis, accuracy might be improved if a FSCI

pointer analysis is used on one program but not another. In other words, any

effect on the accuracy depends on whether the right precision level of pointer and

client analyses is used for a given specific program. This observation leads to two

outcomes:

• When two analysis algorithms with different precisions yield no difference in

the client analysis output accuracy, then the algorithm with lower time and

space complexity is desired.

• Automatically searching for the “optimal” precision policy is the motivation

behind the Client-Driven analysis [54], as well as the Relevance-Based Context-

Sensitive algorithm we developed, which will be presented later in Chapter 5.

3.1.9 Library Routines

Broadway does not analyze the source code of library routines. Instead, it relies on

the same built-in annotation language [55] mentioned earlier to model the behav-

iors of these routines. At each call to a library routine, Broadway interprets the

42

annotations to update the state of the analyses, such as applying the side effects of

the routines at the call sites. The advantage of using the annotations are (1) we do

not have to deal with the library source code, and (2) we can accurately model the

behavior of client analyses in these routines.

For example, consider a call strcpy(dst,src): the pointer analysis will

create uses for each variable that src points to, and create defs for each variable

that dst points to; if a client analysis is present, then its associated property value

is passed on from the source strings *src to the target strings *dst.

3.2 Implementations

This section briefly summarizes some data structures used internally in the Broad-

way compiler. At the end of the section, we also provide a list of known limitations.

3.2.1 Program Representation

Broadway uses a data structure called a location tree to represent program locations.

The tree is constructed from three types of nodes:

• Statement locations represent statements in the program.

• Basic block locations represent basic blocks; one of their main purposes is to

represent control merge points in the procedures. The children of a basic block

location are the statement locations corresponding to the statements in the

block.

• Procedure locations represent procedures; these locations also serve to rep-

resent interprocedural merge points at procedure entries. The children of a

43

procedure location are the basic block locations representing the blocks in the

procedure.

The above tree data structure can represent a procedure and is adequate for

context-insensitive analysis: a forest of trees is used to represent the program, one

tree per procedure. To support context-sensitive analysis, we need two changes: (1)

allow each statement location to have a procedure location as a child, and (2) allow

multiple instances of procedure locations per procedure. The idea is that since we

want to analyze each procedure independently for each of its calling contexts, we

use a separate procedure location instance for each context. The parent of each pro-

cedure location is the statement location that represents the calling context. From

each clone of the procedure location is the location subtree consisting of clones of the

basic block locations and statement locations. Assuming there is no recursion, the

entire program is now represented by a single location tree, with the root procedure

as the root of the tree.

The data structure is flexible enough to support other levels of context-

sensitivity too. For example, when only a subset of procedures is context-sensitive,

we always clone the procedure location (and subtree) for each context-sensitive

procedure, and we allow only one copy of this procedure location (and subtree) for

each context-insensitive procedure.

3.2.2 Dominance Relation and Reaching Definitions

By definition, a statement s dominates another statement t in the same procedure if

every path from the procedure entry to t must pass through s. Dominance relations

are used in the computation of use-def chains (see Section 3.1.5), which must satisfy

the following properties (def-use chains share the same properties):

44

• Because we are using SSA form, for every use-def chain 〈u, d〉, the def d must

dominate the use u.

• There must be no other def between the d, u pair; i.e., there exists no other

def that dominates u and is itself dominated by d. In other words, d is unique

if it exists. We say that d is the nearest reaching definition of u.

To compute the nearest reaching definition for a given use, Broadway first

needs an efficient representation of the dominance relation, and it needs another

data structure that facilitates fast lookup: from among a list of definitions, which

is the nearest reaching definition for a given use? These two data structures are

explained in the remainder of this section.

Dominator Tree

Broadway first builds a dominator tree [87, 4], where the nodes are the CFG basic

block nodes. A node m in the tree is an ancestor to node n in the tree if and only

if m dominates n. Figure 3.2(a,b) shows two examples of dominator trees for two

procedures.

On each dominator tree, we can assign to each node n a preorder number and

a postorder number, denoted min(n) and max(n), respectively. These numbers are

assigned by performing a depth-first traversal and incrementing a counter each time

we move either up or down the tree. Figure 3.2(b) shows the numbers assigned to

the example dominator trees. The number to the left of each node is its min number,

and the number to the right of each node is its max number. These numbers turn

out to be efficient representations for dominance relation. Specifically, given two

distinct statements m and n, m dominates n, denoted by DOM(m,n), if and only

45

b

c d

2

5

7

643

Q

hgf

e

4

1 8

6 7532

a
1 8

e

f g

h

a
1 16P

Q

Pa

b

d

c

calls Q

Q

hgf

e

5

2 15

7 14643

b

c

8

9

13

10
d

11 12

P

(a) (b) (c)

Figure 3.2: Node numbering on a dominator tree. (a) Control flow graphs for two
procedures and (b) their respective dominator trees, with node numbering. (c) Node
numbering on the expanded dominator tree: node a makes a call to procedure Q.

if the following condition holds:

DOM(m,n) iff min(m) < min(n) ∧ max(m) > max(n). (3.2)

In reality, the numbering on dominator trees is inadequate for Broadway

analysis, for two reasons. First, we are interested in dominance relations, not just

between basic blocks, but also between statements. Second, the dominator trees

cannot capture interprocedural dominance relations.

To overcome these problems, Broadway uses expanded dominator trees. Each

such tree is like a normal dominator tree, except that the nodes are the nodes

from a location tree (see Section 3.2.1) that represent statements, basic blocks, and

procedures.

In addition, just as a location tree can span procedure boundaries, an ex-

panded dominator tree can also have nodes belonging to different procedures. The

expanded tree can be built by logically composing the dominator trees of the dif-

46

ferent procedures. Specifically, if a procedure P calls procedure Q at a call site,

and Q is to be analyzed context-sensitively, then a clone of the dominator tree of Q

is attached to that of P so that (1) the node for the call site becomes the parent of

the root node in the dominator tree of Q, (2) the exit node in dominator tree of Q

becomes the parent of the return node for the call site, and (3) the edge between

the call and return nodes of the call site is removed.

The same node numbering algorithm is then used to label the nodes in the

expanded tree. Figure 3.2(c) shows the resulting expanded tree when the node a

contains a call to procedure Q. After the nodes are numbered, the Invariant (3.2)

also applies to the nodes in the expanded tree.

Broadway builds the location tree and numbers the dominator trees on the

fly during analysis: as the analyzer is processing statements, new nodes are created

if they are not yet created, and the min number is assigned using a counter. The

max number is assigned by a postorder portion of the depth-first traversal, whenever

analysis reaches the end of a basic block that does not dominate any others.

Nearest Reaching Definition

Using the dominator tree, Broadway stores all definitions of a variable in a list

satisfying the following invariant [152]: let di be the ith definition in the list, and let

ni be the statement associated with di; then the min of the statements are stored

in decreasing order:

∀i < j : min(ni) > min(nj)

⇒ ∀i < j : ¬DOM(ni, nj) (3.3)

To find the nearest reaching definition that strictly dominates a statement

47

m, we perform the following steps:

1. Perform a binary search to obtain the minimum i such that di in the list

satisfies min(ni) < min(m).

2. Perform a linear scan from i to the end of the list to find the first di such that

max(ni) > max(m).

For the resulting di, DOM(ni,m). Without the binary search, a linear search alone

(starting from i = 1) can still find the correct result if the DOM(ni,m) test is used,

because by Invariant (3.3), the first ni that dominates m must also be the nearest.

The first step, therefore, is to help speed up the search.

Whenever a new def is created, the list is updated by inserting the new def

into the list. The above two steps are used to determine where in the list to insert

the new entry, thereby preserving the invariant.

3.3 Evaluation Methodologies

This thesis contains many experiments with diverse goals. This section describes

common elements in these experiments: the metrics, analysis problems, benchmark

programs, and hardware platform.

3.3.1 Metrics

The goal of this dissertation is to improve the performance of dataflow analysis by

reducing redundancy. We focus on three primary metrics to measure performance:

analysis time, memory usage, and accuracy. Measuring client accuracy has the

advantage of helping us determine if the pointer analysis is effective with respect to

the dataflow problem.

48

Other static metrics, such as points-to sizes or alias sets, are less effective in

providing clear comparisons. For example, the sizes of points-to sets of two analyses

may be the same even when they disambiguate each pointer dereference to different

sets and have different effects on the client analysis. Therefore, a better approach

is to focus on measuring the effects on the client analysis.

Among our three components of the dissertation, none have the ability to

improve accuracy over other existing algorithms. Therefore, analysis time becomes

the focus, after we verify that the new algorithms do not degrade accuracy.

3.3.2 Client Analysis Problems

We use error-checking tools as clients to a pointer analysis and use the reported er-

rors as the metric to measure accuracy: when two analyses report different numbers

of errors, the one with the smaller number is more accurate. This interpretation

is possible because all our analyses are sound but incomplete. They are sound be-

cause if a program contains an error, then the client analysis will report it. They

are incomplete because they can sometimes report false positives, or false alarms,

which are reported errors even though the program does not actually contain them.

Therefore, an analysis with fewer false positives is more accurate.

We will use the five error detection analysis problems used previously to

evaluate the Broadway compiler [54]. These are realistic, non-trivial errors that

could cause significant damage. They are typestate analysis problems [142], that

involve tracking properties of data structures that cross procedure boundaries, and

they therefore require precise interprocedural analysis. Automatic detection of these

errors is, therefore, an important and challenging problem. The five errors we detect

are:

49

• File-Access: make sure files are open when accessed;

• Format String Vulnerability (FSV): make sure format strings do not contain

untrusted data [104];

• Remote-FSV: enhanced version of FSV that determines when vulnerabilities

are remotely exploitable;

• Remote Access Vulnerability (Remote-Access): make sure a remote hacker

cannot control sensitive procedures, such as execution of other programs;

• FTP-Behavior: make sure a program cannot be tricked into reaching and

returning contents of arbitrary local files.

Each of these problems defines a set of queries, where a query is a system or library

call in the program that may be the manifestation of an error (such as accessing a

closed file). The dataflow analysis will evaluate each query, which will yield either a

true or false answer; when the answer is positive, the client analysis will report an

error.

One more note about how we count reported errors: for context-sensitive

analyses, a query may be evaluated many times using different contexts. If a query

is evaluated to be positive under different contexts, the system will generate reports

for these errors separately, but it will only count them as one error. This is necessary

because if we count them as multiple errors, then a context-sensitive analysis will

easily count more errors than a context-insensitive analysis, leading to the misleading

impression that the context-insensitive analysis is more accurate.

50

3.3.3 Benchmarks

We use 19 open-source C programs for our experiments, which range from 2K–69K

lines of code, as listed in Table 3.2. These are the same set of benchmark programs

used by Guyer [52], except we add the largest program sendmail. These bench-

marks are realistic programs, some of which are system tools or daemons. Some of

these programs are known to contain certain errors. We use these moderately-large

programs to “stress-test” the scalability of our analyses, while at the same time

verify no precision loss due to our new algorithms.

These 19 programs and five analysis problems give us 95 combinations of

program and problem cases. The number of queries has a significant impact on

the performance, more so on some classes of algorithms, such as the Demand IFDS

algorithm (see Chapter 6). For this reason, we also tabulate the number of queries,

shown in Table 3.3.

3.3.4 Platform

The experiments are conducted on a 1.7GHz Pentium 4 with 2GB of main memory,

running Linux 2.6.17.4. Our system is implemented entirely in C++ and compiled

using the GNU g++ compiler version 3.3.4.

51

Program Description LOC Procs Stmts CFG nodes Call sites

stunnel 3.8 Secure TCP wrapper 2K 42 2,067 511 417

pfingerd 0.7.8 Finger daemon 5K 47 3,593 899 545

muh 2.05c IRC proxy 5K 84 4,711 1,173 666

muh 2.05d IRC proxy 5K 84 4,921 1,245 669

pureftpd 1.0.15 FTP server 13K 116 10,772 2,537 1,180

crond (fcron-2.9.3) cron daemon 9K 100 11,252 2,426 1,249

apache 1.3.12 (core only) Web server 30K 313 16,717 3,933 1,727

make 3.75 make 21K 167 18,787 4,629 1,855

BlackHole 1.0.9 E-mail filter 12K 71 20,227 4,910 2,850

openssh client 3.5p1 Secure shell client 38K 441 21,601 5,084 4,504

wu-ftpd 2.6.0 FTP server 21K 183 22,185 5,377 2,869

wu-ftpd 2.6.2 FTP server 22K 205 23,130 5,629 2,946

named (BIND 4.9.4) DNS server 26K 210 23,405 5,741 2,194

privoxy 3.0.0 Web server proxy 27K 223 23,615 5,765 3,364

openssh daemon 3.5p1 Secure shell server 50K 601 28,877 6,993 5,415

cfengine 1.5.4 System admin tool 34K 421 38,232 10,201 6,235

sqlite 2.7.6 SQL database 36K 386 43,489 10,529 3,787

nn 6.5.6 News reader 36K 493 47,058 11,739 4,104

sendmail 8.11.6 Mail server 69K 416 67,773 15,153 7,573

Table 3.2: Properties of the benchmarks. Lines of code (LOC) are given before
preprocessing. Statistics do not include those inside library routines. The programs
are sorted according to the number of CFG nodes. Table 3.3 shows more properties
regarding the benchmarks.

52

File Remote Remote FTP

Program Access FSV FSV Access Behavior

stunnel 3.8 11 11 11 3 8

pfingerd 0.7.8 104 102 102 7 94

muh 2.05c 16 15 15 8 12

muh 2.05d 16 15 15 9 12

pureftpd 1.0.15 14 18 18 46 9

crond (fcron-2.9.3) 225 198 198 27 216

apache 1.3.12 (core only) 113 105 105 11 109

make 3.75 189 124 124 15 180

BlackHole 1.0.9 476 534 534 106 436

openssh client 3.5p1 87 121 121 4 69

wu-ftpd 2.6.0 54 349 349 50 19

wu-ftpd 2.6.2 54 348 348 53 19

named (BIND 4.9.4) 460 597 597 13 446

privoxy 3.0.0 20 110 110 14 15

openssh daemon 3.5p1 78 98 98 14 59

cfengine 1.5.4 982 1503 1503 101 970

sqlite 2.7.6 77 115 115 5 73

nn 6.5.6 201 157 157 46 132

sendmail 8.11.6 1003 1134 1134 55 952

Table 3.3: Properties of the benchmarks, continued from Table 3.3. The table
shows the number of queries in the programs used by the five analysis problems (see
section 3.3.2).

53

Chapter 4

Efficient Flow-Sensitive

Interprocedural Dataflow

Analysis

4.1 Introduction

Flow-sensitive analysis is important for problems such as program slicing [144] and

error checking [42, 54]. While recent work with BDD’s has produced efficient algo-

rithms for solving a variety of flow-insensitive analyses [150, 157], these techniques

have not translated to flow-sensitive problems. Other techniques, such as demand

interprocedural analysis [70], do not apply to pointer analysis. Thus, the most gen-

eral technique for solving flow-sensitive problems continues to be iterative dataflow

analysis. Existing iterative dataflow analysis algorithms work well within a single

procedure, but they scale poorly to interprocedural analysis, because they spend

too much time unnecessarily reanalyzing parts of the program.

54

At issue is the manner in which worklists are managed, which can greatly

affect the amount of work—and unimportant computations—performed during each

iteration. The most basic algorithm maintains a worklist of basic blocks for each

procedure. Basic blocks are repeatedly removed from the worklist and applied with

flow functions. If any changes to the flow values occur when a block is processed,

we say the block visit is useful, all reachable blocks are added to the worklist. This

basic algorithm becomes extremely inefficient when used for interprocedural analy-

sis: when reanalyzing a block containing procedure calls, the algorithm may revisit

all of the called procedures, even though many of them may not require reanaly-

sis. In other words, the same computations are repeated needlessly. Extensions to

this basic algorithm, such as Hind and Pioli’s priority queue approach [67], which

considers the structure of the control flow, also suffer from this problem of useless

work. For example, when the Hind and Pioli algorithm is applied to the nn program

(approximately 36K lines of C), we find that only 3% of the basic block visits are

useful—the others do not update any flow values.

p = &x;

while (cond) {

y = x;

*p = 7;

p = &z;

}

y = z;

Figure 4.1: A loop example.

In this chapter, we present a new algorithm for interprocedural iterative

dataflow analysis that is significantly more efficient than previous algorithms. The

algorithm exploits data dependences to reduce the number of times that blocks are

revisited. The algorithm builds on an insight from previous work on intraprocedural

algorithms: def-use chains can be used to directly identify those blocks affected

55

by flow value updates [147]. This goal, however, is complicated by the fact that

the computation of def-use chains is itself an expensive flow-sensitive computation,

particularly in the presence of pointers. The example in Figure 4.1 shows why: the

first time through the loop, “*p” refers to x and, therefore, implies a def-use chain

to the statement above it. The second time through the loop, however, “*p” refers

to z, which implies a def-use chain to the block following the loop.

Our algorithm solves this problem by computing data dependences on the

fly, along with precise pointer information, while solving the client dataflow analysis

problem. The key to our approach is that as the pointer analysis computes the uses

and defs of variables, it builds a network of use-def and def-use chains; the use-def

chains enable fast lookup of flow values, while the def-use chains are used to nar-

row the scope of reanalysis when flow values change. Initially, the framework visits

all basic blocks in a procedure to compute a first approximation of (1) the pointer

information, (2) the data dependences, and (3) the client dataflow information. Sub-

sequent changes in the flow values at a particular def only cause the corresponding

uses to be reanalyzed. More importantly, our system incorporates new dependences

into the analysis as the pointer analysis discovers them: changes in the points-to

sets cause reevaluation of pointer expressions, which in turn may introduce new

uses and defs and force reevaluation of the appropriate parts of the client analysis

problem. Occasionally, we find pairs of basic blocks connected by large numbers of

def-use chains. For these cases, we have explored a technique called bundling, which

groups these def-use chains, so they can be efficiently treated as a single unit.

56

4.1.1 Contributions

This chapter makes the following contributions. First, we present a metric allow-

ing us to compare the relative efficiency of different worklist algorithms. Second,

we present a new worklist management algorithm, which significantly improves ef-

ficiency as measured by our metric. Third, we evaluate our algorithm by using it

as the dataflow engine for an automated error checking tool [54]. We compare our

algorithm against a state-of-the-art algorithm [67] on a large suite of open-source

programs. We show that improved efficiency translates into significant improve-

ments in analysis time. For our set of 19 open-source benchmarks, our algorithm

improves efficiency by an average of 500% and improves analysis time by an average

of 55.8% when compared with the Hind and Pioli algorithm. The benefits of our

algorithm increase with larger and more complex benchmarks. For example, the nn

benchmark sees an order of magnitude improvement in efficiency, which translates

to a 90% improvement in analysis time.

This chapter is organized as follows. Section 4.2 briefly describes the analysis

framework. Section 4.3 presents our worklist algorithm, DU , that enables sparse

analysis, and a variant, DUloop , that exploits loop structures. Section 4.4 presents

our empirical setup and results. We conclude in Section 4.5. We review related

work later in Section 7.1.

4.2 Analysis Framework

This section reviews the background regarding our dataflow analysis framework,

including details about how we efficiently compute reaching definitions using domi-

nance information. Some additional details can be found in earlier in Chapter 3.

We assume an iterative-based whole-program flow-sensitive pointer analysis

57

that uses a worklist for each procedure, where each worklist maintains a list of unique

CFG blocks. An alternative is a single worklist of nodes from a supergraph [103],

eliminating procedure boundaries, but we believe that such a large worklist would

be too expensive.

Our algorithm requires accurate def-use chains. (Recall that Section 3.1.5

describes the properties of defs and uses.) Since definitions are created on the

fly during pointer analysis, we need to update chains whenever a new definition

is discovered. To perform such updates efficiently, we assume SSA form for all

variables, including heap objects. SSA has well-understood properties: every use

u has a unique reaching definition d, and d must dominate u if u is not a phi-

use. These properties, together with dominance relations (described below), allow

us to quickly determine if a newly-discovered definition invalidates any existing

def-use pairs. Finally, to merge flow values at different call sites, the system uses

interprocedural φ-functions at procedure entries.

Our system does not use IN/OUT sets to propagate flow values [24], because

their use would mandate a dense analysis: any update on a node would force all of its

successors to be revisited. Our sparse analysis instead uses dominance information

to efficiently retrieve flow values across use-def chains. Section 3.2.2 explains how

we efficiently compute the reaching definition of any given use of a variable.

4.3 DU : Worklist Management

Our algorithm is based on the following idea: use def-use chains to identify those

blocks that may be affected by the most recent updates, thereby exploiting the

sparsity of the analysis. To compute def-use chains in the presence of pointers, we

present DU , a worklist algorithm coupled with pointer analysis. This algorithm can

58

Figure 4.2: An example CFG.

exploit both intra- and interprocedural def-use chains.

To simplify our presentation, we start off with a naive, inefficient version and

gradually add details to build our full version at the end of this section. We will use

the program in Figure 4.2 as a running example.

4.3.1 Structure of a Worklist Algorithm

The left box of Figure 4.3 provides a high-level description of a generic worklist

algorithm. It maintains a queue of CFG blocks, initially set to include all blocks

in reverse post-order. The pointer analysis retrieves and analyzes one block from

the worklist. The pointer analysis then identifies the set of changes, which is the

set of variables whose flow values have been updated. The algorithm then uses a

function R to compute and add to the worklist the blocks that will be revisited. The

worklist may then be reordered, as we discuss in Section 4.3.8. The entire process is

repeated until the worklist becomes empty. Different implementations differ in the

computation of R and in the worklist reordering.

59

4.3.2 Naive Worklist Algorithms

The behavior of the function R is crucial to the worklist efficiency. If we do not

know which blocks are affected by the changes in the last block visit, then we must

conservatively return all the reachable blocks of the given block n. We refer to this

version as Rreach, shown in the right box of Figure 4.3. Considering the example in

Figure 4.2, suppose we have just revisited the loop header (block 1), where a new

φ-function for variable x is created. Rreach will return blocks 2–9, for a total of 8

blocks.

4.3.3 Worklist Algorithm Using Intraprocedural Def-Use Chains

Rreach is easy and cheap to compute, but it adds too many blocks. We introduce

RDU , shown in the right box of Figure 4.3. This function iterates over the set of

variable changes, retrieves their last definitions in the block, and obtains their use

sites in the procedure. The blocks containing these use sites are returned and added

to the worklist. For now, assume that only intraprocedural def-use chains are used.

In the example of Figure 4.2, only two blocks (7 and 8) are returned by RDU , so

RDU is more efficient than Rreach.

4.3.4 Dynamic Def-Use Computation

Def-use chains are computed on the fly as new pointer information is discovered, so

the worklist algorithm needs to be aware that some defs may temporarily have no

uses. As we shall see, the solution requires a new form of communication between

the pointer analysis and the worklist algorithm.

New definitions are created at indirect assignments, function calls, and φ-

functions. There are three cases to consider: (i) a new def leads to a new φ-function,

60

Initially:

WL = reverse_post_order(CFG)

Main loop:

while WL 6= ∅ do

block n = remove_front(WL);

var changes = visit_block(n);

if var changes 6= ∅ then

more = R(n, var changes);
merge(more, WL);

Rreach(n, var changes) {
return reachable_blocks(n);

}
RDU (n, var changes) {
for v ∈ var changes do

d = last_def_of(v,n);

for u ∈ uses(d) do

add(block_of(u), result);

return result;

}

Figure 4.3: Initial version of algorithm DU . The function R computes what blocks
need to be added to the worklist. The first version, Rreach, simply returns reachable
blocks from block n. RDU uses def-use chains to compute the blocks affected by the
latest variable updates during the last block visit.

(ii) a new def resides between an existing def-use pair, and (iii) a new def temporarily

has no reaching definition.

Consider case (i). SSA form requires that whenever a new definition d is

created, a φ-function is also created at dominance frontiers. Because pointer in-

formation is not yet available, many φ-functions cannot be computed in advance.1

Therefore, after d is created, the algorithm must make sure that the dominance

frontiers are eventually revisited, so that the φ-functions can be created.

Cases (ii) and (iii) are similar because any existing use below the new def

d may need to update its reaching definition. Such situations often occur in the

presence of loops when a use is visited before its reaching definition is created. In

the example of Figure 4.2, if a new φ-function for p is created at the loop header,

we need to make sure that block 7 is revisited, even if the new def has no known

use yet.

There are two possible solutions. The first method identifies those uses that

need to be revisited by simply searching through existing def-use chains and through

1Short of exhaustive up-front creation.

61

existing uses without defs (it only needs to inspect those chains whose def is the

nearest definition above d). The second solution handles (iii) as follows: whenever

a use u without a reaching definition is discovered, statements above u are marked

if they are merge points or if they contain indirect assignments or function calls.

Later when d is discovered at one of these statements, u is revisited.

The first method can be quite expensive, while the second method does not

handle case (ii). We have found that combining the two is cost effective. We use

the second method on case (iii) by marking only loop headers, and we use the first

method otherwise. This combination works well in practice, most likely because uses

that initially have no reaching definition typically occur in loops, so marking and

inspecting loop headers is sufficient. Because in practice there is usually a small,

fixed number of loop headers in any procedure, the overhead due to the markings is

small.

4.3.5 Bundles

One problem with RDU is that it can be expensive to follow def-use chains if there

are many def-use chains connecting the same two basic blocks. We can measure the

extent of this problem as follows. Define C to be the number of variables whose flow

values change after analyzing a given basic block. Define B to be the number of

unique basic blocks containing uses of these C variables. If the ratio r = C/(B + 1)

is large, then there is a large amount of redundancy in the dependence information

represented by the def-use chains (the +1 term prevents division by zero). Figure 4.4

shows the maximum and average values of this ratio for the benchmarks used in our

later experiments. We omit the minimums, which are all close to zero. We see that

the average ratios hover between two and ten, while the maximums are two orders

62

of magnitude larger. One reason for the large maximums is the large number of

global and heap variables defined at merge points near the end of procedures, which

leads to large values of C with no further uses in the procedure (B = 0).

benchmarks (not labeled)

1

10

100

1000

av
g/

m
ax

 r
at

io

max ratio avg ratio

Figure 4.4: Maximum and average ratio r = C/(B + 1), in log scale. The set of
benchmarks is explained in Section 4.4. The high ratios indicate potential for high
overhead due to def-use chains.

To handle the cases where the value of r is large, we define a bundle 〈D,U〉

to be the set of all def-use chains whose definitions and uses share the blocks D and

U , respectively. A bundle is used as follows (see Figure 4.5). After analyzing a block

n, all bundles of the form 〈n, u〉 are retrieved. Rbundle then iterates through these

bundles: for each bundle containing a variable in the changes set, the u stored in

the bundle is added to the worklist. When there is no bundle (B = 0), no overhead

will be incurred even if there is a large number of changes.

Rbundle(n, changes) {
bundles = set of bundles {〈n, ∗〉};
for b ∈ bundles do

if b contains var∈ changes then

let b = 〈n, u〉;
add u to result;

return result;

}

Figure 4.5: Efficient Rbundle that uses bundles.

Our experimental results with an earlier implementation of our DU algorithm

63

shows that bundles are quite effective for reducing analysis time. Our results also

show that bundles can consume considerable space. Given the space overhead of

bundles and the bimodal distribution of r values, we use a simple heuristic to apply

bundles selectively. This heuristic compares C to a threshold defined as some factor

of the size of the basic block in question (as defined by the number of statements in

the block).

Because we have not yet tuned the selective use of bundles for the current

implementation of our worklist algorithms, the results shown later in this chapter

do not use bundles. We expect to see improved results once this tuning has been

completed.

4.3.6 Handling Interprocedural Def-Use Chains

Our system allows def-use chains to cross procedure boundaries, which typically

occurs when a procedure accesses global variables or accesses variables indirectly

through pointers. The framework treats these variables as if they were inputs or

outputs to the procedure but not explicitly mentioned in the formal parameters.

During interprocedural analysis, these def-use chains can be used to further improve

worklist efficiency.

A procedure input is a variable that has a use inside a procedure and a

reaching definition inside a caller. When reanalyzing a procedure due to changes to

procedure inputs, we revisit only the affected use sites—which are often a subset of

the procedure’s blocks—because we know which inputs’ flow values have changed.

To identify these changed flow values, we use interprocedural φ-functions, which

merge flow values at procedure entries. As before, these φ-functions are created on

the fly.

64

A procedure output has a definition inside the procedure with some use

inside a caller. The output can export a new variable, for example, a heap allocated

object, or it can export a side effect on an input. We use information regarding

the procedure output to help manage the worklists of the callers: if there is change

in flow value in an output variable, the worklist of each caller marks the sites that

need to be revisited. For this idea to work, we require a departure from the usual

way worklists are used.

In many existing algorithms, analysis is performed one procedure at a time;

analysis of a procedure P is started by placing all of its blocks on its worklist.

To exploit interprocedural def-use chains, we no longer initialize the worklist to

all blocks, except when the procedure is analyzed for the first time. Instead, a

procedure P ’s blocks are marked to identify callers of P that change P ’s inputs and

to identify callers of P affected by P ’s outputs.

In conjunction with a call graph worklist, this strategy allows us to exploit

sparsity at the granularity of the procedure level. Thus, a procedure need not appear

in the call graph worklist if its corresponding worklist is empty.

4.3.7 Full Version of Algorithm DU

Figure 4.6 presents our full algorithm. It first computes the reverse post-order, rpo,

of the procedure, which is used as the worklist if the procedure is analyzed for the

first time. Otherwise, the inputs are processed, searching for those with new flow

values, so that their use sites are put in the worklist. Those blocks marked for

reanalysis are placed on the worklist, which is then sorted according to rpo.

The main loop is the same as that of Figure 4.3. After the loop, all outputs

with changed flow values are gathered, and the callers’ call sites are processed.

65

Initially:

if analyze proc for 1st time then

rpo = reverse_post_order(CFG);

WL = rpo;

marked = ∅;
else

WL = process_proc_inputs();

merge(marked ,WL);

sort WL according to rpo;

Main loop:

while WL 6= ∅ do

n = remove_front(WL);

changes = visit_block(n);

if changes 6= ∅ then

more = Rbundle(n, changes);
merge(more, WL);

Finally:

// worklist done; export variables.
outputs = vars to export;

if outputs 6= ∅ then

add(exit_block(), outputs);

Addition interface:

add(e, changes) {
bundles = set of {〈e, ∗〉};
for b ∈ bundles do

if b contains var∈
changes then

let b=〈e, u〉;
p=proc_of(u);

p marked=marked_set(p);

add u to p marked;

}

Figure 4.6: Full version of algorithm DU , when it considers both intra- and inter-
procedural def-use chains. Note that we also use bundles to export variables.

During this final stage, bundles can again be used in the add routine to avoid

looping through all the variables in changes. We assume there is a definition for

each output variable at the callee’s exit block e. Each bundle of the form 〈e, u〉,

therefore, has a use site in a caller. We can then mark this use site in the caller’s

marked set, enabling the caller to reanalyze it later.

4.3.8 Exploiting Loop Structure

By always adding blocks to the rear of the worklist, our DU algorithm ignores loop

structure, which would seem to be a mistake because the CFG structure seems to

be closely related to convergence. For example, Kam and Ullman [74] show that

for certain types of dataflow analyses, convergence requires at most d+3 iterations,

where d is the largest number of back edges found in any cycle-free path of the CFG.

Thus, it seems desirable to exploit knowledge of CFG structure when ordering the

worklist, which is precisely what Hind and Pioli’s algorithm does [67], although their

66

(a) (b) (c)

Figure 4.7: Three loop examples: a simple loop, a nested loop, and a loop with
multiple back-edges.

algorithm does not distinguish different types of loops.

To understand the complexities that arise from handling different types of

loops, consider two types of loops. First, in a nested loop (Figure 4.7(a)), which loop

should we converge first? Second, in a loop with multiple back edges (Figure 4.7(b)),

which back edge should get priority, i.e., after visiting V2 in the figure, should V1 be

revisited before or after V3? After exploring many different heuristics, we evaluate

a minor variant of our DU algorithm that ignores inner loops and uses a round-robin

schedule for each loop. This algorithm, DUloop , does not try to converge an inner

loop, because the loop will be revisited when trying to converge the outer loop.

The round-robin schedule ensures all blocks in a loop are visited before any block is

revisited.

In general, we believe that exploiting loop structure alone is not enough

to yield significant improvement—we need to also account for data dependences

in loops. Unfortunately, these dependences can be indirect. For example, in Fig-

ure 4.7(c), we have implicitly assumed that there is only a forward dependence from

block T2 to T3. However, a backward, indirect dependence from block T3 to T2

can exist via a sequence of interprocedural def-use chains, so that a change in T3

67

could force T2 to be revisited. This phenomenon reduces the effectiveness of any

techniques that try to exploit loop structures.

4.4 Evaluation

In this section we present our empirical setup and results.

4.4.1 Benchmarks and Metrics

Our experiments use 19 open-source C programs (see Table 3.2, page 52), which—

except for sendmail—were used in previous work [54]. In addition to measuring

analysis time and memory usage, we define metrics to evaluate the efficiency of

worklist algorithms.

1. Basic block visitation, or BB-visit, is the number of times blocks are retrieved

from the worklists and analyzed.

2. Basic block changes, or BB-change, is the number of basic block visitations

that update some dataflow information. BB-change is a measure of useful

work.

3. Worklist efficiency, E , is the percentage of basic block visitations that are

useful, i.e., the ratio BB-change/BB-visit.

4.4.2 Setup

We implement our worklist algorithms using the Broadway compiler system, de-

scribed earlier in Chapter 3. The compiler employs an interprocedural pointer

analysis that computes points-to sets for all variables. The system supports both

context-sensitive (CS) and -insensitive (CI) analyses. To handle context-sensitivity

68

correctly, the DU algorithm is modified to mark a block for reanalysis under specific

contexts. We will use the default heap model in Broadway; use one abstract heap

object per allocation site in CI mode, and one object per allocation context in CS

mode.

To evaluate our worklist algorithm, we need to choose a pointer analysis

algorithm. Because the characteristics of the pointer analysis will affect the perfor-

mance of our worklist algorithm, we present results for pointer analysis algorithms

representing two extreme points, CI and CS.

We compare our algorithms against a priority-queue worklist. This algorithm

assigns a unique priority to each block in a CFG, and uses Rreach. Procedure exits

always have lowest priority, so loops are always converged first. This algorithm is

similar to that used by Hind and Pioli [67], except we do not use IN/OUT sets.

When we tried using IN/OUT sets, the compiler ran out of memory for many of the

larger benchmarks.

4.4.3 Empirical Lower Bound Analysis

To explore how much room there is for further improvement, we empirically estimate

a lower bound as follows. First, we execute DU to produce a trace of block visitations

where dataflow information is updated, so the length of the trace is BB-change. We

then re-execute the analysis, visiting blocks using the trace. Ideally, this second

execution should yield 100% efficiency. In practice, we do not get 100% efficiency

because, due to implementation details, the compiler has to visit additional blocks

to ensure state consistency between useful visits. We measure this second execution

to approximate a lower bound,2 which on subsequent graphs is labeled as “bound.”

2Note that a better ordering of the visits in the first execution may lead to an even lower bound.

69

4.4.4 Results

We first consider the behavior of our worklist algorithms in conjunction with CI

pointer analysis. Each graph in Figure 4.8–4.9 shows the performance of DU , DUloop ,

and our empirical lower bound normalized against our baseline, which uses Hind and

Pioli’s priority queue. The benchmarks are listed in order of increasing size, so we

see that DU significantly reduces analysis time, with an average reduction of 56%

(2.2× speedup), and larger benchmarks tend to benefit the most. For example, DU

analyzes sendmail 74% (3.8×) faster than the baseline. We also see that DUloop

only improves upon DU by a few percentage points and that the main source of

improvement is the increased efficiency. For example, for the large benchmarks,

the efficiency of the baseline is just a few percent, but for DU it is in the 30-60%

range. The cost of this reduced analysis time is a modest increase in memory usage.

Finally, we see that there, theoretically, is still room for increased efficiency.

Figure 4.10–4.11 shows similar results for context-sensitive pointer analysis.

Results are only shown for benchmarks that complete under the baseline. The

benefit of DU is larger for CS mode than CI mode, because the large number of

contexts exacerbates any inefficiency in the worklist. For example, DU improves the

analysis time of wu-ftpd-2.6.2 by approximately 80% (5× speedup), while in CI

mode, its improvement is only approximately 53%. These results are encouraging.

We also see that the memory overhead of our algorithms increases under CS mode.

We have repeated our experiments with five different error-checking clients

(Section 3.3.2, page 49). These are interprocedural analyses that generally yield bet-

ter precision with flow-sensitivity. We run each client concurrently with the pointer

analysis, and the results generally follow the same pattern as those in Figures 4.8–

4.11, so we omit these to conserve space.

70

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 fcron
 apache

 make
 BlackHole

 openssh-client

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

 bind
 privoxy

 openssh-server

 cfengine

 sqlite
 nn sendmail

0

50

100

no
rm

al
iz

ed
 ti

m
e

(p
er

ce
nt

)
priority-queue DU DUloop bound

0.
6

2.
5

2.
1

2.
1

5.
9

7.
7

26 22
9

44
.6

81
.4

19
.7

27
.7

27
.7

14
2

18
5

12
5

73
8

19
74

62
83

(a) Normalized analysis time.

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 fcron
 apache

 make
 BlackHole

 openssh-client

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

 bind
 privoxy

 openssh-server

 cfengine

 sqlite
 nn sendmail

0

50

100

no
rm

al
iz

ed
 B

B
-v

is
it

(p
er

ce
nt

)

2k 9k 8k 8k 27
k

24
k

51
k

36
9k

78
k

84
k

71
k

99
k

86
k

17
1k

12
5k

21
4k

58
8k

90
0k

40
15

k

(b) Normalized BB-visits.

Figure 4.8: Performance results of DU and its variant, on CI pointer analysis
(part 1).

71

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 fcron
 apache

 make
 BlackHole

 openssh-client

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

 bind
 privoxy

 openssh-server

 cfengine

 sqlite
 nn

 sendmail

0

20

40

60

80

100
ef

fi
ci

en
cy

 (p
er

ce
nt

)

(c) Efficiency.

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 fcron
 apache

 make
 BlackHole

 openssh-client

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

 bind
 privoxy

 openssh-server

 cfengine

 sqlite
 nn

 sendmail

80

90

100

110

n
or

m
al

iz
ed

 m
em

or
y

u
sa

ge
 (

p
er

ce
n

t)

3M 3M 4M 4M 8M 11
M

22
M

37
M

45
M

49
M

23
M

25
M

18
M

60
M

72
M

63
M

12
2M

13
6M

25
5M

(d) Normalized memory

Figure 4.9: Performance results of DU and its variant, on CI pointer analysis
(part 2).

72

4.5 Conclusion

The ability to accurately analyze large programs is becoming increasingly impor-

tant, particularly for software engineering problems such as error checking and pro-

gram understanding, which often require high precision such as interprocedural flow-

sensitive analysis. This chapter shows that by tuning the worklist to avoid repeating

same computations needlessly, dataflow analysis can be made much more efficient

without sacrificing precision.

We have implemented and evaluated a worklist algorithm that utilizes def-use

chains. When compared with previous work, our DU algorithm shows substantial

improvement, reducing analysis time for large programs by up to 90% for a context-

insensitive analysis and by up to 80% for a context-sensitive analysis. The DU

algorithm works well because it avoids a huge amount of unnecessary work, elim-

inating 65% to 90% of basic block visitations. We have also explored methods of

exploiting CFG structure, and we have found that exploiting loop structure provides

a small benefit for most of our benchmarks.

An empirical lower bound analysis reveals that there is room for further

improvement. More study is required to determine whether some technique that

considers both CFG structure and its interaction with data dependences can lead

to further improvement.

73

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

0

50

100

no
rm

al
iz

ed
 ti

m
e

(p
er

ce
nt

)
priority-queue DU DUloop bound

2.
3

10 9 9.
1

18
38

73
3

20
99

(a) Normalized analysis time.

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

0

50

100

no
rm

al
iz

ed
 B

B
-v

is
it

(p
er

ce
nt

)

15
k

60
k

59
k

60
k

25
46

k

49
97

k

11
59

3k

(b) Normalized BB-visits.

Figure 4.10: Performance results of DU and its variant, on CS pointer analysis
(part 1).

74

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

0

20

40

60

80

100
ef

fic
ie

nc
y

(p
er

ce
nt

)

(c) Efficiency.

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

80

90

100

110

n
or

m
al

iz
ed

 m
em

or
y

u
sa

ge
 (

p
er

ce
n

t)

7M 10
M

9M 9M 37
2M

39
1M

77
2M

(d) Normalized memory usage.

Figure 4.11: Performance results of DU and its variant, on CS pointer analysis
(part 2).

75

Chapter 5

Relevance-Based Context

Partitioning

5.1 Introduction

Pointer information is important for many interprocedural analyses, including pro-

gram slicing and security analysis. For such analyses, both flow- and context-

sensitivity are important [144, 42, 54]. However, because the cost of context-sensitive

analysis grows exponentially with the size of the call graph [36], context-sensitive

pointer analysis requires some way to limit analysis costs.

Grove et al. [47] describe a general framework in which each procedure’s con-

texts are partitioned, and all contexts in the same partition are analyzed together.

The analysis time thus grows with the number of partitions instead of number of

contexts. Alias patterns [153] and types [1] have been used to partition contexts in

pointer analysis and type analysis, respectively. Alias-based partitioning can suffer

from decreased precision, while Agesen’s Cartesian Product Algorithm, which has

76

used type-based partitioning [1], does not apply well to pointer analysis, because

the large points-to sets would lead to an explosion in the number of partitions.

In this research, we aim to partition contexts in such a way that reduces

the amount of unimportant computations. We will achieve this goal by extending

Agesen’s Cartesian Product Algorithm to pointer analysis. The key observation is

that points-to information is not useful in partitioning contexts. We instead care

about the precision of the client analysis that uses the pointer information. Our

solution thus couples the pointer analysis with the client analysis and lazily parti-

tions contexts based on the client analysis’ dataflow values. For example, consider a

client that tracks two possible flow values, T and U, and consider a procedure that

takes one parameter. In our solution, contexts in which the procedure is passed a

T value are placed in one partition, while those in which the procedure is passed a

U flow value are placed in a separate partition. All contexts in the same partition

are analyzed context-insensitively, as illustrated in Figure 5.1(c). With this scheme,

irrelevant information can be merged within a partition, perhaps even propagating

information across unrealizable paths, but relevant information, as defined by the

client analysis, always merges identical values, so no precision is lost. We refer to

our solution as Relevance-Based Context Partitioning (RBCP).

Relevance-Based Context Partitioning can be applied to many possible

pointer analysis algorithms, as well as to other “service analyses,” such as the com-

putation of reaching definitions. To show the power of RBCP, we first apply it

to a flow-sensitive context-sensitive pointer analysis (FSCS), and we show that the

resulting analysis, Relevant-Based Context-Sensitive pointer analysis (RBCS), is

dramatically more efficient. We also apply RBCP to the Client-Driven pointer anal-

ysis [54] to produce an algorithm that we refer to as RBCS-CD. The Client-Driven

77

copycopy copycopycopycopycopy copyT

T TT
T

T
U

U

U

U
U

UU U
U

U

U

UU

UT

T

T

T

U
U

U

U

U

U

call sites

procedure

(a) Context insensitive analysis. (b) Traditional context sensitive analysis. (c) Relevance−based context sensitive analysis.

Figure 5.1: Partitioning call sites. Flow values are propagated along call edges (solid
lines) and return edges (dashed edges). (a) Context-insensitive analysis merges flow
values from all call sites (T⊓U=U) before they are propagated back to the callers.
(b) Context-sensitive analysis prevents merging of flow values, but the cost depends
directly on the number of contexts. (c) Relevance-Based Context Partitioning puts
the contexts into two groups, one for each distinct flow value (regardless of number
of contexts), and the flow values are not merged.

pointer analysis algorithm uses information from the client analysis to identify the

subset of procedures that must be analyzed context-sensitively to ensure a precise

client analysis, allowing all other procedures to be analyzed context-insensitively.

In the broader picture, we believe that the notion of Coupled Analyses, in

which the results of a client analysis are used to improve the performance of some

service analysis, is an important paradigm that deserves further study.

5.1.1 Contributions

This chapter makes the following contributions:

• We introduce RBCP, an extension Agesen’s Cartesian Product Algorithm that

can be applied to pointer analysis; the key idea is to use the client analysis’

dataflow values to define the pointer analysis’ context partitions. One key

to avoiding precision loss is to lazily refine contexts, as we describe in Sec-

tion 5.2.6.

• We evaluate two algorithms that implement this idea by using them to perform

78

five security analyses on a collection of 19 open-source servers and system

utilities. The RBCP technique improves the scalability of the FSCS algorithm,

enabling the largest 60% of the programs to complete. For those cases where

both algorithms complete, RBCP is an average of 7× faster, and its memory

usage is reduced by 4× on average.

The RBCP technique speeds up the analysis time of the Client-Driven pointer

analysis by an average of 1.6×, excluding the one case where RBCS-CD com-

pletes but the baseline does not; memory usage is reduced by an average of

1.5×. We show that our solution is efficient because it requires an average of

1.6 context partitions per procedure.

• We argue that the notion of Coupled Analyses, in which the results of a client

analysis are used to improve the performance of some service analysis, is an

important paradigm that deserves further study.

The remainder of this chapter is organized as follows. Section 5.2 presents our

solution, and Section 5.3 presents results. Section 5.4 discusses the more general

framework of Coupled Analysis. Section 5.5 concludes this chapter. We review

related work later in Section 7.3.

5.2 Our Solution

In this section, we will start with the objective and a high-level overview of our

solution. Sections 5.2.2–5.2.7 will provide additional details to the major steps in

the algorithm. Section 5.2.8 discusses precision issues, and Sections 5.2.9 describes

an extension to the algorithm. Section 5.2.10 concludes this section with a brief

description of our implementation.

79

C

A B

D

main

A B

C

D

C

D

D

main

A

C C

B

D

main

D

(c)(a) (b)

Figure 5.2: Call graph example. (a) An example call graph. (b) Its invocation
graph. (c) Invocation graph used by Relevance-Based Context Partitioning.

We can describe the goal of our solution as follows. For a given callgraph

(Figure 5.2(a)), the invocation graph [36] (Figure 5.2(b)) grows exponentially, be-

cause it represents all possible procedure invocations.1 Thus, our goal is to merge

nodes in the invocation graph, which corresponds to merging contexts, which might

lead, for example, to the graph in Figure 5.2(c). Each node in the merged graph

represents a set of contexts. We use a contour as an environment for the analysis

of a procedure.2 Section 5.2.1 explains a contour in more details. For each contour,

the procedure is analyzed in a context-insensitive manner. Flow information may

be merged within a contour, but merging is not possible between contexts belonging

to different contours.

Our solution is an algorithmic framework that performs an iterative dataflow

analysis on the invocation graph. Starting with just a single node for the root

procedure, the call graph is built lazily, with nodes being logically merged as the

analysis proceeds. During analysis on a procedure, the statements in the procedure

are visited. At each statement, transfer functions are first applied for the pointer

1To simplify the presentation, we omit statement nodes in the graph, but these are necessary to
distinguish different calls in the same procedure.

2Grove et al. [47] use a different definition for the same term.

80

analysis and then for the client analysis, which gives the client analysis access to the

pointer information that it needs. Section 5.2.3 describes the major steps involved

in analyzing a procedure.

If the statement is a procedure invocation, we either expand the invocation

graph by adding a new node, i.e., a new contour, for the callee, in which case we

recursively continue the analysis on the callee using the new context, or we reuse

the previous node for the same callee. Sections 5.2.4–5.2.6 describes how we choose

a contour. It is this reuse of the previous node that logically merges nodes in the

invocation graph. When reusing a node, it is possible to reuse results of the node, as

opposed to needing to reanalyze the procedure. The conditions for reusing results

are described in Section 5.2.7, but the main point is that the procedure’s context

values—the flow values of its actual parameters and global variables evaluated at

that context—must match that of the node’s previous context. Handling of recur-

sions is described in Section 5.2.3.

One detail is that aliasing of formal parameters can cause undesired merging

of flow values. We correct this problem by contour refinement, which we will explain

in Section 5.2.6.

In a perfect scenario, a client analysis would know a priori what parameter

flow values were of interest. For example, the client may ignore a parameter that is

never assigned more than one value, or whose value is never used. Unfortunately,

we in general do not have such advance knowledge regarding the behavior of the

procedure without at least a partial solution of the analysis itself. Instead, our

solution conservatively uses all parameter flow values.3

3To simplify our description of the algorithm, we do not include global variables until Section 5.3.

81

5.2.1 What is in a Contour?

Abstractly, we consider a contour as an environment used in the analysis of a proce-

dure. There can be multiple contours for each procedure. Semantically, the contours

represent the disjoint subsets of contexts for that procedure. Operationally, each

contour stores all intermediate and final results for the analysis of the procedure in

those contexts. These results include flow values and def-use chains computed for all

variables at all statements. If multiple contexts are associated with a contour, then

the procedure is analyzed context-insensitively with respect to this set of contexts.

This means that all flow values imported from all callers must be merged at the

procedure entry.

5.2.2 Algorithm Overview

Figure 5.3 shows two routines responsible for analyzing a procedure and iterating

through the call graph. The routine analyzeProc processes the contents of a pro-

cedure P , and invokes analyzeCall whenever it encounters call sites.4 This second

routine employs three routines that constitute the RBCP algorithm:

• computePV: Given a call site and the current contour of the caller P , computes

the Partitioning Vector V using the flow values at the site.

• chooseContour: Using the vector V , use a hash table to obtain a contour,

creating a new contour if necessary. The vector, therefore, acts as a key that

maps flow values to contours. Calling contexts that yield the same V are

considered similar contexts.

4These routines are added into the analysis framework responsible for analyzing procedures,
which we outlined in Section 3.1.2. That is, we insert new codes into the generic algorithm in
Figure 3.1 (page 35). The result shown in Figure 5.3 highlights newly inserted code.

82

• refineContour: The mapping is refined, if necessary, to remove any impreci-

sion alluded to above steps.

The Partitioning Vector can be seen as a snapshot of the state of analysis

at a call. The contents of the vector are carefully chosen so that different calling

contexts with same computed vector are deemed as similar contexts, which are then

grouped and analyzed collectively by the RBCP algorithm.

The next section explains the steps performed by analyzeProc and

analyzeCall. Sections 5.2.4–5.2.7 will then explain in detail the three RBCP rou-

tines.

5.2.3 Analyzing a Procedure

The algorithm starts by calling the analyzeProc routine on the root procedure.

The routine also takes a contour parameter contour. As usual, it uses a worklist to

iteratively process the statements in the procedure. For each statement, a pointer

analysis is first applied followed by a client analysis, so that the latter has access to

pointer information.

The analyzeCall procedure is invoked to process procedure calls. It is

responsible for deciding how a callee procedure is analyzed. It first appends the

call site to the current caller contour contour to obtain cxt, which represents the

current calling context. The new callee is then processed accordingly:

• If the callee is not in the current call stack, analyzeCall then prepares to

analyze the callee; if it is not a recursive procedure, then the RBCP routines

are invoked to obtain a contour. If the callee is predetermined to be a recur-

sive procedure, then only one contour—its default contour—is used for all its

contexts.

83

analyzeProc(proc, contour) {
worklist = cfgNodes(proc) {
while worklist 6= ∅ do {

blk = remove front(worklist);

for stmt s in blk do {
apply ptr analysis on s;

if ∃ client analysis

apply client analysis on s;

if s is CALL then

analyzeCall(proc, s, contour);

}
if changed then

addWorklist(worklist);

}
}

analyzeCall(caller, call, contour) {
proc′ = callee(call);

cxt = contour ‖ call;

if proc′ 6∈ callstack then {
// not recursive call

callstack = callstack ‖ proc′;

if proc′ not recursive then {
V = computePV(actual args(n),cxt);

contour′ = chooseContour(proc′ , V);

} else { // recursive callee

contour′ = defaultContour(proc′);

}

import(caller, cxt , proc′, contour′);

if needReanalysis then

analyzeProc(proc′ , contour′);

exportAll(proc′, contour′);

callstack = callstack − proc′;

} else { // recursive call

contour′ = defaultContour(proc′);

import(caller, cxt , proc′, contour′);

}
}

Figure 5.3: RBCP: Analysis on a procedure. Analysis starts by a call to
analyzeProc with the root procedure and its default contour. For a non-recursive
call, analyzeCall computes the Partitioning Vector V , uses it to pick a contour
and, if necessary, refines the contour selection. Sections 5.2.4–5.2.6 and Figure 5.4
explain these steps in more detail.

Using the contour just chosen, analyzeCall then imports flow values from the

caller context to callee contour. This involves processing the interprocedural

Φ-functions by updating formal parameter and global variable values. If this

merging updates any flow value, then analyzeProc is then called to analyze

the callee. After analysis on the callee completes, flow values are then exported

from the callee to all call sites associated with contour.

• If the callee is in the current call stack, analyzeCall does not analyze the

callee. Instead, using the default contour, flow values are imported from the

84

current call stack to the callee. This step allows the callee to be analyzed later

in a non-recursive context.

We next discuss in detail the steps on choosing and refining contours, before

moving on to issues of soundness, efficiency, and implementation.

5.2.4 Computing the Partitioning Vector

The routine analyzeCall (in Figure 5.3) first calls computePV to obtain a Partition-

ing Vector, which is then used to obtain a contour via a call to chooseContour. The

latter routine in turn also invokes a routine refineContour, which is responsible

for contour refinement. The relations among these routines are shown in Figure 5.4.

We now explain these steps in detail in this and the next two sections.

Given the actual parameters of a call to procedure proc, computePV, combines

the actual parameters’ flow values into a Partitioning Vector

V = 〈v1, . . . , vn〉 (5.1)

where n is the number of parameters. There is more than one method to compute V ,

and our RBCS algorithm is sound as long as the same method is always applied to

each callee. However, a more aggressive method can lead to a more precise solution.

We describe one such method as follows.

Given a variable x, let R1({x}) be x’s points-to set plus the field variables

of x (if any). The transitively reachable variables from x, or R+({x}), are all the

85

computePV(args, cxt) {
for i in 1..|args| do {

S = resolvePtr(args[i], cxt); // resolve any pointer dereferences

V [i] = ⊓ cfv(y) ∀ y ∈ R+(S, cxt);
}
return V ;

}
chooseContour(proc, V) {

c = tableproc[V];
if 6 ∃c then {

c = tableproc[V] = newContour(proc);

return c;

}
return refineContour(proc, c, V);

}
refineContour(proc, contour, V) {

L = multimapproc[V];
do {

formals = tentativeUpdateFormals(proc, contour);

V ′ = computePV(formals, contour);

if V == V ′ then return contour;

pick another contour from L;

} while ∃contour;

contour = newContour(proc);

add contour to end of L;

return contour;

}

procn nV contour

3 3V contour

2 2V contour

1 1V contour

 31 32contour contour

 11 12contour contour

V

ctr

proc

cxt
args computePV

L

table

refineContour

chooseContour

Figure 5.4: RBCS Analysis Algorithm.

86

variables after transitively following the points-to and fields-of operators:

R1(X) =
⋃

x∈X

{y|x points to y} ∪ fieldsof{x}

Ri+1(X) = R1(Ri(X))

R+(X) =
⋃

i>0

Ri(X) (5.2)

Let cfv(y) denote the client flow value for variable y. We then define

v(x) = ⊓cfv(y) ∀ y ∈ R+({x}) (5.3)

i.e., the greatest lower bound value of the client flow values of all the reachable

variables from x, with respect to the meet operator ⊓. We call v(x) the reachable

value from x. Sometimes we will simply write v if it is clear what variable x we are

referring to.

Using definitions (5.1)–(5.3), the routine computePV computes vi, the ith-

component of the Partition Vector, using the ith actual parameter, after resolving

any pointer or field dereferences in the parameter. For example, if the actual pa-

rameter is *p, we use the pointer analysis to determine p’s points-to set S, and then

compute vi using R+(S). Note that the points-to set, the reachable variables R+(S),

and reachable value cfv(y) are all computed using the current calling context cxt in

the caller. The different vi are combined to form the Partitioning Vector.

Figure 5.5 provides an example of computing the Partitioning Vector. As-

sume a flow value lattice given in Figure 5.5(a), and a procedure foo with two pa-

rameters. Figure 5.5(b) shows two calls to the procedure, and the points-to graphs

at each call. At the first call, the first parameter points to two targets, whose client

flow values are A and B. The reachable value is computed as A ⊓ B = C. The sec-

87

<A B, E> => <C, E>A B

C D

E

foo(p,q);

foo(s,t);

Calls Partitioning Vector

(a) (b)

<B, B D> => <B, D>

t

s

p

q

Reachable Values

D

B

B

E

B

A

Figure 5.5: Example of computing the Partitioning Vector. (a) The lattice of flow
values. (b) Two calls to a procedure foo. For each call, from the points-to graph we
can derive the reachable variables and reachable values from each actual parameter.
The components of Partitioning Vector are computed by merging the reachable
values from each parameter. In the example, the two calls have identical Partitioning
Vectors.

ond parameter points to a singleton whose value is E, and hence, the Partitioning

Vector is 〈C,E〉. The Partitioning Vector for the other call is similarly computed.

It turns out that the vectors for these two calls are different.

Additional components of the Partitioning Vector

The contents of a Partitioning Vector are the client flow values that flow from callers

to callees, so that these values are merged in different ways depending on how the

contexts are partitioned. Such merging directly influences the client analysis on the

callees. One natural question is, are there any other flow values that can affect the

client analysis and, therefore, should also be included in the vector?

It turns out that values of function pointers should be included also. If

a procedure P has a function pointer as a parameter, which points to different

targets under different contexts, then analyzing these contexts with a single contour

88

could lead to undesired consequences: if P contains a call via this function pointer,

spurious contexts will be created for callees of this call, which leads to imprecise

analysis.

The solution is to include values of function pointers in the Partitioning

Vector of procedure P , if the pointers are used by P or any callees of P . The

vector will contain additional components of the form “x → {foo}”. We find that

procedures tend not to use many (if any) function pointers, and function pointers

tend to have “stable” values in the program, i.e., they do not change often in the

programs. Therefore, the addition to the Partitioning Vector is a relatively small

overhead.5

5.2.5 Choosing a Contour

The Partitioning Vector V is used as a key to map contexts to contours: contexts

that yield different vectors using computePV shall be mapped to different contours.

This property is easily achieved by way of a hash table per procedure.

Once the key is computed, it is passed on to the routine chooseContour.

If the key has not been seen before, a new contour is created, and the hash table

is updated. Otherwise, an existing contour is chosen. Contour refinement may be

performed on this existing contour, and we will explain this step in the next section.

Note that new contours are lazily created on demand, since not all keys

may be needed. The number of contours required depends on n, the number of

parameters, and f , the number of possible flows values per variable. In the worst

case, as many as fn keys are needed per procedure, but in practice, we find that

often only a small number of keys are used. One reason is that f is often small. The

5Even in object-oriented languages, where function pointers disguised in abstract method calls
are very common, we do not have to include these function pointers in the Partitioning Vector if
we group contexts based on objects’ concrete types.

89

other reason is that many client analyses often focus on a subset of “interesting”

variables by assigning special flow values to these variables. For example, a client

analysis that tracks file status (the File-Access problem described in Section 3.3.2)

will assign a “file-open” value only to “FILE” variables in the program.

RBCP exploits these characteristics in many analyses and programs. If very

few keys are needed for a procedure, and if there are many call contexts to the same

procedure, then there is great potential for grouping the many contexts into a small

number of partitions.

5.2.6 Contour Refinement

The previous section describes how we choose a contour based only on the actual

parameters’ flow values. The steps described, so far, turn out to be insufficient

due to parameter aliasing: when a contour is chosen, the actual parameters from

different contexts are aliased via updates on the formal parameters. This aliasing

could lead to unintended merging of values.

Too see why unintended merging can occur, it is important to keep in mind

that a contour is an environment for storing the results for each time that analysis

is performed on a procedure. Those results include information such as points-to

sets or other values computed for local variables in the procedure. Such information

is shared if the contour is reused for different contexts.

We now illustrate how the unintended merging can occur by way of the

example in Figure 5.6. This example assumes the client analysis has two distinct

flow values T and U. There are two calls to procedure F, and in each case, the actual

parameter has reachable value T. The Partitioning Vector V = 〈T〉 is computed for

both calling contexts, so that both contexts are mapped to a common contour. Note

90

that V must be computed before a contour is chosen or created.

F(a) { exec(a); }
G() {

F(t); // *t has value T

*t=u; // *t now has value U

F(s); // *s has value T

}

*s
*s

a t

a s

*t

a T

*s

a T

*t

a U

a s

a t

first call

G

G

*t

*t

second call

s

t

Tt

U

T

arg mapping

arg mapping
a U

T

contour of F

*t

using 2 contours of F

(a)

(b)

(c)

same contour of F, reused and updated

arg mapping

Figure 5.6: Example illustrating the need for contour refinement. (a) At the first
call to F, the actual parameter has reachable value T, and one contour is used. *t

turns U after the call. (b) At the second call, the new actual parameter still has
value T, but if the same contour is reused, update on the formal parameter leads to
undesired value merging. (c) If separate contours are used, no value merging occurs.

Now consider what happens when this contour is actually used to analyze

F, which is analyzed twice. For the first call, Figure 5.6(a) shows that the formal

parameter a is set to point to {*t}, so the reachable flow value is T. When this first

analysis on F completes, and analysis is back at the caller, *t is assigned a new value

U before the next call. If the same contour is reused at the second call, as shown in

Figure 5.6(b), the formal parameter is updated to point to *t and *s, which now

have two distinct values. The new reachable flow value involves merging of different

values, leading to loss of precision.

91

The problem arises because it is insufficient to choose a contour ctr based

only on available information at a call site. To fix the problem, we need to validate

that reusing contour ctr does not lead to undesired merging (the client analysis is

responsible for deciding what is undesired, such as the merging of T and U in the

example). If such merging can occur, another contour must be used instead. This

implies that each Partitioning Vector V must be mapped to multiple contours.

The refinement step, via the routine refineContour in Figure 5.3, uses a

multi-way hash table to map a key to a list L of contours. The routine validates

a contour by first tentatively updating the points-to sets of the formal parameters,

without updating the contour. A Partitioning Vector V ′ is then computed using the

updated formal parameters, which is then compared against the key V . If they do

not match, another contour from the list L is tested. The routine returns the first

validated contour from the list. If no contour can be validated, a new one is used.

Finishing the example, Figure 5.6(c) shows that our algorithm will use two

contours for F: the first is created for the first call to F, with a pointing to *t, and

a second contour is used by second call site with a pointing to *s.

The refinement step does not affect the soundness of the analysis: using more

contours helps to avoid precision loss and hence leads to more precise solution. The

client analysis, therefore, has a degree of freedom. In contrast, previous solutions

such as Partial Transfer Functions (PTFs) [153, 101] did not discuss such options.

Later in Section 5.3, we will present statistics on the number of contours.

5.2.7 Reusing Contours Context-Insensitively

An important property of context-insensitive analysis is that if all of a procedure’s

input flow values do not change at a call site, the procedure need not be analyzed

92

again. Specifically, each formal parameter value vf (from a previous analysis) is

updated with a value va obtained from the new call site, yielding a new value

v′f = vf ⊓ va. If v′f and vf are the same, no change has occurred. The test is

also repeated for global variables, and other reachable variables that are used in the

procedure. Based on these tests, the flag needReanalysis in the routine analyzeCall

in Figure 5.3 is set accordingly.

When no reanalysis is needed, the procedure’s side effects are merely exported

to the calling context. With Relevance-Based Context Partitioning, each procedure

is analyzed context-insensitively for each contour. Therefore, we reap some of the

performance benefit of context-insensitive analysis, as long as we can remember the

procedure input values for each contour. Similarly, each contour must maintain its

own set of side effects that need to be exported.

5.2.8 Precision and Accuracy

RBCS analysis provides an alternative level of context-sensitivity—two other levels

are a context-sensitive analysis (CS) and a context-insensitive analysis (CI). CI

is imprecise because it propagates flow values along interprocedural unrealizable

paths. CS is precise because it avoids propagation along such paths. RBCS analysis

prevents propagation along some of those unrealizable paths. Therefore, in the

spectrum of precision, CS and CI are the two ends on the spectrum, while RBCS

analysis is lies in between.

On the other hand, with respect to the client analysis, the propagations along

unrealizable paths in a RBCS analysis does not lead to undesired merging of flow

values: if a flow value is never propagated along any path in a CS analysis, then

that value is also never propagated along any path in a RBCS analysis. Therefore,

93

RBCS achieves the same level of accuracy as a CS analysis.

5.2.9 Application to Client-Driven Pointer Analysis

Our discussion until now has ignored the details of the pointer analysis, which has

simply been assumed to have its own set of flow functions. In preparation for describ-

ing the integration with the RBCP algorithm, we now describe the Client-Driven

pointer analysis [54], which employs a two-pass analysis framework; in each pass,

the client analysis and pointer analysis are performed concurrently. In the first pass,

a fast and imprecise (flow-insensitive, context-insensitive) analysis is used to gather

information that will guide the second pass. In particular, the first pass identifies

assignments, including assignments to formal parameters, that lose precision due

to the merging of client flow values. These sources of precision loss identify the

procedures that will be analyzed context-sensitively in the second pass, as well as

the variables that will be analyzed flow-sensitively in the second pass.

Relevance-Based Context Partitioning can be seamlessly applied to Client-

Driven analysis. Specifically, let Π denote the set of procedures to be analyzed

context-sensitively in the Client-Driven algorithm’s second pass. When a procedure

P is added to Π by the first pass of the Client-Driven algorithm, it is because some

parameter x, or some of its reachable variables, will otherwise lose precision that is

important to the client. Let criticalPara(P) be the set of these parameters x. Thus,

to combine RBCP with the Client-Driven algorithm, we let the latter decide which

parameters to include in the computation of the Partitioning Vector: it will only use

the variables in the set criticalPara(P). Only the routine computePV (Figure 5.3)

needs to be modified. In this way, when P is analyzed in the second pass, the

contexts will be grouped in such a way that will cause any undesired merging of x’s

94

flow values.

Relevance-Based Context-Sensitive analysis complements Client-Driven

analysis, because the former groups similar contexts together, while the latter pro-

vides the minimum V required for each procedure. Without our RBCS algorithm,

the Client-Driven algorithm has to separately analyze all contexts of the procedures

in Π.

5.2.10 Implementation

Recall that Section 3.2.1 (page 43) explains how Broadway represents an input

program by means of location trees. Particularly, a procedure location is used to

represent a procedure, and multiple instances of these locations are used in a context-

sensitive analysis: one instance per calling context. In each instance, the procedure is

analyzed independently; all analysis results computed for a context, such as points-to

sets, use-def chains, and client flow values, are stored using the associated procedure

location and are, therefore, kept separate from results computed for another context.

In a context-insensitive analysis, only instance of procedure location is used for each

procedure.

In lieu of the above properties of a procedure location, the location tree is

a natural option to implement a contour; RBCS simply uses a procedure location

to represent a contour. Unlike in a context-sensitive analysis, RBCS uses a proce-

dure location to represent more than one context, but unlike a context-insensitive

analysis, there can be more than one procedure location per procedure. For each

procedure location procloc, RBCS analyzes a procedure context-insensitively, using

those contexts associated with procloc.

95

5.3 Evaluation

This section describes our experimental results, beginning with methodology.

5.3.1 Methodology

We again evaluate our ideas in the context of the Broadway compiler, which sup-

ports, among other modes, a context-sensitive and flow-sensitive (FSCS) interproce-

dural pointer analyses and the Client-Driven (CD) pointer analysis. We evaluate our

Relevance-Based Context Partitioning by applying it to these two pointer analyses;

we call these new algorithms RBCS and RBCS-CD, respectively.

RBCP cannot be applied to pointer analysis alone: a client analysis must be

specified. As before, the client analysis is run concurrently with the pointer analysis.

We will use the same five analysis problems described in Section 3.3.2 as the client

analyses. Table 5.1 shows the number of possible flow values per variables in each

of the client analysis problems.

client distinct flow values

File-Access 2

FSV 2

Remote-FSV 3

Remote-Access 3

FTP-Behavior∗ 3 × 10

Table 5.1: Number of distinct flow values per variable in the client analyses. The
FTP-Behavior problem is made up of two subproblems with disjoint sets of flow
values.

We use the same benchmarks described earlier for our evaluations (Table 3.2,

page 52). Note that RBCS-CD inherits a feature of the Client-Driven analysis: if

no errors are found during the first pass, no second pass is needed, and RBCP is

not invoked. Out of the 95 program-problem cases, there are 30 such one-pass-only

cases.

96

5.3.2 Context-Sensitive Analysis: RBCS versus FSCS

Table 5.2–5.4 compares the RBCS and FSCS algorithms. The results in this table

are grouped according to the clients, and the benchmarks are roughly sorted in

decreasing order of analysis time, with the order preserved across the clients. The

columns in gray show the speedup in analysis time, and ratios of memory usage

by RBCS against FSCS: the higher the numbers in these columns, the better for

RBCS. We see that our technique significantly reduces analysis time and memory

consumption. Without our technique, FSCS analysis completes successfully for

only seven of the 19 benchmarks (space is the limiting factor); with our technique,

RBCS completes for 18 of the 19 benchmarks, while the largest benchmark sendmail

completes on two of the five clients. The extreme cases are indicated by asterisks (*)

in the table, which represent cases where RBCS completes but FSCS does not.

Among other cases, on average the speedup is 7× for all clients, and 4× less

memory is consumed. Not surprisingly, larger benchmarks with large numbers of

procedures tend to benefit most from our technique.

We now explain these tables in a bit more detail. The columns Π and Cxts

are statistics showing, respectively, the number of procedures analyzed context-

sensitively, and the total number of contexts for these procedures in Π.

For each client, the percentage improvement depends on the benchmark’s

characteristics, such as the length of its maximum acyclic call string and the number

of call sites per procedure. For each benchmark, the improvement can vary among

the clients, because the client dictates how the contexts are partitioned. The large

performance gains can be attributed to the small number of contours required for

each procedure.

Among all the benchmark-client pairs, on average each procedure requires

97

FSCS vs. RBCS Procs Time(sec) Contours Mem

Benchmark Client |Π| total call sites FSCS RBCS × used avg ×

sendmail File-Access 359 416 2571 - 434k * 682 1.9 *

sqlite 333 386 2300 - 32k * 505 1.5 *

nn 451 494 2441 - 5136 * 445 1.0 *

privoxy 221 223 1958 - 833.2 * 230 1.0 *

openssh-server 562 601 3896 - 776.0 * 701 1.2 *

cfengine 395 421 2260 - 144.2 * 466 1.2 *

openssh-client 412 438 3306 - 514.4 * 536 1.3 *

apache 295 313 976 - 627.7 * 416 1.4 *

make 101 167 372 - 467.7 * 100 1.0 *

BlackHole 70 71 1056 - 62.1 * 73 1.0 *

bind 193 210 729 - 43.9 * 223 1.2 *

fcron 99 100 513 - 9.7 * 109 1.1 *

pureftpd 109 116 536 1883 5.6 335.3 113 1.0 35.7

wu-ftpd-2.6.2 195 205 882 420.0 34.0 12.3 198 1.0 6.4

wu-ftpd-2.6.0 178 183 839 208.6 20.4 10.2 181 1.0 5.2

pfinger 39 47 118 17.4 3.6 4.8 41 1.1 3.0

muh-2.05d 83 84 335 7.1 2.2 3.2 95 1.1 2.1

muh-2.05c 83 84 333 7.0 2.2 3.2 95 1.1 2.1

stunnel 41 42 177 1.6 0.7 2.1 53 1.3 2.1

Mean: 8.9 1.2 4.4

sendmail FSV 359 416 2571 - 507k * 594 1.7 *

sqlite 333 387 2302 - 125k * 784 2.4 *

nn 451 494 2448 - 6767 * 630 1.4 *

privoxy 221 223 1958 - 1795 * 267 1.2 *

openssh-server 562 601 3896 - 994.4 * 658 1.2 *

cfengine 395 421 2260 - 490.8 * 608 1.5 *

openssh-client 413 438 3306 - 435.4 * 479 1.2 *

apache 295 313 972 - 497.3 * 404 1.4 *

make 101 167 372 - 555.7 * 141 1.4 *

BlackHole 70 71 1056 - 133.5 * 113 1.6 *

bind 193 210 729 - 81.9 * 271 1.4 *

fcron 99 100 513 - 26.1 * 128 1.3 *

pureftpd 109 116 536 2013 7.7 262.9 127 1.2 37.0

wu-ftpd-2.6.2 195 205 882 471.3 87.8 5.4 278 1.4 4.6

wu-ftpd-2.6.0 178 183 839 245.2 43.1 5.7 254 1.4 3.9

pfinger 39 47 118 19.2 2.8 6.9 45 1.2 3.2

muh-2.05d 83 84 335 7.4 2.3 3.2 96 1.2 2.1

muh-2.05c 83 84 333 7.3 2.3 3.1 97 1.2 2.1

stunnel 41 42 177 1.7 0.6 2.9 41 1.0 2.3

Mean: 7.7 1.4 4.2

(continue in Table 5.3)

Table 5.2: Relevance-Based Context-Sensitive analysis (RBCS) vs. FSCS analysis,
part 1. Π is the set of non-root non-recursive procedures. The columns marked × are
ratios measuring analysis speedups and memory savings by RBCS: large numbers
(> 1) means RBCS is better. The used column shows the total number of contours
used; avg is the average number of contours used per procedure. Benchmarks that
do not complete are indicated with a -. The *’s indicate cases where our technique
enables an analysis to complete and FSCS cannot. The largest benchmark sendmail

completes in two of the five clients. The means for all program-clients are shown at
the end of Table 5.4.

98

(continued from Table 5.2)

FSCS vs. RBCS Procs Time(sec) Contours Mem

Benchmark Client |Π| total call sites FSCS RBCS × used avg ×

sendmail Remote-FSV - - - - - - - - -

sqlite 333 387 2302 - 106k * 787 2.4 *

nn 451 494 2448 - 8116 * 706 1.6 *

privoxy 221 223 1958 - 2413 * 300 1.4 *

openssh-server 561 601 3896 - 1133 * 880 1.6 *

cfengine 395 421 2260 - 1235 * 813 2.1 *

openssh-client 413 438 3306 - 655.4 * 601 1.5 *

apache 295 313 974 - 674.4 * 456 1.5 *

make 101 167 372 - 605.8 * 100 1.0 *

BlackHole 70 71 1056 - 329.0 * 148 2.1 *

bind 193 210 729 - 72.1 * 261 1.4 *

fcron 99 100 513 - 11.9 * 113 1.1 *

pureftpd 109 116 536 2019 7.7 260.7 135 1.2 35.5

wu-ftpd-2.6.2 195 205 882 506.2 105.0 4.8 299 1.5 4.4

wu-ftpd-2.6.0 178 183 839 247.7 37.2 6.7 250 1.4 4.1

pfinger 39 47 118 19.9 4.9 4.0 50 1.3 2.6

muh-2.05d 83 84 335 7.4 2.5 2.9 115 1.4 2.0

muh-2.05c 83 84 333 7.2 2.4 3.0 113 1.4 2.0

stunnel 41 42 177 1.7 0.9 1.9 61 1.5 2.0

Mean: 6.6 1.5 3.9

sendmail Remote-Access - - - - - - - - -

sqlite 333 387 2302 - 105851.0 * 783 2.4 *

nn 451 494 2448 - 8163.4 * 707 1.6 *

privoxy 221 223 1958 - 2401.3 * 298 1.3 *

openssh-server 561 601 3896 - 1125.1 * 881 1.6 *

cfengine 395 421 2260 - 1233.2 * 812 2.1 *

openssh-client 413 438 3306 - 654.2 * 601 1.5 *

apache 295 313 974 - 672.2 * 456 1.5 *

make 101 167 372 - 605.7 * 100 1.0 *

BlackHole 70 71 1056 - 333.4 * 148 2.1 *

bind 193 210 729 - 72.2 * 261 1.4 *

fcron 99 100 513 - 11.7 * 113 1.1 *

pureftpd 109 116 536 2026 7.8 261.2 135 1.2 36.0

wu-ftpd-2.6.2 195 205 882 502.8 104.9 4.8 299 1.5 4.4

wu-ftpd-2.6.0 178 183 839 247.9 37.1 6.7 250 1.4 4.0

pfinger 39 47 118 19.5 4.9 4.0 50 1.3 2.6

muh-2.05d 83 84 335 7.3 2.5 2.9 115 1.4 2.0

muh-2.05c 83 84 333 7.2 2.4 3.0 113 1.4 2.0

stunnel 41 42 177 1.6 0.9 1.9 61 1.5 2.0

Mean: 6.6 1.5 3.9

(continued in Table 5.4)

Table 5.3: Relevance-Based Context-Sensitive analysis vs. FSCS analysis, part 2.

99

(continued from Table 5.3)

FSCS vs. RBCS Procs Time(sec) Contours Mem

Benchmark Client |Π| total call sites FSCS RBCS × used avg ×

sendmail FTP-Behavior - - - - - - - - -

sqlite 333 387 2302 - 240k * 866 2.6 *

nn 451 494 2448 - 15k * 880 2.0 *

privoxy 221 223 1958 - 4387 * 366 1.7 *

openssh-server 562 601 3896 - 2008 * 1005 1.8 *

cfengine 395 421 2260 - 2412 * 1111 2.8 *

openssh-client 413 438 3306 - 1346 * 901 2.2 *

apache 295 313 976 - 7197 * 810 2.7 *

make 101 167 372 - 907.9 * 151 1.5 *

BlackHole 70 71 1056 - 255.0 * 208 3.0 *

bind 193 210 729 - 174.6 * 433 2.2 *

fcron 99 100 513 - 31.9 * 163 1.6 *

pureftpd 109 116 536 2237 11.1 99.5 155 1.4 97.2

wu-ftpd-2.6.2 195 205 882 595.1 171.3 71.2 362 1.9 74.7

wu-ftpd-2.6.0 178 183 839 276.5 52.4 81.0 302 1.7 73.0

pfinger 39 47 118 21.9 7.8 64.4 60 1.5 52.7

muh-2.05d 83 84 335 7.7 2.6 66.2 135 1.6 48.9

muh-2.05c 83 84 333 7.7 2.6 66.4 135 1.6 48.9

stunnel 41 42 177 1.7 1.0 40.3 62 1.5 50.1

Mean: 5.5 2.0 3.6

All-Mean: 7.0 1.6 4.0

Table 5.4: Relevance-Based Context-Sensitive analysis vs. FSCS analysis, part 3.

1.6 contours. Out of all the contours, 8.2% are created due to contour refinement.

For each benchmark-client pair, the percentage is between 0% (no refinement) and

38.5% (std-dev. 8.2%).

Global variables

Finally, note that because we do not include global variables in the Partitioning Vec-

tor, we could lose precision. Fortunately, among those seven smaller benchmarks

where we can compare precision, no precision loss on the clients is detected. Never-

theless, we experiment with a simple extension, where we add a global variable into

the Partitioning Vector V of all procedures if that variable is ever assigned a non-

default flow value. When applied to the benchmarks, on average 6.6 global variables

100

are added to V (std.dev. 11.6, max 52). With this extension, we find that precision

is improved in two out of the 95 program-client cases (both in the cfengine bench-

mark), but performance suffers significantly: the mean speedup (over FSCS) drops

from 7.0 to 4.7.

5.3.3 Client-Driven Analysis: RBCS-CD versus CD

Table 5.5–5.7 shows similar results for comparison between RBCS-CD and the Client

Driven analysis (CD). We leave blank those table entries, such as nn File-Access,

where no procedure requires any context-sensitivity, i.e. analysis completes after

one pass. The largest benchmark, sendmail, was not able to complete with CD in

the FTP-Behavior client, but now completes with our new technique (the case with

an asterisk).

Client-Driven analysis analyzes many fewer procedures context-sensitively

than the FSCS analysis, giving our technique less room for improvement. Neverthe-

less, the improvement is generally good. sendmail sees only 1.1× speedup in three

clients; we believe this is due to memory system effects (disk swapping).

There are some cases where the analysis slows down with our analysis. These

cases typically require only a small amount of context-sensitivity in Client-Driven

mode, so the overhead of computing Partitioning Vectors and maintaining the hash

tables outweighs the benefit. For example, the overhead in the computation of reach-

able flow values from the parameters is quite large in cases such as openssh-server

File-Access.

101

CD vs. RBCS-CD Procs Time(sec) Contours Mem

Benchmark Client |Π| total call sites CD RBCS-CD × used avg ×

sendmail File-Access 0

sqlite 0

nn 0

privoxy 0

cfengine 0

openssh-server 10 601 415 105.1 138.2 0.8 31 3.1 1.1

openssh-client 3 441 26 21.7 21.8 1.0 10 3.3 1.0

apache 1 313 4 12.8 12.9 1.0 2 2.0 1.0

make 0

BlackHole 0

bind 0

fcron 0

pureftpd 0

wu-ftpd-2.6.2 0

wu-ftpd-2.6.0 0

muh-2.05d 0

muh-2.05c 0

pfinger 0

stunnel 0

Mean: 0.9 2.8 1.0

sendmail FSV 63 416 1093 66k 58k 1.1 492 7.8 2.9

sqlite 0

nn 22 494 687 3829 1748 2.2 100 4.5 1.2

privoxy 0

cfengine 15 421 741 512.6 114.7 4.5 48 3.2 3.2

openssh-server 0

openssh-client 0

apache 3 313 16 10.3 10.3 1.0 7 2.3 1.0

make 0

BlackHole 0

bind 1 210 9 13.5 13.1 1.0 2 2.0 1.0

fcron 0

pureftpd 0

wu-ftpd-2.6.2 7 205 29 37.9 34.8 1.1 23 3.3 1.1

wu-ftpd-2.6.0 5 183 81 17.5 16.5 1.1 13 2.6 1.1

pfinger 0

muh-2.05d 0

muh-2.05c 0

stunnel 0

Mean: 1.4 3.7 1.5

(continued in Table 5.6)

Table 5.5: Relevance-Based Context Partitioning for Client-Driven mode (RBCS-
CD) vs. Client-Driven analysis (CD), part 1. Legends are the same as in Table 5.2.
Blank entries indicate that there is no interesting comparison, because the Client-
Driven analysis has determined the benchmark requires no context-sensitive anal-
ysis. The *’s indicate cases where our technique enables an analysis to complete.
The means for all program-clients are shown at the end of Table 5.7.

102

(continued from Table 5.5)

CD vs. RBCS-CD Procs Time(sec) Contours Mem

Benchmark Client |Π| total call sites CD RBCS-CD × used avg ×

sendmail Remote-FSV 68 416 1129 71k 65k 1.1 608 8.9 2.6

sqlite 0

nn 23 494 694 4043 1880 2.2 112 4.9 1.2

privoxy 0

cfengine 19 421 806 825.7 275.9 3.06 71 3.7 2.4

openssh-server 0

openssh-client 2 441 96 41.0 46.2 0.9 5 2.5 1.0

apache 3 313 16 14.8 15.1 1.0 8 2.7 1.0

make 0

BlackHole 0

bind 1 210 9 15.9 15.3 1.0 2 2.0 1.0

fcron 0

pureftpd 0

wu-ftpd-2.6.2 7 205 29 43.9 40.0 1.1 24 3.4 1.1

wu-ftpd-2.6.0 5 183 81 18.2 16.5 1.1 12 2.4 1.1

pfinger 0

muh-2.05d 0

muh-2.05c 1 84 2 1.4 1.4 1.0 1 1.0 1.0

stunnel 0

Mean: 1.3 3.5 1.3

sendmail Remote-Access 68 416 1129 71k 65k 1.1 608 8.9 2.6

sqlite 0

nn 19 494 326 1888 1619 1.2 80 4.2 1.0

privoxy 10 223 759 894.5 264.9 1.8 35 3.5 1.8

cfengine 14 421 269 709.3 231.2 1.7 52 3.7 1.7

openssh-server 14 601 264 352.1 149.2 1.7 67 4.8 1.7

openssh-client 18 441 318 120.9 78.4 1.4 58 3.2 1.4

apache 17 313 187 33.8 20.9 1.4 45 2.6 1.4

make 0

BlackHole 2 71 65 72.5 70.2 0.9 7 3.5 0.9

bind 1 210 9 15.8 15.2 1.0 2 2.0 1.0

fcron 0

pureftpd 4 116 29 3.5 3.5 1.0 12 3.0 1.0

wu-ftpd-2.6.2 8 205 39 45.2 41.2 1.1 27 3.4 1.1

wu-ftpd-2.6.0 4 183 24 18.6 17.9 1.0 7 1.8 1.0

pfinger 1 47 10 2.0 1.9 1.1 2 2.0 1.0

muh-2.05d 0

muh-2.05c 0

stunnel 0

Mean: 1.4 3.6 1.3

(continued in Table 5.7)

Table 5.6: Relevance-Based Context Sensitive with Client-Driven analysis vs.
Client-Driven analysis, part 2.

103

(continued from Table 5.6)

CD vs. RBCS-CD Procs Time(sec) Contours Mem

Benchmark Client |Π| total call sites CD RBCS-CD × used avg ×

sendmail FTP-Behavior 78 416 1339 - 129k * 758 9.7 *

sqlite 0

nn 31 494 754 7082 3295 2.1 194 6.3 1.2

privoxy 11 223 764 2472 345.8 7.1 37 3.4 6.7

cfengine 35 421 1210 2144 564.4 3.8 200 5.7 3.3

openssh-server 0

openssh-client 0

apache 26 313 296 334.9 36.6 9.2 103 4.0 7.0

make 0

BlackHole 5 71 111 209.7 114.3 1.8 18 3.6 1.1

bind 4 210 43 20.8 21.8 1.0 10 2.5 1.0

fcron 0

pureftpd 9 116 262 85.2 6.2 13.8 49 5.4 3.1

wu-ftpd-2.6.2 21 205 418 102.2 70.0 1.5 134 6.4 2.4

wu-ftpd-2.6.0 18 183 410 61.1 26.0 2.4 181 10.1 2.9

pfinger 0

muh-2.05d 8 84 149 2.3 2.0 1.1 40 5.0 1.2

muh-2.05c 8 84 148 2.2 1.9 1.1 36 4.5 1.2

stunnel 0

Mean: 2.7 5.5 2.2

All-Mean: 1.6 4.1 1.5

Table 5.7: Relevance-Based Context Sensitive with Client-Driven analysis vs.
Client-Driven analysis, part 3.

5.3.4 RBCS versus PTF

We perform a simple experiment to estimate the differences between our RBCS and

a Partial Transfer Function (PTF) solution [153], which uses input alias patterns to

partition contexts. For example, a procedure with two parameters has two possible

input alias patterns: their points-to sets empty or non-empty intersections. We

estimate the number of PTFs used by each procedure, by first running the FSCS

pointer analysis (without client), then counting the number of contexts of each

procedure with distinct input alias patterns.

For the benchmarks for which the FSCS pointer analysis can complete, we

estimate that 1.3 PTFs are required per procedure, while RBCS uses on average 1.6

104

contours per procedure.

Since fewer PTFs are used when alias patterns are used, there is a potential

for a PTF solution to lose precision. We explore this possibility with another ex-

periment. By inspection, we found 28 cases (each case is a particular client applied

to a particular benchmark) that contain procedures where only one PTF is used

but where RBCS uses more than one contour. We then run a FSCS pointer and

client analysis on these cases, but forcing these procedures to be analyzed context-

insensitively; i.e., we are simulating using one PTF on these procedures. The results,

summarized in Table 5.8, show that in seven of the 28 cases, the PTF approach leads

to less precise results (the clients report more errors). Note that the result is an un-

derestimation of the PTF’s imprecision, because the experiment does not consider

other procedures that require multiple PTFs and require more contours than PTFs.

5.4 Coupled Analyses

The key to Relevance-Based Context Partitioning is the use of the client analysis to

guide the implementation of the pointer analysis. This general idea bears a strong

resemblance to the Client-Driven (CD) pointer analysis. In this section, we first

highlight the similarities and differences of these two algorithms. We then discuss

the prospects for other Coupled Analyses as a new paradigm for performing difficult

analyses.

The RBCP and CD algorithms are both Coupled Analyses in which informa-

tion from the client analysis guides the behavior of a service analysis, in these cases,

pointer analysis. The goals of the two algorithms are orthogonal: The CD algo-

rithm reduces the number of procedures that must be analyzed context-sensitively

but does not attempt to partition the contexts for these procedures; the RBCS algo-

105

Benchmark Client change in #reported errors

pfinger Remote-Access same

muh-2.05c Remote-FSV same

muh-2.05c FTP-Behavior same

muh-2.05d FTP-Behavior same

pureftpd Remote-Access 18 → 19

pureftpd FTP-Behavior same

wu-ftpd-2.6.0 FSV same

wu-ftpd-2.6.0 Remote-FSV same

wu-ftpd-2.6.0 FTP-Behavior 4 → 5

wu-ftpd-2.6.2 FSV same

wu-ftpd-2.6.2 Remote-FSV same

wu-ftpd-2.6.2 Remote-Access same

wu-ftpd-2.6.2 FTP-Behavior same

apache FSV same

apache Remote-FSV same

apache Remote-Access same

apache FTP-Behavior same

BlackHole Remote-Access 0 → 85

BlackHole FTP-Behavior 5 → 19

openssh-client File-Access same

openssh-client Remote-FSV same

openssh-client Remote-Access same

privoxy Remote-Access same

openssh-server File-Access same

cfengine Remote-FSV 5 → 9

cfengine Remote-Access 58 → 91

cfengine FTP-Behavior 5 → 10

nn FSV same

Table 5.8: Results of simulations of one PTF on selective programs: the third
column shows the effect of the reduced precision on the number of reported errors.
Accuracy of the client analyses are reduced in seven cases, because the numbers of
reported errors have increased.

106

rithm attempts to partition contexts for context-sensitive analysis, but it does not

attempt to reduce the number of procedures that are analyzed context-sensitively.

The two algorithms differ in one interesting aspect. The CD algorithm re-

quires multiple passes, because it receives its client information at the end of each

pass. Such multi-pass algorithms are likely to be common, because in many cases,

the client information is most useful after the analysis has converged (i.e., reached

a fix point). By contrast, the RBCP algorithm provides a steady supply of informa-

tion to its pointer analysis, which simply improves its efficiency as the information

that it is given converges.

In addition to these two coupled pointer analyses, we can imagine other

coupled pointer analyses. For example, Nystrom, et al.’s inlining-based pointer

analysis [106] could use a client to guide selective inlining. Moreover, dimensions of

pointer analysis other than context-sensitivity could be guided by client information,

including the choice between field-sensitive and field-insensitive analysis and the

granularity of the heap model.

Beyond pointer analysis, we can imagine other examples of service analyses

that could benefit from client information:

• A reaching definition analysis that acts as a service analysis for a constant

propagation could partition contexts based on the reaching values of variables,

namely, contexts with the same constant reaching value are grouped together.

• Conceptually, a chopping analysis computes the intersection of two service

analyses, a forward slicing analysis, and a backward slicing analysis [119]. It

may be possible to compute the intersection efficiently by passing information

from one service analysis to another, as the boundaries of, say, the forward

slice can limit the work of the backward slice.

107

We now list three necessary requirements for Coupled Analyses:

1. The service analysis must provide tangible intermediate results that are avail-

able and useful to the client. For example, the intermediate results of a

constraint-based pointer analysis are constraints, which are not readily useful

to the client.

2. The client must communicate its needs to the service analysis, including spe-

cific information, such as, “I do not want to merge these two flow values.”

3. The service analysis needs some means to adjust its behavior in response to

the client.

Prospects for the future. Looking to the future, many service analyses are non-

separable and extremely difficult to scale. For example, after many years of study,

extremely precise pointer analysis remains an elusive problem. Its importance, how-

ever, is only likely to grow, as programs become increasingly complex and as new

problems appear, such as the need for tools that can help parallelize pointer-based

codes for multi-core chips. Thus, as the prospects for scalable and precise standalone

solutions diminish, it makes sense to explore ways in which additional information

can assist these analyses. The paradigm of Coupled Analyses is one such approach,

so we believe that its importance will only continue to grow..

5.5 Conclusion

As the desire for large robust software continues to increase, so does the demand for

precise and scalable service analyses, such as pointer analysis and the computation of

reaching definitions, which are useful for problems such as security analysis, program

108

slicing, and other analyses for program understanding. This chapter contributes one

technique for improving the scalability of context-sensitive service analyses.

In particular, we have introduced the notion of Relevance-Based Context

Partitioning, which partitions contexts for pointer analysis into equivalence classes

based on the computed flow values of a client analysis. Our technique allows irrele-

vant information to be merged but ensures that relevant information is never merged.

Consequently, RBCP reduces great amounts of unimportant computations, so that

performance and memory utilization are improved without sacrificing precision.

To show the power of our technique, we have used it to improve the efficiency

of a set of flow- and context-sensitive error-checking analyses. Our results show

that Relevance-Based Context Partitioning greatly improves the scalability of these

analyses. Without our technique, only the seven smallest of our 19 benchmarks could

be successfully analyzed. With our technique, all except one benchmark could be

successfully analyzed; the last benchmark sendmail could complete on two out of

five clients. The average speedup among the seven smallest benchmarks is 7.0×.

When combined with the Client-Driven pointer analysis, our technique allows us

to analyze the 69K line sendmail program, and it reduces the analysis time of all

larger benchmarks by an average of 1.6×.

Finally, we observe that Relevance-Based Context Partitioning is the second

example where information from the client analysis can improve the performance

of a service analysis, and we argue that this is a paradigm that is likely to become

more important in the future.

109

Chapter 6

Reachability-Based Analysis

6.1 Introduction

In the previous two chapters, we present evidence of large amounts of unimportant

computations in dataflow analyses. We are interested to know if unimportant com-

putation also exists in other forms of program analyses. In this section, we explore

that question in reachability-based analysis.

Under this paradigm, dataflow facts at statements are encoded as nodes of

a graph, with edges representing how those facts flow or are transformed between

statements. Solving the analysis problem reduces to determining what nodes are

reachable from a set of predetermined initial “start” nodes.

For better precision, the analysis problem is transformed into a special kind

of graph-reachability problem, instead of an ordinary transitive-closure reachability

problem. The generalized reachability problem involves the constraint that only

interprocedurally realizable paths can be considered in the analysis.1 A realizable

1Sometimes the equivalent class of context-free-language reachability problems, or CFL-

reachability problems [120], is used in the literature instead.

110

path mimics the call-return structure of a program: if a path contains a call edge

(caller-to-callee) and a corresponding return edge (callee-to-caller), then the return

site must match with the call site, i.e., back to the original caller. Without the

constraint, propagation of dataflow information along unrealizable paths can lead

to spurious, and therefore imprecise, analysis results.

The class of interprocedural, finite, distributive, subset dataflow problems

(IFDS) is the most widely cited example when the dataflow problems are trans-

formed into graph-reachability problems. The class of IFDS problems is important

because it includes many widely used interprocedural problems, including locally

separable problems [77]. The algorithm by Reps, Horwitz, and Sagiv [121] to solve

IFDS problems has been widely cited [5, 11, 12, 13, 34, 35, 37, 39, 40, 41, 46, 50, 59,

76, 86, 92, 89, 95, 112, 113, 116, 127, 139] because it performs a precise analysis—it

is both flow-sensitive and context-sensitive—in polynomial rather than exponen-

tial time. After encoding a dataflow problem as a graph, call an exploded graph,

the problem can then be solved in O(ED3), where E is the number of edges in the

graph, and D is the maximum number of local and global variables in any procedure.

Despite its theoretical elegance, the practical limits of the IFDS algorithms

are not well studied. In particular, there are three potential limitations:

1. The cubic time complexity assumes a data structure that provides constant-

time cost for certain common operations, such as membership tests. This

constant-time cost can be achieved by using random-access O(ND2) arrays,

but the space complexity of such arrays becomes infeasible as the program size

grows. Our results show that often less than 1% of each such array is used, so

it is difficult to justify the use of such a data structure. In fact, the algorithm

per se cannot complete beyond our few smallest programs.

111

2. The presence of pointers introduces a large number of invisible variables that

are accessed through pointers, so the value of D can grow with the program

size. With a O(ED3) complexity, the analysis does not scale well to large

programs.

3. Third, the presence of pointers complicates the creation of the exploded graph,

and the impact of pointer analysis precision on this construction is not well

studied.

6.1.1 Contributions

To address the three limitations described in previous section, we make two sets of

changes to the algorithm presented by Reps et al. [121] The first set makes some

refinement to the data structures used in the algorithm. The more space-efficient

internal data structure helps to cope with the memory requirement. We present

these changes in Section 6.2.3, after we summarize the original algorithm. Applying

these changes enable the algorithm to complete our larger benchmarks. For this

reason, we will refer to this refined algorithm as our baseline algorithm.

Section 6.2.3 also briefly explains the effects of pointer analysis precision

on the IFDS analysis, and how we choose which pointer analysis to use in our

experiments.

The second set, which is the bulk of our contributions, consists of a collection

of new algorithms. They are derived from two new algorithms we devised. By com-

bining them and by introducing new variants, we obtain a diverse set of algorithms

that improve performance without sacrificing precision. We briefly summarize two

new algorithms as follow:

1. We present the Sparse IFDS algorithm, which reduces the size of the exploded

112

graph by representing data dependences instead of control dependences. For

our benchmark suite, we find that the exploded graphs produced by these

sparse algorithms use only, on average, 11% of nodes used by the original

algorithms. As a result, the Sparse IFDS algorithm is on average 2.6× faster

than the baseline algorithm. We present the detailed algorithm in Section 6.3.

2. The second algorithm, Variable-Pruning IFDS algorithm, incorporates a

lightweight slicing algorithm that determines the set of variables that do not

contribute to answering any queries raised by a client analysis. These vari-

ables are excluded, or pruned away, during exploded graph construction. On

average, the new graphs use 32% of nodes used by the baseline algorithm. As

a result, the analysis is 3.3× faster than the baseline algorithm. In Section 6.4,

we will present in detail the algorithm, and its differences from the Demand

IFDS algorithm [121].

Both algorithms address the presence of unimportant work in IFDS analysis.

The Sparse IFDS algorithm avoids creating nodes and edges where there are no

effects on the associated flow values, while the Variable-Pruning IFDS algorithm

is driven by avoiding nodes whose flow values are not used in any queries. The

reduction in the graphs directly reduces the amount of unnecessary propagations

during reachability analysis.

The two algorithms are orthogonal, and each can yield better performance

over the other in our suite of benchmarks. We can also combine them to yield even

better performance; on average, the combined algorithm’s analysis time is 5.5×

faster than the baseline algorithm, with no precision loss.

The performance results cited above are based on using a fixed FSCI pointer

analysis prior to the IFDS analysis. Since the same pointer analysis is used, these

113

comparisons use IFDS analysis time only and exclude time spent in pointer analysis.

In order to achieve good performance in total pointer and IFDS analysis

time, we also try using other pointer analyses. Specifically, we use a multiple-

passes multiple-pointer analysis framework. The objective is to let a client analysis

provide feedback allowing the Variable-Pruning IFDS analysis to prune away even

more variables.

When we compare total pointer and IFDS analysis time, among the algo-

rithms we tried, the best algorithm is the combined Sparse Feedback-based Variable-

Pruning algorithm; on average, it is 2.6× faster than the baseline algorithm. All

algorithms do not lose precision compared to the baseline.

An important question is, how does the IFDS analysis compare to a dataflow

analysis? For this purpose, we compare our best IFDS algorithms with the Client-

Driven analysis [54], one of the most scalable and precise dataflow analyses. Our

experiment shows that our best IFDS algorithm is on average 1.8× slower than the

Client-Driven analysis.

Finally, at the end of this chapter, we will present our attempts to apply

cycle-elimination techniques to IFDS analysis. The motivation is based on the obser-

vation that strongly connected components in the exploded graph are redundancies,

because if one node is reachable, all nodes in the same component are reachable.

Collapsing all nodes in a component, and replacing them with a single representative

node, can lead to more efficient reachability analysis. The main result of this exer-

cise is that despite their apparent attractiveness, these techniques do not help IFDS

analysis in practice. The reasons are (1) graph construction is a major component,

so cycle detection after the graph is constructed is too late; (2) high overhead in de-

tecting cycles; and (3) overshadowing by the Sparse IFDS algorithm, which already

114

avoids creating many cycles. But even when an FICI pointer analysis is used, so

that the Sparse IFDS algorithm is not applicable, there is still no improvement over

the baseline.

The rest of this chapter is organized as follows. Section 6.2 summarizes

the original IFDS algorithm and, after we apply some modifications, a baseline

algorithm. The next two sections explain the Sparse and Variable-Pruning IFDS

algorithms in details, respectively. Section 6.4.4 discusses different analysis configu-

rations that incorporate our new algorithms. Section 6.5 presents our experimental

results. Section 6.6 summarizes our attempt to incorporate cycle elimination tech-

niques. Finally, Section 6.7 concludes the chapter. We review related work later in

Section 7.4.

6.2 IFDS Baseline Algorithm

Reps et al. [121] present the IFDS algorithm to solve the class of IFDS problems. In

this chapter, we will present our new algorithms to solve the same class of problems.

For convenience, we will call an execution of any of these algorithms to solve a given

problem an IFDS analysis. This execution includes all initialization steps—including

graph construction—and the reachability analysis on the graph.

Before we present our algorithms, we start with this section that briefly

explains the class of IFDS problems, and highlights the essential features of the

original IFDS algorithm by Reps et al. We also discuss some practical issues and

our modifications. We will call the result of applying these modifications our IFDS

baseline algorithm, or simply, the IFDS algorithm. We sometimes also denote it by

IFDS .

115

6.2.1 IFDS Problems

The objective of an IFDS analysis is to find precise and efficient solutions to the class

of interprocedural, finite, distributive, subset problems, or IFDS problems. In this

class of problems, the set of dataflow facts, or dataflow values, is a finite set, and the

dataflow functions distribute over the meet operator (either union or intersection,

depending on the problem). The class contains all locally-separable problems as

well as many other non-separable problems. This last property, plus the existence

of polynomial algorithms to solve them, make the IFDS algorithms attractive and

popular. Unfortunately, there are still many important analysis problems, such as

pointer analysis, that do not fall into this category.

6.2.2 The Original IFDS Algorithm

Overview

Rep et al.’s algorithm adopts the functional approach to precise interprocedural

analyses as described by Sharir and Pnueli [136]. In the algorithm, a program

is represented by a supergraph composed by a collection of flow graphs, one per

procedure. There is also a finite data-set Dp per procedure, where each element

d ∈ Dp represents a dataflow value. For example, suppose the analysis problem is to

determine integer parities, then one way is to let each d take the form “x = Odd” or

“x = Even” for each variable x in the procedure. Therefore, the size of Dp depends

on the number of variables and the fixed number of property values (Odd and Even)

in analysis problem.

Using the flow graphs and Dp, the exploded graph is constructed as follows:

for each node n in the flowgraph of procedure p, and for every element d ∈ Dp, there

is a node n̄ = 〈n, d〉 in the exploded graph. The edges on n̄ are created using the

116

main() {
0:

1: int a = 2;

2: int b = a;

3: int c = foo(b);

4: ...

...

q: ... // query

}

int foo(x) {
5:

6: return x;

}

1,a=E 1,a=O

2,a=O 2,b=O 2,c=E2,b=E 2,c=O

6,x=O

5,r=E 5,r=O

3C,Λ

1,b=O 1,c=E1,b=E 1,c=O

3R,Λ

5,x=E

6,x=E

5,x=O

6,r=E 6,r=O

5,Λ

2,Λ

1,Λ

6,Λ

3C,c=O3C,c=E3C,b=O3C,a=E 3C,a=O

2,a=E

3R,c=E3R,b=O3R,b=E3R,a=O3R,a=E

3C,b=E

main

foo

3R,c=O

(a) Input program (b) Exploded graph

Figure 6.1: Exploded graph constructed for an example program, for the dataflow
problem that determines parity of integers. The elements of data-sets are of the
forms a = E or a = O. For example, the node 〈2, a = E〉 means the fact “variable
a is even just before statement 2.” Each call site has two set of nodes: for the call
at statement 3, the nodes labeled 3C represent the call to callee, while the nodes
labeled 3R represent return from callee. The symbol r represents the return value
of foo. Λ is a special symbol not in any data-set, so that the node 〈0,Λ〉 is the
“start” node for the reachability analysis. Reachable nodes from this start node are
colored gray. The dash edge is a summary edge in main, which is created due to the
path 〈5, x = E〉 → 〈6, r = E〉 in the callee foo.

edges on n as well as the transfer function on d at n. Figure 6.1 shows part of an

exploded graph of an example program for the dataflow problem that determines

the parity of integers.

The algorithm then proceeds to perform reachability analysis, by computing

path edges on the exploded graph. Each path edge is in the form

〈sp, d1〉 → 〈n, d2〉,

117

where sp is the entry node for a procedure p, and n is a node in the same procedure.

The presence of a path edge indicates that 〈n, d2〉 is reachable from 〈sp, d1〉, which

translates to the propagation of dataflow information from sp to n.

If n is the exit node, then a summary edge is also created at the corresponding

call-return pair of nodes in the callers of p:

〈nc, d1〉 → 〈nr, d2〉,

where nc, nr are the call and return nodes in a caller. These summary edges are

then used in the computation of path edges in the callers. Because nc and nr must

belong to same caller, the summary edges allow propagation of flow information

only along interprocedurally realizable paths, thereby making the IFDS analysis

context-sensitive.

Since reachable nodes are computed for each statement, the IFDS analysis is

also flow-sensitive. The set of reachable nodes at a statement captures the solution

at the statement. For example, if the node 〈q, c = E〉 is reachable while 〈q, c = O〉

is not, then the variable c is even at statement q.

6.2.3 Practical Issues and Modifications

In this section, we discuss three practical issues pertaining to the IFDS analysis:

the presence of pointers in programs, graph construction algorithms, and internal

data structures.

Pointers

The data-set Dp is dependent on the dataflow problem on-hand, but it usually

contains all the visible variables in the procedure p. In the presence of pointers,

118

we have to decide how to treat pointer dereferences, since they sometimes represent

invisible variables and heap objects. One possibility is to use symbolic names. The

advantage is Dp remains dependent only on the procedure alone. The disadvantage

is, in order not to lose precision, the algorithm must now handle possible alias

among input parameters. We could adopt a strategy similar to that used in the

Partial Transfer Functions [153], where one solution is computed per input alias

pattern.

The other possibility is to determine (via a pointer analysis) all the actual

targets of each dereference, and include them in the data-set. This approach is

dependent on the rest of the program, so that Dp may grow with the size of the

program. While the algorithm is still O(ED3), the pathological worse case is now

O(EN3).

Because the first approach can complicate the original IFDS algorithms in

such ways that we are no longer evaluating the IFDS algorithms in their normal

form, in this chapter we choose the second approach.

Incremental Graph Construction

The exploded graph is constructed using each procedure’s flow graph and data-set

Dp. The possible elements for Dp are the local and global variables and, in the

presence of pointers, other invisible and heap variables. This set is too big for

large programs. To build a minimal exploded graph, Dp should only include those

variables actually used in the procedure. Our strategy is to start with a minimal

initial Dp and allow it to grow incrementally.

The initial Dp consists of local variables and all inputs to the procedure. The

inputs are the parameters as well as pointer-derived hidden and heap variables. To

119

acquire these inputs, we charge the pointer analysis the responsibility to collect the

set of all inputs to a procedure that is actually used in the procedure.

The initial sets for all procedures are used to construct the exploded graph.

For each procedure p and Dp, we invoke the routine explode proc in Figure 6.2.

The routine uses the entry node sp to generate an initial set of exploded graph

nodes, which are put in a worklist. From each node 〈n, d〉 taken from the worklist,

the routine explode creates new nodes and target nodes by applying the transfer

functions on n and d. New unexploded nodes are also put back on the worklist. At

a call site, new flow values are exported to the callee’s D set. At a call return site,

new values are exported back to the caller. The data-set grows when a new value

is created by a transfer function, or when it is imported from another procedure.

This incremental graph construction algorithm also has the additional advantage

that if a new value d is discovered at node n, we do not use d to explode statements

before n.

Data Structure: Space and Time Tradeoffs

To enable unit-time tests for membership, the original algorithm uses arrays to store

all the path and summary edges. This requires O(ND2) storage space per procedure,

where N is the number of nodes. (It already takes into account all path edges have

source nodes in the form 〈sp, d〉, where sp is a start node.) Unfortunately, because

D can be large, this scheme causes the algorithm to quickly run out of memory. A

study on a few selected small programs reveals that sometimes less than 1% of one

such array is actually used. This is not surprising since not all pairs of nodes in the

exploded graph are valid path edges.

To overcome this problem, we are forced to trade in time for space, by replac-

120

explodeProc(p, D) {
sp = start node of p;

for d ∈ D do {
s̄ = 〈sp, d〉;
if s̄ not marked as exploded

add s̄ to WLp; // worklist

}
while WLp not empty {
remove 〈n, d〉 from WLp;

new nodes = explode(〈n, d〉);
WLp ∪ = new nodes;

if n is CALL {
q = callee(n);

if export(n, q, d)

explodeProc(sq , {q});
} elif n is EXIT {

q = caller(n); // q is RET node

if export(n, q, d)

WLq ∪ = explode(〈q, d〉);
}

}
}

explode(n̄) {
mark n̄ as exploded;

let n̄ = 〈n, d〉;
for s ∈ successors(n) do {

// s, n are in same procedure

targets = apply xfer(n, s, d);

for d′ ∈ targets do {
s̄ = 〈s, d′〉;
add edge(n̄, s̄);

if s̄ not marked as exploded

add s̄ to new nodes;

}
}
return new nodes;

}

Figure 6.2: Constructing exploded graph.

ing the arrays with log-time sets. Specifically, we use the following multi-dimensional

arrays of sets to represent path edges:

PathEdges → array 1 . . . P of DVec

DVec → array 1 . . . N of DPairs

DPairs → set of 〈d1, d2〉 pairs

where P is the number of procedures, and N is the number of flowgraph nodes per

procedure. In the original algorithm, DPairs is a two-dimensional array, so that the

membership test on a path edge 〈sp, d1〉 → 〈n, d2〉 is reduced to a boolean test on

PathEdge[p][n][d1][d2]. After we replace DPair with a set, each membership test

and insertion operation has a O(log D2) cost. Consequently, the overall analysis

121

complexity becomes O(ED3 log D2).

6.2.4 Effects of Pointers on IFDS Analysis

It is well known that the precision of a pointer analysis has significant impact on

the subsequent analysis dependent on it. What is not necessarily clear is the degree

of that impact on different analyses. As far as we know, there is no previous study

of the impact on the IFDS analysis. The immediate questions we face now are: (1)

how exactly does a pointer analysis affect an IFDS analysis? and (2) which pointer

analysis should we use in order to properly evaluate the baseline IFDS algorithm

and our new algorithms? This section attempts to answer these two questions.

A pointer analysis affects the IFDS analysis (or any other analysis for that

matter) in competing ways, and there does not exist a best pointer analysis that fits

all situations. Perhaps the most important and obvious factor is the scalability of

the pointer analysis. If it cannot or takes too long to complete analysis on a given

program (e.g., requires too much memory), then we cannot even perform the IFDS

analysis.

On the other hand, a very scalable pointer analysis often produces larger

points-to sets. Such imprecise results can cause the IFDS analysis to slow down.

For example, in statement s:x=*p, the number of nodes and edges in the exploded

graph created for that single statement is proportional to the size of points-to sets of

the dereferenced pointer. Figure 6.3 shows how the graphs look when the points-to

set has size 1 and 2. Note that nodes and edges for subsequent statements are also

affected. Not only does the IFDS analysis possibly create a much larger graph for a

small increase in points-to set, the precision of the IFDS analysis also suffers. Using

the same example, the extraneous path to query at node 〈n, z〉 in Figure 6.3(b) can

122

cause the analysis to answer true to a query, when the answer should be false.

n,x

2,x

1,x

n,y

2,y

n,z

2,z

(b)

m
or

e s
tat

em
en

ts

n,x

2,x

1,x

n,y

2,y

(a)

Figure 6.3: Effect of pointer analysis precision on IFDS analysis on a statement
1:x=*p. If the points-to set for p is {y}, the graph in (a) is constructed; if instead
the points-to set is {y,z}, the larger graph in (b) is constructed, with more nodes
and edges from statement 2 downward.

Later, in Section 6.5.2, we will quantify the effects of pointer analysis on

IFDS analysis. In that experiment, we compare three IFDS analyses that use pointer

analyses with different precision modes: a flow-insensitive context-insensitive anal-

ysis (FICI), a flow-sensitive context-insensitive analysis (FSCI), and a flow-sensitive

context-sensitive analysis (FSCS). The key results are (1) FSCS is too expensive

and can complete analysis only in a small subset of programs; (2) among our bench-

marks, FSCI does not cause IFDS analysis to lose precision compared to when FSCS

is used; and (3) FICI is too imprecise, and both performance and precision of IFDS

analysis suffers substantially. For these reasons, for the remainder of this chapter,

unless otherwise stated, we will assume an FSCI pointer analysis is used prior to

any IFDS analysis.

We are now ready to present our new Sparse and Variable-Pruning IFDS

algorithms.

123

6.3 Sparse IFDS

In this section, we present our new Sparse IFDS algorithm, denoted by Sparse-IFDS.

We first explain how the lack of sparsity in the original algorithm leads to inefficient

analysis, before we present the Sparse IFDS algorithm. The results of the algorithm

are presented later in Section 6.5.3.

6.3.1 Motivation

In the IFDS algorithms, a node n in the supergraph is exploded into many copies

of n̄ = 〈n, d〉 in the exploded graph, where d ∈ D. The out-edges incident on n̄

depends on the transfer function t on the node n. Considering only intraprocedural

edges, the side effect of n is usually on a small set of variables. For this reason, for

many nodes n̄, all out-edges on the node are in the form:

〈n, d〉 → 〈s, d〉 s ∈ successor(n), (6.1)

i.e., they share the same d value. These edges represent a “no change” semantic of

d at n. By induction, many nodes n̄ also have only one type of in-edges in the form:

〈p, d〉 → 〈n, d〉 p ∈ predecessor(n) (6.2)

Because most statements have only one successor and one predecessor each, these

edges together form many non-trivial paths where there is no branching along each

path. Nodes along these paths are redundant and could be bypassed. The redun-

dancies lead to inefficiency in space and time usage, both in building the graph as

well as in the reachability analysis.

124

explodesparse(n̄) {
mark n̄ as exploded;

let n̄ = 〈n, d〉;

def = find def at(d,n);

if ∃def {
for u ∈ uses(def) do {

ū = 〈u, d〉;
add edge(n̄, ū);

if ū not marked as exploded

add ū to new nodes;

}
}

for s ∈ successors(n) do {
// s, n are in same procedure

targets = apply xfer(n, s, d);

for d′ ∈ targets do {

if d 6= d′ {

s̄ = 〈s, d′〉;
add edge(n̄, s̄);

if s̄ not marked as exploded

add s̄ to new nodes;

}
}

}
return new nodes;

}

Figure 6.4: Constructing sparse exploded graph, modified from Figure 6.2, with new
or modified statements highlighted with gray boxes. If a def for d exists at node n,
new nodes and edges are constructed using the def-use chains.

6.3.2 Algorithm

Our Sparse IFDS algorithm solves this problem by observing that if a node n̄ has

any out-edge not in the form of (6.1), then d is used at n to modify another flow

value d′ 6= d. Similarly, if the node has any in-edge not in the form of (6.2), then d is

modified at n. Therefore, if we get rid of the redundant nodes (and edges) described

earlier, we are left with nodes n̄ such that there is either a modification (def) or a

use on the value of d at n. Therefore, for each d, we only need to create nodes at its

def and use sites, and connect the nodes with edges corresponding to def-use chains.

125

We charge the responsibility of building the def-use chains to the pointer

analysis, which was performed before the IFDS analysis begins. Specifically, the

pointer analysis must be able to answer a query “what are the uses of a given def?”

Therefore, the new Sparse IFDS algorithm requires a flow-sensitive pointer analysis.

To handle interprocedural edges correctly, we require the following def/use chains

to be created for d as well:

• at a call node c with a corresponding callee p whose entry node is sp, if the

variable for d is exported to (used in) the callee, then the variable must have a

use at c and a def at sp, and the edge 〈c, d〉 → 〈sp, d〉 is added to the exploded

graph.

• at a return node r with a corresponding callee p whose exit node is ep, if the

variable for d is exported to the caller, then the variable must have a use at ep

and a def at r, and the edge 〈ep, d〉 → 〈r, d〉 is added to the exploded graph.

The Sparse IFDS algorithm, shown in Figure 6.4, replaces the routine

explode in the original algorithm (Figure 6.2) with a new version explodesparse.

The first part of the new routine checks if there is a def for d at n; if yes, the def-use

chains are used to create new nodes and edges. The second part of the routine

is the same as the original version, except for an additional check to avoid adding

redundant edges.

6.4 Variable-Pruning IFDS

The Sparse IFDS algorithm works by creating fewer nodes for each statement, by

using only variables used or modified at a statement. Another way to further reduce

the graph is to not use those variables that do not contribute to the analysis queries.

126

The key is an inexpensive way to determine which variables to exclude. We achieve

this by incorporating a new technique call Variable-Pruning, and we call the new

algorithm Prune-IFDS. In this section, we describe the algorithm, and explain how it

differs from Sparse IFDS analysis and Demand IFDS analysis [121]. Finally, we also

describe a variant to the algorithm, which we call Feedback-based Variable-Pruning

analysis.

6.4.1 Algorithm

Suppose an analysis makes a query in the form “what is the value of x at state-

ment s?” The value of x depends on values of y’s such that there are assignments

in the program where x is modified and y is accessed on the right-hand side. We

let x ; y to denote this dependence. The transitive closure of such dependences

is, therefore, the set of variables that contribute to the query. All variables that do

not contribute to any query can be safely dropped and not used in constructing the

exploded graph.

We do not need to include pointer variables when we compute the depen-

dences. This is because all pointer dereferences must be resolved before constructing

the exploded graph. For example, each assignment in the form “x = ∗p” is logically

replaced by a set of assignments “x = y” for each y in the points-to sets of p. These

assignments are then used to construct the dependences, and the pointer variable p

is not used.

Our algorithm involves constructing a variable dependence graph (VCG),

where the nodes are variables and the edges are the dependences. The easiest

way to compute a dependence graph is to assign the task to the pointer analysis:

generate the dependence edges for each assignment in the program. This is shown as

127

AddDependence(assign, deps) {
for var l in LHS(assign) do

for var r in RHS(assign) do

add (r ; l) to deps;

}

PruneVariables(deps,queries) {
Set incl = ∅;
for q in queries do

for var v in q do

Set r = all reachables(v, deps);

add r to incl;

return incl;

}

Figure 6.5: Variable-Pruning IFDS Algorithm. AddDependence is called at each
assignment during a pointer analysis. After the dependence graph is completed,
given a set queries, PruneVariables compute the set of variables that should be
included in the subsequent analysis.

AddDependence in Figure 6.5. The added computational cost is small per statement,

while the additional memory overhead is usually much less than the upper limit of

O(V 2), where V is the number of variables. When the dependence graph is complete,

given a set of queries, PruneVariables can then compute the set of variables that

should be included in the subsequent analysis.

Note that using the dependences to prune variables is effectively a lightweight

version of a slicing algorithm [144]. The latter, in general, may prune away more

variables, but such algorithms are also more expensive.

6.4.2 Difference from Sparse IFDS

The Sparse IFDS algorithm and the Variable-Pruning IFDS algorithm share the

same goal of avoiding nodes that are not needed, because they do not carry relevant

data flow. Their approaches are different and can be combined to yield even better

results. This section explains their strengths and differences with an example.

Figure 6.6(a) shows a simple flowgraph with five nodes. There are three

variables x, y, z, leading to an exploded graph with 15 nodes, shown in Figure 6.6(b).

There are assignments between the variables, leading to edges 〈1, x〉 → 〈2, y〉 and

〈3, z〉 → 〈4, x〉. These are the only edges between different variables. The client

128

2

3

4

5

1

5,x

4,x

3,x

2,x

1,x

5,z

4,z

3,z

2,z

1,z1,y 1,y

(a) flowgraph

5,x

4,x

3,x

2,x

1,x

5,z

4,z

3,z

2,z

1,z

(d) exploded graph after Variable Pruning

5,x

4,x

1,x

3,z

1,z

(e) exploded graph after Sparse VP IFDS

def

def

use

use

(b) exploded graph

def

def

use

use

5,x

4,x

1,x

2,y

3,z

1,z

(c) exploded graph after Sparse IFDS

5,y

4,y

3,y

2,y

5,y useuse

defdef def defdefdef useuse

Figure 6.6: Difference between Sparse IFDS algorithm and Variable-Pruning IFDS
algorithm. In (c), the graph is determined by the def-use chains. In (d), assuming
there is a query on value x at node 5, only the variables {x, z} are used to construct
the graph. The combined algorithm yields the graph in (e)

analysis also makes a single query on value of x at node 5.

Figure 6.6(c) shows the graph constructed by the Sparse IFDS algorithm. For

each variable, the algorithm only creates nodes at its def and use sites, and connects

them with edges using def-use chains. These are global variables, and therefore, by

default, each of them has a def at the procedure entry: i.e., statement 1 serves as

the merge point for collecting flow values from different callers. The same statement

can also be a use site, as in the case of 〈1, x〉, where x is used in the assignment to

y. Note that all three variables are still present, and that the client query does not

play a role in the algorithm.

129

The Variable-Pruning IFDS algorithm, on the other hand, determines that

in order to answer the client query, it needs to include the values of {x, z}. It can

exclude {y} because y does not contribute to answering the query. Armed with this

information, it constructs a different exploded graph, as shown in Figure 6.6(d). The

size of this graph depends on the set of queries and variable dependences. Although

in this example the graph resulting from Variable-Pruning is larger, in general if

there are many other y’s that Variable-Pruning can prune away, and if these y’s

have more def-use chains, then Variable-Pruning can produce smaller graphs than

Sparse IFDS.

Since the two algorithms work in different ways but with the same objective,

they can be combined to yield better results. When applied to the example, the

result, shown in Figure 6.6(e), has fewer nodes than earlier results.

6.4.3 Difference from Demand IFDS

Demand IFDS [121] is a variant of the IFDS algorithm that has an implicit built-in

slicing mechanism. It is, therefore, interesting to compare its difference from the

Variable-Pruning IFDS algorithm. This section briefly describes how the Demand

IFDS algorithm works, and explains how it differs from the Variable-Pruning IFDS

algorithm.

The Demand IFDS algorithm is, in a nutshell, an IFDS analysis but with a

backward direction of analysis. It starts at the client queries, and performs graph

construction and reachability analysis backward. That is, given a node 〈n, d〉, it

determines its immediate predecessors:

〈p, d′〉 → 〈n, d〉 (6.3)

130

where p is a predecessor in the flowgraph. The algorithm iteratively find new nodes

and edges until no more nodes can be added. During this process, the algorithm

checks if the graph contains any node 〈smain, d〉 where d is any dataflow value known

to be a fact at the start of the program. If yes, the algorithm stops, and the query

is answered yes.

By the nature of computing predecessors using (6.3), the algorithm will com-

pute nodes using only dataflow values contributing to a query. That is, its side effect

is to prune away values that do not contribute to any query. The net effect, how-

ever, is different from that of the Variable-Pruning IFDS algorithm due to two key

differences:

1. The Variable-Pruning IFDS algorithm (Prune-IFDS) ignores control depen-

dences when computing variable dependences. That is, if x depends on y,

which depends on z, the dependence graph implicitly includes the depen-

dence x ; z, even if the order of assignments excludes such dependence. On

the other hand, the dependences used in the Demand IFDS are flow-sensitive.

This difference can be fixed by using a more precise slicing algorithm in Prune-

IFDS.

2. Even when the two algorithms use the same set of variables, their results can

still be different. The fundamental reason is due to different direction in the

graph construction.

We now provide more details on the second difference by using an example.

Figure 6.7(a) shows a simple flowgraph with a branch at the end of 100 statements.

It contains two assignments on variable z, one assignment on variable y, and no

assignment on variable x. Suppose we wish to perform an Uninitialized-Variable

analysis problem, with the following query: is variable z initialized at node 103? The

131

103,z

102,y102,x

1,y1,x

100,x

2,x

100,y

2,y

more nodes,
no branches

y=5

100,y

1,y

2,y

102,y101,y

103,y 103,z103

101 102

100

2

1

query(z)

(a) flowgraph

z=x z=y

(b) exploded graph after VP (c) exploded graph after Demand IFDS

Figure 6.7: Difference between Demand IFDS algorithm and Variable-Pruning IFDS
algorithm. This example assumes an Uninitialized-Variable analysis problem, and
that there is a query on value z at node 103. The arrows indicates the direction in
which the nodes are created.

analysis uses the following convention: a node 〈n, v〉 means variable v is definitely

initialized at statement n.

Under the Variable-Pruning IFDS algorithm, the three variables are not

pruned away. The corresponding exploded graph is shown in Figure 6.7(b). Starting

from the assignment at statement 1, nodes are added in a forward direction until

the last statement. The arrows show the direction nodes are added. In the end,

because 〈103, z〉 is reachable from the start, the answer to the query is yes.

On the other hand, the Demand IFDS builds the graph by starting from the

query, and new nodes are added in a backward direction. In the example, due to

the assignment z = y, the query “is z initialized at 103” is transformed to “is y

initialized at 102?” This process repeats until no more node can be added, at which

point we verify that 〈1, y〉, a known fact, is reachable, and therefore, the answer to

the query is yes.

Though they use the same set of variables, the graphs they create are differ-

132

ent, because they compute reachable nodes from different initial nodes in different

directions. In this example, the Demand IFDS creates a larger graph, but in gen-

eral, either algorithm could generate a bigger graph. This is not surprising since the

nodes in the forward analysis represent all feasible states, but not all are relevant

to the query; on the other hand, some nodes in the backward analysis can represent

infeasible states (such as 〈1, x〉).

6.4.4 Analysis Configurations and Feedback-Based Analysis

We now discuss different ways to incorporate the Sparse IFDS algorithm and the

Variable-Pruning IFDS algorithm into a pointer and IFDS analysis configuration.

The minimal setup is to run a pointer analysis first, followed by Variable-Pruning

(VP), before performing the IFDS analysis (by default we use an FSCI pointer

analysis). The variable dependence graph is built during pointer analysis. After

pointer analysis, VP computes the set of variables reachable in the dependence

graph, starting from those variables used in queries in the program pertaining to

the analysis problem on hand. Variables not in the reachable set are then pruned

away from the IFDS analysis. We call this algorithm Prune-IFDS.

Another algorithm, Prune-Sparse-IFDS, is derived by combining the Sparse

IFDS algorithm with Prune-IFDS. These two, together with the baseline algorithm,

are shown in the first three rows in Table 6.1.

In addition, we also use a different strategy to derive another set of new

algorithms. These are the two Feedback-based algorithms in the last two rows of Ta-

ble 6.1: Feedback-Prune-IFDS and Feedback-Prune-Sparse-IFDS. Each of them uses

multiple pointer analyses, in pass 1 and pass 2. This setup is similar to the frame-

work adopted by a Client-Driven analysis [54] but are different in objective. The

133

Analysis Passes

Algorithm 1 1+ 2 3

Baseline IFDS FSCI Ptrs IFDS

Prune-IFDS FSCI Ptrs +VDG VP IFDS

Prune-Sparse-IFDS FSCI Ptrs +VDG VP Sparse IFDS

Feedback-Prune-IFDS FICI Ptrs+Client +VDG VP+ FSCI Ptrs IFDS

Feedback-Prune-Sparse-IFDS FICI Ptrs+Client +VDG VP+ FSCI Ptrs Sparse IFDS

Table 6.1: Setups for applying Variable-Pruning (VP) to IFDS analysis. The algo-
rithm in each row is broken down into two or three passes. VDG means that the
pointer analysis also computes the variable dependence graph. We consider VP as
an intermediate step between analysis passes, and for convenience we label it as pass
1+. VP+ is the same as VP except it use results from the Client analysis (in the
first pass) to further prune away variables.

pruning step VP+ is also slightly different from VP. We will explain the differences

in the next few paragraphs.

In each of these two algorithms, the first pass is an imprecise and fast FICI

pointer and client analysis. The purpose of executing the client analysis in the first

pass is to prune away more variables than Prune-IFDS. Specifically, the pruning

step VP+ attempts to prune away more variables than VP by handling analysis

queries in different ways:

• As explained earlier, at each query VP computes the set of reachable variables,

without testing the result of the query. It cannot evaluate the query since the

client analysis is not performed.

• VP+ invokes the client analysis to evaluate each query. Only when the result

of the query is yes does VP+ compute the set of reachable variables.

One side effect of the new VP+ step is that if no query answers yes, then the

analysis can terminate without any more analysis passes. In such situations, an

IFDS analysis is not performed, and the overall analysis time becomes very fast.

134

If further passes are needed, pass 2 Feedback-Prune-IFDS invokes an FSCI

pointer analysis without client analysis. The main purpose of this pass is that

we want to use the results from the more precise FSCI pointer analysis in the

IFDS analysis. This is important because, generally, the FICI pointer analysis in

the first pass is too imprecise that it hurts both precision and performance of the

IFDS analysis. Only with the FSCI pointer analysis can the Feedback-Prune-IFDS

guarantee to compute output with the same precision as Prune-IFDS.

Note that we do not use the results of VP+ to exclude variables in the second

pointer analysis. To handle pointer analysis correctly, the variable dependences

computed in the first pass would have to also include dependences between pointers

and their points-to targets. It is not immediately clear if such dependences are all

necessary or are sufficient, and we leave the question to future research.

Finally, the last pass of Prune-IFDS can also be combined with the Sparse

IFDS algorithm to yield the Prune-Sparse-IFDS algorithm.

The results of all algorithms are presented later in Section 6.5.4.

6.5 Evaluation

This section first explains our methodology, followed by results of many experiments.

Section 6.5.2 evaluates the effects of pointer analysis on an IFDS analysis. The next

section compares our Sparse IFDS algorithm to the baseline algorithm. Section 6.5.4

presents many results on the Variable-Pruning IFDS algorithm, including compari-

son against the baseline algorithm, against our Sparse IFDS algorithm, and against

the Demand IFDS algorithm. Section 6.5.5 presents results of the Feedback-based

Variable-Pruning IFDS algorithm. Section 6.5.6 presents a table comparing in de-

tail all algorithms for all programs, using IFDS analysis time and total pointer and

135

IFDS analysis time. We pick the two best algorithms from this table. Finally,

Section 6.5.7 compares the two best algorithms against a dataflow analysis.

6.5.1 Methodology

Our experiments consist of the five error detection analysis problems, described ear-

lier in Section 3.3.2 (page 49). We use the same 19 programs in Table 3.2 (page 52).

Together, there are 95 experiment cases. As we will see in this section, none of the

IFDS algorithms can complete more than 90 of these cases. When an algorithm can-

not complete a test case, the reason is that the system runs out of memory (2GB),

which is either because the program is large, or because the analysis problem re-

quires too many flow values. The latter happens most often with the FTP-Behavior

problem.

For the set of experiments evaluating the effects of pointer analysis on IFDS

analysis, we label each algorithm with a subscript for the type of pointer analysis.

For example, IFDSfsci refers to the baseline IFDS algorithm running on top of an

FSCI pointer analysis. Where the pointer analysis is fixed and understood, we will

drop the subscript.

All IFDS algorithms are graph-based solutions that explicitly represent flow

functions in the exploded graph. For this reason, when comparing performance, we

measure the IFDS analysis time as the total time spent in constructing the graph

as well as in reachability analysis.

Besides analysis time, we also compare memory usage and precision of the

different algorithms where appropriate. We will measure precision by looking at the

reports generated by the error detection problems: if two analyses report same set

of errors, we say they share the same precision. All analyses are safe—if an error

136

is present in reality, the analysis always reports the error. Therefore, an analysis is

more precise if it reports fewer errors.

The graphs presented in the rest of this section use a unique format and,

therefore, require some explanations. Each graph, such as the one in Figure 6.8,

compares the analysis time, memory usage, and precision of an algorithm B relative

to algorithm A:

• The vertical and horizontal axes, respectively, are log-scale ratios for analysis

time and memory usage.

• The origin is at (1,1), which indicates no difference in the time or space con-

sumptions. For example, a datum point (0.5,0.3) in the graph means the

normalized memory consumed by algorithm B relative to algorithm A is 0.5

and that algorithm B takes up 0.3 seconds for every second consumed by algo-

rithm A. Therefore all data points in the lower-left quadrant favor algorithm B

in both dimensions.

• If the algorithms yield different results in terms of precision, the cases are

labeled with different symbols (such as a cross).

• The geometric mean time and memory is labeled with a box.

• Below each graph is a summary of the experiments, such as number of cases

compared, any precision differences, and the means.

For example, the first graph in Figure 6.8 compares 73 cases of Sparse-IFDS

against IFDS . The data are all in the third quadrant: Sparse-IFDS is always faster

and consumes less memory. IFDS only completes 73 cases, while Sparse-IFDS

completes 86 cases. The mean is at (0.16,0.39). There is no precision difference.

137

6.5.2 Effects of Pointers on IFDS Analysis

Earlier in Section 6.2.4, we discuss how pointer analysis affects an IFDS analysis.

We have two goals in this section. First, we quantify the effect of pointer analysis

on an IFDS analysis, using the following metrics: completion (does the analysis

complete successfully?), precision, and performance in time and space. We will

compare three algorithms IFDSX , i.e., a pointer analysis X followed by the baseline

IFDS algorithm, where X is either FICI, FSCI, or FSCS. The second goal is to

justify the choice of IFDSfsci as our baseline algorithms. This baseline configuration

will be used to compare performance of our new algorithms, which also use FSCI

pointer analysis unless otherwise stated.

Figure 6.8 examines the differences between the three analyses. The first

graph compares 70 cases of IFDSfici relative to IFDSfsci (25 cases did not complete

in one or both modes). Many cases consume more time and more memory with

IFDSfici , i.e., there are more points in the upper right quadrant. This result is not

surprising because an imprecise pointer analysis yields larger points-to sets, which

leads to larger data-sets. In fact, IFDSfsci actually completed 71 cases, 1 more

than IFDSfici . The geometric mean is at (1.1,1.2), close to the origin. In terms

of precision, IFDSfici produces 18 worse precision cases, again due to the imprecise

pointer analysis.

Figure 6.8(b) compares IFDSfscs against IFDSfsci . This time, IFDSfscs uses

less memory, most likely due to smaller points-to sets. However, it consumes much

more time. This is because the more precise pointer analysis is providing more

information (particularly, more context information that is absent in a context-

insensitive pointer analysis), so the IFDS algorithm takes longer to process this

information. There is no difference in the precision. However, the context-sensitive

138

1 21/2

relative memory usage (ratio)

1

2

4

1/2

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o
oo

o

o
ooo

o ooo
o

oo
o

o o

o

o

o

oo

oo
o

o o

oo

o
oo

o

o
o

o

ooo

ooo
o

o
oo

o

o
oo
o

o

oo

worse-precision cases (18)
o same-precision cases (55)

mean at (1.2,1.1) (73 cases)

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

 more memory>>><<<less

1 21/2

relative memory usage (ratio)

1

2

4

8

16

32

64

1/2

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o

o
oo

o
o

o
ooo

o o oo oo o oo o

o

o oo
o

o

ooo

o

o

o
oo

o

o total 35 cases
mean at (0.92,4.0)

note: actual completed cases: 35 vs. 73

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

 more memory>>><<<less

(a) IFDSfici relative to IFDSfsci (b) IFDSfscs relative to IFDSfsci

IFDSfici IFDSfsci IFDSfscs

(A) completed cases 70 71 33

(B) same-precision cases 45 45 21

best-precision cases/(A-B) 5/25 21/26 12/12

exploded graph nodes∗ 14k–2.1m 13k–1.9m 12k–1.8m

exploded graph edges∗ 17k–2.4m 16k–2.2m 14k–2.0m

average data-set sizes∗ 8–763 7–751 7–747
∗: using the 33 cases where IFDSfscs completes.

(c) Summary: comparing the three algorithms.

Figure 6.8: Effects of pointer analysis on IFDS algorithms. The first part of the
table compares performance of IFDS algorithms using time, memory, and precision
when different pointer analysis is used. The cost of pointer analysis is excluded from
the comparisons. These results show that IFDSfsci is better than either IFDSfici or
IFDSfscs . The second part of the table compares the sizes of the exploded graphs
created.

pointer analysis can complete only 35 cases, out of which IFDSfscs can complete 33

cases.

Given that IFDSfscs can complete far fewer cases, and that IFDSfici is the

least precise, the natural choice of baseline is IFDSfsci . For the remainder of the

139

chapter, we will use IFDS to denote this baseline.

6.5.3 Results of Sparse IFDS

This section evaluates the following question: How does the new Sparse IFDS algo-

rithm compare to the baseline algorithm? The graph in Figure 6.9 compares the new

algorithm relative to the baseline. FSCI pointer analysis is used in all cases, but the

time spent in pointer analysis is excluded from comparisons. The graph indicates

that Sparse-IFDS can complete all 73 cases that IFDS completes, plus 13 more.

On average, Sparse-IFDS spends 0.39 seconds for every second IFDS consumes; or

equivalently, Sparse-IFDS is 2.6× faster. The actual range is that Sparse-IFDS is

1.3–6.0× faster (see table). The average memory consumption by Sparse-IFDS is

only 16% of that by baseline.

Our Sparse IFDS algorithm performs well, because it reduces the size of the

exploded graphs. Table 6.2 quantifies these reductions by computing the fractions of

number of nodes and edges generated by Sparse-IFDS relative to IFDS . Reported

in the table under the column “Sparse”, on average, the graphs created by Sparse-

IFDS have only 11% as many nodes, and 13% as many edges as in IFDS . These

lead to only 15% as many path-edges. All these numbers confirm there is indeed a

large degree of sparsity in the original graphs, and Sparse-IFDS is able to exploit

this sparsity to save time and space (the last few rows on “flow values” are not

relevant to the Sparse IFDS algorithm. The remainder of the table is used in later

sections).

140

1 21/21/41/81/16

relative memory usage (ratio)

1

2

1/2

1/4

1/8

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o o

oo

o

o
o

oo

o

o

ooo

o

o

ooo
o

oo

o
o

o

o

oo

o

o

o

o
oo

o

o

o

oo

o
ooo o

ooo

o

oooo

o
o

o

o
oo

o

o

ooo

o

oo
oo

o
o

ooo

o total 73 cases
mean at (0.16,0.39)

note: actual completed cases: 86 vs. 73

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

more>>><<<less memory

(a) Sparse-IFDS relative to IFDS

Algorithm A: IFDS Sparse-IFDS

Completions: 73 86

cases completed by IFDS but not A: - 0

cases completed by A but not IFDS : - 13

speedup

Mean: - 2.6×

Min: - 1.3×

Max: - 6.0×

(b) Summary: comparing the two algorithms.

Figure 6.9: Performance results of Sparse-IFDS relative to IFDS .

6.5.4 Results of Variable-Pruning IFDS

The Variable-Pruning IFDS algorithm can be combined with the Sparse IFDS al-

gorithms, and we call the combined algorithm Prune-Sparse-IFDS. The first two

graphs in Figure 6.10 compare Prune-IFDS and Prune-Sparse-IFDS against the

baseline, respectively. In these graphs, all data points lie in the lower-left quad-

rants, indicating speedups and less memory usage in all cases. The mean speedup

is 3.3× faster for Prune-IFDS, and 5.5× for Prune-Sparse-IFDS.

141

b
a
se

li
n
e

S
p
a
rs

e

D
e
m

a
n
d

P
ru

n
e

P
ru

n
e

S
p
a
rs

e

F
ee

d
ba

c
k

P
ru

n
e

F
ee

d
ba

c
k

P
ru

n
e

S
p
a
rs

e

cases 73 86 75 76 87 84(54) 87(57)

nodes

Mean 1.00 0.11 0.27 0.32 0.06 0.45 0.07

Max - 0.30 3.84 0.94 0.25 0.91 0.22

Min - 0.03 < 0.01 < 0.01 < 0.01 0.04 0.01

Worse-cases - - 14 - - - -

edges

Mean 1.00 0.13 0.28 0.33 0.08 0.46 0.09

Max - 0.35 3.89 0.94 0.26 0.92 0.26

Min - 0.03 0.01 0.01 0.01 0.04 0.01

Worse-cases - - 14 - - - -

path

edges

Mean 1.00 0.15 < 0.01 0.28 0.08 0.44 0.08

Max - 0.38 465 0.91 0.37 0.91 0.30

Min - 0.04 < 0.01 < 0.01 < 0.01 0.01 < 0.01

Worse-cases - - 24 - - - -

flow

values

Mean 1.00 - 0.55 0.09 0.08 0.14 0.14

Max - - 1.56 0.64 0.64 0.61 0.61

Min - - 0.16 < 0.01 < 0.01 0.03 0.03

Worse-cases - - 6 - - - -

Table 6.2: Effects of various new IFDS algorithms on exploded graphs: Normalized
number of nodes and edges created by the different algorithms (with respect to the
baseline algorithms). The table also compares the number of distinct flow values in
the graphs. An FSCI pointer analysis in the first four algorithms. The drastic re-
duction in the graphs explains the improved performance by the sparse and pruning
algorithms.

The results can again be explained by considering the reduced graphs. As

reported in Table 6.2, column “Prune”, the graphs created by Prune-IFDS have only

approximately a third as many nodes and edges as the baseline algorithm. These

lead to only 28% as many path-edges.

In addition, we also compare the number of distinct flow values used in the

analyses. Specifically, suppose the analysis problem has two distinct lattice values

{A,B}, then for each variable x, “x = A” and “x = B” are counted as two distinct

flow values. These values are created during analysis on demand. Therefore, fewer

142

1 21/21/41/81/161/321/641/1281/256

relative memory usage (ratio)

1

2

4

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

ooo

o

oooo
o

o

o

o
o

o

o

o

o
o

o

o
o

o

o

o

o
o

oo

oo
ooooo oooo

o

o

o

oo

oo
o

o
o

o
ooo

o

oooo o

o
oo

o o
o

oo

oo

o

ooo

o total 73 cases
mean at (0.27,0.31)

note: actual completed cases: 76 vs. 73

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

more>>><<<less memory

1 21/21/41/81/161/321/641/1281/256

relative memory usage (ratio)

1

2

4

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o o
o
o

o oo
ooo o

o
o
o

oo

o
o
o

o o

o

o

o
o

o

oo

oo

oooo
o o

o
oo

o

o

o

o o
o

o
oo

oo oo
o

o

oo
oo

o o

ooo
o

o

o
o

oo

o

ooo

o total 73 cases
mean at (0.08,0.18)

note: actual completed cases: 87 vs. 73

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

more>>><<<less memory

1 2 4 81/21/41/81/161/32

relative memory usage (ratio)

1

2

4

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

oo o

o

o
o

oo
o

o

o
oo

o

o

o

o
o

o

o

o

o
o

o

o

o

oo

o
o
o

o oo
o
o

o
oo

o

o

o

o
o

oo
o

o

oo
oo

o

o

o
o oo

o

o
oo

o
o

o

oo

o
o

o

ooo

o

o

o total 75 cases
mean at (1.6,0.76)

note: actual completed cases: 76 vs. 86

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

 more memory>>><<<less

(a) Prune-IFDS (b) Prune-Sparse-IFDS (c) Prune-IFDS against
Sparse-IFDS

Algorithm A: IFDS Prune-IFDS Prune-Sparse-IFDS

Completions: 73 76 87

cases completed by IFDS but not A: - 0 0

cases completed by A but not IFDS : - 3 14

speedup

Mean: - 3.3× 5.5×

Min: - 1.1× 1.6×

Max: - 422× 285×

(d) Summary: comparing the first two algorithms against baseline.

Figure 6.10: Results of Variable-Pruning IFDS against baseline IFDS .

flow values are used when variables are pruned away. For example, we can see in

Table 6.2, under the row with heading “flow values,” that Prune-IFDS uses only

9 flow values for every 100 flow values used in the baseline algorithm (0.09). Such

reductions are the reason behind the smaller graphs.

Variable-Pruning versus Sparse IFDS

In order to provide a clearer picture of the different algorithms, we also directly

compare Prune-IFDS against Sparse-IFDS, as shown in the graph in Figure 6.10(c).

Notice the slight difference in the horizontal axis scales. From the graph, it is obvious

that neither algorithm is always better than the other. While Sparse-IFDS can

143

complete more cases (86 versus 76), on average Prune-IFDS is actually faster: 0.76

normalized time relative to Sparse-IFDS, or approximately 1.3× faster. The reason

is that while Prune-IFDS is more computationally efficient, its space inefficiency

causes it to crash in more cases than Sparse-IFDS. This last reason is supported

by evidence provided in Table 6.2, which compares graph size: the mean number of

nodes and edges are both significantly higher when the graphs are constructed by

Prune-IFDS.

Variable-Pruning IFDS versus Demand IFDS

Since the Variable-Pruning IFDS algorithm has similarities with Demand IFDS anal-

ysis (they prune variables used in analysis), we have implemented the Demand IFDS

algorithm, denoted as Demand-IFDS. Figure 6.11 compares Prune-IFDS relative to

Demand-IFDS.

It is easy to tell from the graph that the Prune-IFDS is in many cases much

faster than Demand-IFDS, and vice versa in other cases. The mean speedup of

Prune-IFDS over Demand-IFDS is moderate at 1.3×, with a maximum at 59×.

While the algorithms Prune-IFDS and Demand-IFDS can complete almost

the same number of cases, it is interesting to observe that each algorithm can com-

plete five to six cases the other other algorithm cannot. This is not surprising given

the different directions of analysis. For example, given a large program with no

query, the forward analyses will take a long time, whilst the backward analyses will

complete quickly. We leave as future work answer the interesting question regarding

which analyses to pick in advance for any given program.

Table 6.2 (page 142) provides additional insight into the performance dif-

ferences, by comparing graph sizes produced by the two algorithms relative to the

144

1 2 4 8 161/21/41/81/161/321/64

relative memory usage (ratio)

1

2

4

8

16

32

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o

o
o

o o
oo

oo

o

o

o

o
o

o

o
oo

o
o

o
oo

o
o

o
oo

o
o

o

o
oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o
o

o

o
o

o

oooo

oo

o

o
o

o

o
oooo

o

o total 70 cases
mean at (0.66,0.75)

note: actual completed cases: 76 vs. 75

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

 more memory>>><<<less

(a) Prune-IFDS against Demand-IFDS

Algorithm A: Demand-IFDS Prune-IFDS

Completions: 75 76

cases completed by Demand-IFDS but not A: - 5

cases completed by A but not Demand-IFDS: - 6

speedup

Mean: - 1.3×

Min: - < 0.1×

Max: - 59×

(b) Summary: comparing the two algorithms.

Figure 6.11: Results of Variable-Pruning IFDS relative to Demand IFDS algorithm.

baseline algorithm. Notice that the Demand IFDS algorithm can sometimes pro-

duce larger graphs (larger maximum ratios for nodes and edges) relative to baseline,

because it generates nodes in a backward direction. On the other hand, Prune-IFDS

always produces smaller graphs with fewer variables. The mean number of nodes

and edges are quite close to those of Demand-IFDS.

145

6.5.5 Results of Feedback-based Variable-Pruning IFDS

We now evaluate the Feedback-based versions of Variable-Pruning IFDS algorithms.

Figure 6.12 compares the algorithm Feedback-Prune-IFDS and the variant Feedback-

Prune-Sparse-IFDS, relative to the baseline algorithm. Both Feedback-based al-

gorithms use multiple analysis passes, and in 30 program-problem cases, analysis

completes successfully after the first pass, so no IFDS analysis is needed. For the

remaining cases, Feedback-Prune-IFDS improves analysis time by 2.2× speedup on

average, while Feedback-Prune-Sparse-IFDS achieves an average of 4.4× speedup.

At first glance, the results in Figure 6.12 (the two Feedback-based algorithms)

appear to be worse than the results in Figure 6.10 (the two non-Feedback-based

variants): the latter have better speedups. The speedups computed in these figures

compare only IFDS analysis time, without taking into account those cases that

the Feedback-based algorithms can complete successfully after one pass, without

invoking IFDS analysis.

To account for this discrepancy, Figure 6.13 compares the algorithms by

comparing the total pointer and IFDS analysis time. The first graph compares

Feedback-Prune-IFDS relative to Prune-IFDS, while the second compares Feedback-

Prune-Sparse-IFDS against Prune-Sparse-IFDS. In each graph, the data points seem

to belong to two groups: those lying near the horizontal axis, and those dispersed

below same axis. This division suggests that when an IFDS analysis is performed,

the performance differences between the pairs of algorithms are moderate, but for

those cases where Feedback-based algorithms do not perform an IFDS analysis, the

differences are huge. The table below the graphs further supports this theory: when

we compare IFDS analysis time only, the mean speedups are 1.0×; but when we

compare total pointer and IFDS analysis time, the mean speedups increase to 1.6×

146

1 21/21/41/81/161/321/641/1281/256

relative memory usage (ratio)

1

2

4

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

oo oo
o

o o

o
o

o
o

o
o

o

o

o
ooooo o

o

oo
oo

oo

o
o

oo

o

o
ooo

o
o

oo
oo

oo

o

ooo

o total 50 cases
mean at (0.35,0.45)

note: actual completed cases: 84 vs. 73

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

more>>><<<less memory

1 21/21/41/81/161/321/641/1281/256

relative memory usage (ratio)

1

2

4

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o
o

oo
oo

o
o

o

o oo o
o

o

o
ooooo o

o

ooo
oo

o

oo oo

o

oooo

o o

ooo
o

oo

o

oo
o

o total 50 cases
mean at (0.08,0.23)

note: actual completed cases: 87 vs. 73

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

more>>><<<less memory

(a) Feedback-Prune-IFDS (b) Feedback-Prune-Sparse-IFDS

Algorithm A: IFDS Feedback-Prune-IFDS Feedback-Prune-Sparse-IFDS

Completions: 73 84 87

No-IFDS (1-pass only) cases: - 30 30

IFDS completion cases: - 54 57

cases completed by IFDS but not A: - 0 0

cases completed by A but not IFDS : - 11 14

speedup

Mean: - 2.2× 4.4×

Min: - 1.1× 1.6×

Max: - 116× 204×

(c) Summary: comparing the two algorithms against baseline.

Figure 6.12: Results of Feedback-based Variable-Pruning IFDS algorithm, relative
to baseline algorithm.

147

1 21/21/41/81/161/321/641/128

relative memory usage (ratio)

1

2

1/2

1/4

1/8

1/16

1/32

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o

o

o

o

o

ooo o

o

o oo

o

o
o

ooo

o
o

oo

o

o

o

o
o

o

o

o oooo o

o

oo

o

o
o

o oooo

o
o ooo

o

ooooo
o

oooo
o

o

oo

o

o

oooo ooo

o total 76 cases
mean at (0.35,0.61)

note: actual completed cases: 84 vs. 76

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

more>>><<<less memory

1 21/21/41/81/161/321/641/128

relative memory usage (ratio)

1

2

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o

o

o

o
o

oooo

o

ooo

o

o o

ooo

o o

oo

o
o

o

o
ooo

oooo
o
o

o oo
o

o

o
o

o
o

ooooo
o

ooo

o

o

oo

o oooo
oooooo

o

oo

o

o

o
ooo

o o

ooo

o

o
o

o

o total 87 cases
mean at (0.35,0.38)

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

more>>><<<less memory

(a) Feedback-Prune-IFDS against Prune-IFDS (b) Feedback-Prune-Sparse-IFDS against
Prune-Sparse-IFDS

Algorithm A B A B

Feedback-

Feedback- Prune- Prune-

Prune-IFDS Prune-IFDS Sparse-IFDS Sparse-IFDS

Completions: 76 84 87 87

No-IFDS (1-pass only) cases: - 30 - 30

IFDS completion cases: - 54 - 57

cases completed by A but not B: - 0 - 0

cases completed by B but not A: - 8 - 0

speedup:

IFDS time only

Mean: - 1.0× - 1.0×

Min: - 0.8× - 0.8×

Max: - 4.0× - 3.1×

speedup:

Ptrs+IFDS time

Mean: - 1.6× - 2.7×

Min: - 0.7× - 0.8×

Max: - 23.8× - 651×

(c) Summary: comparing the two Feedback-based algorithms against their non-Feedback-based

counterparts.

Figure 6.13: Results of Feedback-based Variable-Pruning IFDS algorithm, relative
to non-Feedback Variable-Pruning IFDS algorithm. The total pointer and IFDS
analysis times are used in these comparisons.

148

and 2.7×, with maximum speedup up to 651× in the case of the Feedback-Prune-

Sparse-IFDS relative to Prune-Sparse-IFDS.

Next, we again examine the algorithms by looking at the graphs they con-

struct. Refer back to Table 6.2 (page 142), where we compare graph sizes normalized

to those created by the baseline algorithm. The two algorithms, Feedback-Prune-

IFDS and Feedback-Prune-Sparse-IFDS, also create smaller graphs like their non-

Feedback-based counterparts (Prune-IFDS and Prune-Sparse-IFDS).

As we explained earlier, the Feedback-based algorithms attempt to prune

away more variables than their non-Feedback-based counterparts. Unfortunately,

that is not always the case. Specifically, there are 16 cases where Feedback-Prune-

IFDS uses a larger set of variables than Prune-IFDS. The differences are due to one

or two reasons:

1. Feedback-Prune-IFDS evaluates each query after the first pass, and only when

the query answers yes are the variables involved in the queries included in

an IFDS analysis later. Therefore, the algorithm can potentially prune away

more variables than Prune-IFDS.

2. However, the first pass of Feedback-Prune-IFDS uses an FICI pointer analysis,

which sometimes results in larger points-to sets than an FSCI pointer analysis.

Therefore, the set of variables involved at a query is sometimes larger. When

this happens, then (i) Feedback-Prune-IFDS may evaluate more queries to

answer yes, and (ii) when both algorithms evaluate the same query to answer

yes, Feedback-Prune-IFDS will include extra variables that Prune-IFDS would

not include.

Neither factor seems to be dominant for all programs. We gather this result from

Table 6.3, which compares the graphs computed by Feedback-Prune-IFDS relative

149

P
ru

n
e

F
ee

d
ba

c
k

P
ru

n
e

cases 76 84(54)

nodes

Mean 1.00 0.97

Max - 1.32

Min - 0.20

Worse-cases - 17

edges

Mean 1.00 0.97

Max - 1.32

Min - 0.20

Worse-cases - 19

path

edges

Mean 1.00 0.99

Max - 1.42

Min - 0.20

Worse-cases - 24

flow

values

Mean 1.00 0.96

Max - 1.47

Min - 0.19

Worse-cases - 17

Table 6.3: Effects of using feedbacks in Variable-Pruning IFDS algorithms. The
table compares the graph sizes created by Feedback-Prune-IFDS relative to those
generated by Prune-IFDS. The legends are the same as those used earlier in Table 6.2
(page 142). Among all cases, in 17 cases Feedback-Prune-IFDS uses more variables
and generates larger graphs.

to Prune-IFDS. Whether we are comparing the number of nodes or edges, or the

number of flow values used in the constructions, the means are all close to one.

6.5.6 Detail Comparisons

So far, we have seen pairwise comparisons of different combinations of Sparse,

Variable-Pruning, and Feedback-based IFDS algorithms. Table 6.4 compares five

such algorithms in more details by showing their speedup, relative to the baseline

algorithm, for all 95 benchmark/problem cases. For each case, we compute the

speedups for both (a) IFDS analysis time only and (b) total pointers and IFDS

150

analysis time (τ). The caption at the top of the table explains the legend and other

important notes, while some important overall statistics are shown at the end of

the table. The caption also summarizes key lessons we learned from the results.

Two key results are (1) using only average IFDS analysis time, the best algorithm is

Prune-Sparse-IFDS; and (2) using total pointers and IFDS analysis time, the best

algorithm is Feedback-Prune-Sparse-IFDS.

Table 6.4: Comparing Sparse, Variable-Pruning, and Feedback IFDS
algorithms. The table compares six algorithms in detail. The first al-
gorithm is the baseline IFDS algorithm, while the second is the Sparse-

IFDS algorithm. The last four algorithms use Variable-Pruning, and the
last two are Feedback-based. All numbers are either time in seconds or
are the speedup factors (e.g., 2× means twice as fast relative to base-
line). †means system crash (out of memory). Each row labeled with τ

shows the total pointer and IFDS analysis time.
For the Feedback-based algorithms, there are 30 program-client cases
(♥) where there is no error after one-pass (no IFDS analysis needed).
The asterisks (*) mark cases where IFDS cannot complete, but the new
algorithms can. The best time for each row is highlighted: light gray
when comparing IFDS analysis time only, and dark gray for total pointer
and IFDS analysis time (τ).
The results in this table show that: (1) all the Feedback-based algorithms
yield best performance for those ♥ cases; (2) if we compare IFDS analy-
sis time only, Sparse-IFDS and Prune-IFDS both improve over baseline
IFDS , with Prune-IFDS having a better overall mean, but each is better
than the other in different subsets of cases; (3) with few exceptions, the
difference between Prune-IFDS and Feedback-Prune-IFDSis small; and
(4) the combination of all algorithms, i.e., Feedback-Prune-Sparse-IFDS,
often leads to the best performance for both IFDS-time and total time;
it also has the most number of completion cases (tie with Prune-Sparse-

IFDS).

b
a
se

li
n
e

IF
D

S

Feedback Feedback

Prune Prune Prune Prune

Sparse Sparse Sparse

Program Client

stunnel File-Access 0.5 1.4x 1.4x 1.7x 1.3x 1.6x

τ 1.0 0.9x 1.1x 1.0x 0.9x 0.9x

FSV 0.2 1.6x 1.7x 1.8x ♥ ♥

τ 0.8 0.9x 1.2x 0.9x 4.0x 4.0x

Remote-FSV 0.6 2.0x 1.9x 2.8x 1.6x 2.4x

continued on next page

151

(Table 6.4) continued from previous page

b
a
se

li
n
e

IF
D

S

Feedback Feedback

Prune Prune Prune Prune

Sparse Sparse Sparse

Program Client

τ 1.1 1.1x 1.3x 1.2x 1.0x 1.0x

Remote-Access 0.6 2.0x 4.9x 5.0x ♥ ♥

τ 1.1 1.1x 1.7x 1.3x 5.9x 5.9x

FTP-Behavior 2.3 2.7x 1.7x 3.6x ♥ ♥

τ 2.8 1.8x 1.5x 2.0x 14.4x 14.4x

pfinger File-Access 1.7 2.0x 2.0x 3.3x 1.9x 3.3x

τ 4.4 0.9x 1.2x 1.0x 1.0x 1.1x

FSV 1.4 2.3x 1.7x 3.1x 1.7x 3.2x

τ 4.1 0.9x 1.1x 0.9x 0.9x 0.9x

Remote-FSV 3.7 3.1x 2.2x 5.6x 2.2x 5.4x

τ 6.4 1.2x 1.4x 1.4x 1.2x 1.4x

Remote-Access 3.7 3.1x 3.2x 7.0x 3.1x 6.8x

τ 6.4 1.2x 1.6x 1.4x 1.3x 1.4x

FTP-Behavior 17.1 4.3x 1.4x 5.6x ♥ ♥

τ 19.8 2.5x 1.4x 2.8x 23.9x 23.9x

muh-2.05c File-Access 3.4 2.0x 2.7x 4.7x 2.5x 4.5x

τ 5.4 1.1x 1.7x 1.4x 1.4x 1.5x

FSV 2.7 2.5x 5.5x 7.0x 5.2x 7.1x

τ 4.7 1.1x 1.9x 1.4x 1.5x 1.4x

Remote-FSV 4.7 2.8x 7.5x 12.0x 6.8x 11.8x

τ 6.7 1.4x 2.5x 2.0x 2.0x 2.0x

Remote-Access 4.8 2.8x 14.3x 17.0x ♥ ♥

τ 6.8 1.4x 2.9x 2.1x 11.5x 11.5x

FTP-Behavior 19.7 3.4x 1.3x 3.9x 1.5x 4.7x

τ 21.7 2.5x 1.3x 2.7x 1.3x 2.8x

muh-2.05d File-Access 3.5 2.0x 2.7x 4.8x 2.5x 4.6x

τ 5.5 1.1x 1.6x 1.5x 1.4x 1.5x

FSV 2.9 2.7x 15.3x 13.0x ♥ ♥

τ 4.9 1.2x 2.2x 1.5x 8.3x 8.3x

Remote-FSV 5.0 2.9x 26.2x 22.8x ♥ ♥

τ 7.1 1.5x 3.1x 2.2x 11.8x 11.8x

Remote-Access 4.9 2.9x 14.4x 17.2x ♥ ♥

τ 7.0 1.5x 2.9x 2.1x 11.8x 11.8x

FTP-Behavior 20.3 3.5x 1.3x 4.0x 1.4x 4.3x

τ 22.4 2.5x 1.2x 2.8x 1.3x 2.6x

pureftpd File-Access 5.5 2.3x 2.0x 3.8x 1.9x 3.9x

τ 11.2 1.0x 1.3x 1.1x 1.1x 1.2x

continued on next page

152

(Table 6.4) continued from previous page

b
a
se

li
n
e

IF
D

S

Feedback Feedback

Prune Prune Prune Prune

Sparse Sparse Sparse

Program Client

FSV 4.4 2.4x 11.5x 9.9x ♥ ♥

τ 10.0 1.0x 1.6x 1.1x 6.1x 6.1x

Remote-FSV 8.0 3.4x 21.6x 18.3x ♥ ♥

τ 14.8 1.4x 2.4x 1.7x 10.3x 10.3x

Remote-Access 7.3 3.1x 3.1x 6.2x 2.6x 6.2x

τ 13.5 1.3x 1.7x 1.4x 1.3x 1.4x

FTP-Behavior 30.4 3.5x 1.5x 4.1x 6.0x 12.9x

τ 36.1 2.1x 1.4x 2.3x 2.8x 3.1x

fcron File-Access 3.8 1.7x 2.0x 2.6x 1.8x 2.7x

τ 12.9 0.8x 1.1x 0.9x 1.0x 0.9x

FSV 5.3 3.4x 12.0x 9.8x ♥ ♥

τ 17.6 1.2x 1.9x 1.3x 7.8x 7.8x

Remote-FSV 6.3 3.2x 14.5x 11.6x ♥ ♥

τ 16.6 1.1x 1.8x 1.2x 5.5x 5.5x

Remote-Access 5.1 2.6x 2.4x 3.7x ♥ ♥

τ 14.2 0.9x 1.3x 1.0x 4.7x 4.7x

FTP-Behavior 26.5 3.7x 1.9x 4.7x ♥ ♥

τ 35.8 1.8x 1.6x 1.9x 11.0x 11.0x

apache File-Access 9.3 1.3x 1.3x 1.6x 1.2x 1.6x

τ 38.1 0.7x 1.1x 0.7x 0.9x 0.9x

FSV 4.6 1.8x 1.3x 1.7x 1.2x 2.0x

τ 33.4 0.6x 1.0x 0.6x 0.9x 0.8x

Remote-FSV 11.9 1.9x 1.3x 2.1x 1.2x 2.2x

τ 40.6 0.7x 1.1x 0.7x 0.9x 0.9x

Remote-Access 11.8 1.9x 1.3x 2.0x 1.2x 2.1x

τ 40.4 0.7x 1.1x 0.7x 0.9x 0.9x

FTP-Behavior 39.2 2.4x 1.2x 2.6x 1.2x 2.6x

τ 67.9 1.0x 1.1x 1.0x 1.0x 1.0x

make File-Access 9.7 1.9x 1.6x 2.7x 1.5x 2.8x

τ 264 0.5x 1.0x 0.5x 0.9x 0.8x

FSV 307 6.0x 1.7x 6.5x ♥ ♥

τ 561 1.0x 1.3x 1.0x 31.1x 31.1x

Remote-FSV 16.5 3.6x 1.9x 4.3x ♥ ♥

τ 271 0.5x 1.0x 0.5x 15.5x 15.5x

Remote-Access 16.5 3.5x 2.2x 4.3x ♥ ♥

τ 269 0.5x 1.0x 0.5x 15.4x 15.4x

FTP-Behavior † 392 (*) † 347 (*) ♥ ♥

continued on next page

153

(Table 6.4) continued from previous page

b
a
se

li
n
e

IF
D

S

Feedback Feedback

Prune Prune Prune Prune

Sparse Sparse Sparse

Program Client

τ † 904 (*) † 852 (*) 21.3 (*) 21.3 (*)

BlackHole File-Access 83.7 2.3x 11.9x 20.3x 11.1x 21.3x

τ 141 1.0x 2.2x 1.3x 1.9x 1.8x

FSV 205 1.9x 216x 143x ♥ ♥

τ 263 1.3x 4.5x 2.5x 32.0x 32.0x

Remote-FSV 399 1.9x 422x 285x ♥ ♥

τ 457 1.4x 7.8x 4.4x 42.0x 42.0x

Remote-Access 397 1.9x 2.5x 3.3x 2.2x 3.1x

τ 455 1.4x 2.1x 2.1x 1.8x 1.8x

FTP-Behavior † 1413 (*) † 1333 (*) 1611 (*) 942 (*)

τ † 1516 (*) † 1434 (*) 1690 (*) 1102 (*)

wu-ftpd-2.6.0 File-Access 19.6 2.1x 2.0x 3.8x 1.8x 3.6x

τ 41.3 1.0x 1.3x 1.1x 1.0x 1.1x

FSV 31.7 3.1x 3.9x 5.4x 3.0x 4.5x

τ 53.6 1.3x 1.7x 1.4x 1.3x 1.2x

Remote-FSV 35.3 3.2x 4.1x 8.2x 3.1x 6.6x

τ 57.3 1.3x 1.9x 1.5x 1.4x 1.3x

Remote-Access 35.1 3.2x 2.6x 5.8x 2.5x 5.6x

τ 57.0 1.3x 1.6x 1.5x 1.3x 1.2x

FTP-Behavior 199 4.3x 1.8x 5.7x 2.3x 7.6x

τ 221 2.8x 1.6x 3.3x 1.8x 2.9x

openssh-client File-Access 24.4 1.6x 1.3x 1.9x 1.2x 1.9x

τ 106 0.6x 1.0x 0.6x 0.9x 0.9x

FSV 12.0 1.6x 1.7x 2.0x 1.5x 2.1x

τ 95.3 0.5x 1.1x 0.6x 0.9x 0.6x

Remote-FSV 23.3 1.7x 1.2x 1.7x 1.1x 1.7x

τ 106 0.6x 1.0x 0.6x 0.9x 0.6x

Remote-Access 23.5 1.7x 1.2x 1.7x 1.1x 1.7x

τ 107 0.6x 1.0x 0.6x 0.9x 0.6x

FTP-Behavior 123 2.2x 1.2x 2.5x ♥ ♥

τ 206 0.9x 1.1x 1.0x 20.1x 20.1x

privoxy File-Access 849 2.6x 127x 193x 116x 204x

τ 1002 1.7x 6.3x 3.8x 5.5x 5.1x

FSV † 12389 (*) † 12452 (*) ♥ ♥

τ † 12656 (*) † 12718 (*) 19.5 (*) 19.5 (*)

Remote-FSV † 12647 (*) † 12328 (*) ♥ ♥

τ † 12915 (*) † 12594 (*) 20.4 (*) 20.4 (*)

continued on next page

154

(Table 6.4) continued from previous page

b
a
se

li
n
e

IF
D

S

Feedback Feedback

Prune Prune Prune Prune

Sparse Sparse Sparse

Program Client

Remote-Access † 13126 (*) † 12545 (*) † 12263 (*)

τ † 13394 (*) † 12810 (*) † 12638 (*)

FTP-Behavior † † † † † ?

bind File-Access 13.9 2.3x 2.4x 4.1x 2.3x 4.0x

τ 42.7 0.9x 1.2x 1.0x 1.0x 1.0x

FSV 11.1 3.3x 2.2x 3.8x 1.7x 3.7x

τ 40.3 0.9x 1.2x 0.9x 0.9x 0.8x

Remote-FSV 17.1 3.7x 2.4x 5.2x 1.9x 4.7x

τ 46.0 1.0x 1.3x 1.0x 1.0x 0.9x

Remote-Access 17.2 3.7x 2.5x 5.2x 1.9x 4.8x

τ 46.0 1.0x 1.3x 1.0x 1.0x 0.9x

FTP-Behavior 85.7 5.8x 2.0x 6.7x 2.7x 9.7x

τ 114 2.1x 1.5x 2.1x 1.6x 1.8x

wu-ftpd-2.6.2 File-Access 45.1 2.6x 4.1x 8.2x 3.9x 8.0x

τ 80.5 1.1x 1.7x 1.4x 1.3x 1.4x

FSV 61.6 3.4x 3.2x 4.5x 3.0x 4.3x

τ 97.1 1.4x 1.8x 1.5x 1.4x 1.3x

Remote-FSV 79.5 3.5x 3.3x 5.6x 3.0x 5.4x

τ 115 1.5x 1.9x 1.7x 1.5x 1.5x

Remote-Access 83.9 3.7x 2.4x 5.3x 2.2x 5.2x

τ 120 1.6x 1.7x 1.7x 1.3x 1.4x

FTP-Behavior 573 5.4x 2.1x 7.0x 2.5x 7.7x

τ 609 3.8x 2.0x 4.5x 2.2x 3.8x

openssh-server File-Access 29.7 1.4x 1.4x 1.9x 1.2x 1.9x

τ 174 0.5x 1.0x 0.6x 0.9x 0.9x

FSV 14.4 1.4x 9.7x 5.7x ♥ ♥

τ 161 0.5x 1.1x 0.5x 14.0x 14.0x

Remote-FSV 44.0 1.6x 9.9x 9.4x ♥ ♥

τ 191 0.6x 1.3x 0.6x 16.2x 16.2x

Remote-Access 44.0 1.6x 1.3x 1.9x 1.2x 1.9x

τ 190 0.6x 1.1x 0.6x 0.9x 0.7x

FTP-Behavior 165 2.0x 1.2x 2.4x ♥ ♥

τ 311 0.8x 1.1x 0.8x 19.5x 19.5x

cfengine File-Access 132 2.3x 4.9x 10.3x 4.9x 10.0x

τ 262 0.9x 1.7x 1.1x 1.5x 1.5x

FSV 224 3.6x 1.1x 4.0x 1.1x 3.6x

τ 355 1.2x 1.1x 1.3x 1.0x 1.0x

continued on next page

155

(Table 6.4) continued from previous page

b
a
se

li
n
e

IF
D

S

Feedback Feedback

Prune Prune Prune Prune

Sparse Sparse Sparse

Program Client

Remote-FSV 449 3.6x 1.2x 4.1x 1.2x 3.8x

τ 580 1.7x 1.1x 1.7x 1.1x 1.3x

Remote-Access 456 3.7x 1.4x 5.1x 1.4x 4.9x

τ 587 1.7x 1.3x 1.9x 1.2x 1.5x

FTP-Behavior † 867 (*) † 790 (*) † 549 (*)

τ † 1093 (*) † 1015 (*) † 984 (*)

sqlite File-Access † 106 (*) 9.0 (*) 5.8 (*) 10.0 (*) 4.8 (*)

τ † 1291 (*) 823 (*) 1172 (*) 922 (*) 960 (*)

FSV † 512 (*) † 476 (*) ♥ ♥

τ † 1690 (*) † 1642 (*) 80.6 (*) 80.6 (*)

Remote-FSV † 498 (*) † 461 (*) ♥ ♥

τ † 1681 (*) † 1629 (*) 79.9 (*) 79.9 (*)

Remote-Access † 489 (*) † 465 (*) ♥ ♥

τ † 1672 (*) † 1634 (*) 80.1 (*) 80.1 (*)

FTP-Behavior † 3152 (*) † 2867 (*) ♥ ♥

τ † 4336 (*) † 4029 (*) 88.4 (*) 88.4 (*)

nn File-Access † 65.5 (*) 25.0 (*) 15.3 (*) 27.3 (*) 14.9 (*)

τ † 1914 (*) 1154 (*) 1841 (*) 1276 (*) 1376 (*)

FSV † 39518 (*) † 37394 (*) † 39664 (*)

τ † 41386 (*) † 39216 (*) † 42544 (*)

Remote-FSV † † † † † †

Remote-Access † † † † † †

FTP-Behavior † † † † † ?

sendmail File-Access † † 101 (*) 54.3 (*) 109 (*) 57.2 (*)

τ † † 7896 (*) 14024 (*) 8921 (*) 10145 (*)

FSV † † † † † †

Remote-FSV † † † † † †

Remote-Access † † † † † †

FTP-Behavior † † † † ? ?

Completions: 73 86 76 87 84 87

(IFDS) cases / mean: 73 / 2.6x 73 / 3.3x 73 / 5.5x 50 / 2.2x 50 / 4.4x

(IFDS-time) min / max: 1.3x / 6.0x 1.1x / 421.6x 1.6x / 285.1x 1.1x / 116.4x 1.6x / 203.9x

(total) cases / mean: 73 / 1.1x 73 / 1.5x 73 / 1.3x 73 / 2.6x 73 / 2.6x

(total time) min / max: 0.5x / 3.8x 1.0x / 7.8x 0.5x / 4.5x 0.9x / 42.0x 0.6x / 42.0x

156

6.5.7 Comparing Best IFDS Algorithm with Dataflow Analysis

Figure 6.14 compares the best IFDS algorithms against Client-Driven analysis, using

total analysis time. The results show that Client-Driven still outperforms IFDS

analysis.

1 2 4 8 16 32 64 1281/2

relative memory usage (ratio)

1

2

4

8

16

32

64

128

256

512

1024

1/2

1/4

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o
o

o

o
o

oooo

o

ooo

o
oo

ooo
oo

oo

o

o

o
o
ooo

ooo

o

o

ooo
o

o
o
o

o
ooo

o
oo

o

o

oo

ooooo o
oooo

o

oo o

o

o o

o

ooo

o

o
o

o

o total 87 cases
mean at (3.8,4.7)

note: actual completed cases: 87 vs. 94

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

 more memory>>><<<less

1 2 4 8 16 32 64 1281/2

relative memory usage (ratio)

1

2

4

8

16

32

64

128

256

512

1024

1/2

1/4

re
la

ti
ve

 a
na

ly
si

s
ti

m
e

(r
at

io
)

o

o

o

oo

oooo

o

ooo

o

o o

ooo

o o

oo

o

o

o

oooo

ooo

o

o

oooo

o

oo

oooo

ooo

o

o

oo

ooooo o
oooo
o

ooo

o

o
o

o

oooo

o

o

o

o total 87 cases
mean at (1.3,1.8)

note: actual completed cases: 87 vs. 94

 s
lo

w
er

>
>

>
<

<
<

fa
st

er

 more memory>>><<<less

(a) Prune-Sparse-IFDS (b) Feedback-Prune-Sparse-IFDS

Figure 6.14: The two best IFDS algorithms relative to Client-Driven analysis, using
total analysis time.

6.6 Cycle Elimination

In this section, we discuss our attempt to incorporate cycle elimination techniques

into IFDS analysis. Unfortunately, for reasons that we shall discuss, the techniques

did not give us the speedups we were hoping. This section explains their apparent

attractiveness, and discusses reasons for their shortfalls.

157

6.6.1 Motivation

The reachabilility analysis embedded in the IFDS analysis belongs to the class of

context-free-language reachability problems (CFL-reachability problems) [120]. The

best known algorithm has complexity O(n3), where n is the number of nodes. The

key to scaling is to reduce the number of nodes. Both Sparse IFDS and Variable-

Pruning are successful examples of applying this idea. Another idea that we inves-

tigate is to perform cycle elimination.

The idea is to detect strongly connected components (SCC) in the graph:

every node in an SCC is reachable from every other node in the same SCC. Therefore,

if we collapse all SCC’s, we can reduce the time spent in reachability analysis.

The appeal of the technique is strengthened by their successful applications

to other problem domains such as inclusion-based pointer analysis [38, 62, 111, 60],

which are set constraint problems, which in turn are equivalent to CFL-reachability

problems.

For the techniques to succeed, there must be a substantial number of cycle

nodes. Table 6.5 presents the results of a feasibility study. The second column shows

the number of loop nodes in the flow graphs. Each of the remaining five columns

shows the number of SCC’s and percentage of loop nodes in the explode graphs, for

each of the five analysis problems. The data are obtained from graphs constructed

by the baseline IFDS algorithm. We use the standard Tarjan’s algorithm [143] to

compute the SCC’s after the IFDS analysis completes. The results in the table

suggest there is a significant number of SCC nodes. Since reachability analysis has

cubic complexity, if half of all nodes are in any SCC, then the analysis time can

potentially be reduced to 1
8 of the baseline.

158

%FG File-Access FSV Remote-FSV Remote-Access FTP-Behavior

Program nodes SCC %e-nodes SCC %e-nodes SCC %e-nodes SCC %e-nodes SCC %e-nodes

stunnel 18.9 72 27.2 40 32.9 148 31.1 148 31.1 792 32.2

pfinger 36.1 1207 51.2 1117 43.9 2921 45.5 2921 45.5 16937 44.5

muh-2.05c 28.6 654 30.6 384 33.7 941 32.1 941 32.1 5293 32.3

muh-2.05d 28.0 654 29.5 384 32.4 941 31.0 941 31.0 5302 31.2

pureftpd 36.2 1115 46.9 691 48.0 1720 42.7 1724 42.9 9976 40.4

fcron 36.5 1127 39.6 832 45.1 1549 41.7 1549 41.7 9814 39.7

apache 34.9 3017 30.3 1249 36.8 4148 33.7 4148 33.7 20733 32.3

make 51.4 4316 55.1 14310 57.2 13366 51.6 13366 51.6 ?

BlackHole 31.1 9766 37.5 12637 34.7 21489 33.5 21489 33.5 ?

openssh-client 17.5 4730 17.3 1406 17.0 4835 16.6 4835 16.6 32587 16.2

wu-ftpd-2.6.0 47.5 2370 63.9 3980 55.3 7115 57.7 7115 57.7 40418 58.2

wu-ftpd-2.6.2 47.2 5023 58.5 4883 54.0 9367 55.3 9367 55.3 53000 55.7

bind 39.5 2182 48.3 1367 46.9 3574 43.9 3574 43.9 20556 43.3

privoxy 25.7 22926 23.2 ? ? ? ?

openssh-server 21.3 5719 21.1 1552 23.1 6978 21.3 6978 21.3 39595 20.0

cfengine 34.2 16237 37.4 16668 37.2 32307 36.1 32175 36.1 ?

sqlite 40.6 6969 80.9 ? ? ? ?

Table 6.5: Percentages of loop nodes in flowgraphs exploded graphs. “?” indicates
no data available.

6.6.2 No Speedup: Too Much, Too Late

In this and the next section, we report our experience when we apply cycle detection

techniques to the IFDS algorithm and offer explanations why they fail to fulfill their

promise for great speedups.

There are many cycle elimination techniques with different degrees of suc-

cess. Tarjan’s linear algorithm [143] requires the entire graph to be completely

constructed. Online techniques [109, 90] detect cycles during graph construction,

but they incur higher overhead. We tried applying these techniques to the IFDS

analysis, but unfortunately, we could obtain only small speedups for a subset of

programs.

159

There are two reasons to explain the results: the cycle detection overhead,

and late detection. In order to explain these reasons, we need to better understand

the behavior of the algorithms:

• The time spent in the IFDS algorithm can be broken into three components:

initialize (build flowgraphs and transfer functions), graph construction, and

reachability analysis. Figure 6.15 shows the breakdown for all the programs.

• All cycle detection techniques mentioned so far share the common charac-

teristic that they perform detection after nodes and edges are created. They

therefore add extra cost to graph construction, which already takes an average

of 47% of total analysis time.

• On average, the reachability analysis takes up the smallest component, or 24%

of total analysis time. Therefore, any improvement due to cycle elimination is

already limited.

In other words, performing cycle detection after the graph is constructed

may add too much overhead, and may be too late. For example, relative to baseline,

Pearce and Kelly’s technique [109] increases the time spent in graph construction to

63% (up from 47%), while time in reachability analysis reduces to 18% (down from

24%), giving us an overall slowdown of 11% among all programs; only four programs

show any speedup.

6.6.3 Early Detection: Too Little, Not Enough?

The next question to ask is, can we do better than late detection? Can we avoid

creating the strongly connected components in the graphs in the first place?

160

stunnel
pfinger

muh-2.05c

muh-2.05d

pureftpd
fcron

apache
make

BlackHole

wu-ftpd-2.6.0

openssh-client

bind
wu-ftpd-2.6.2

openssh-server

cfengine

benchmarks

20

40

60

80

100
br

ea
kd

ow
n o

f I
FD

S a
na

lys
is

tim
e (

%
)

reachability analysis
exploded graph construction
initialization

Figure 6.15: Breakdown of IFDS analysis time into initialization, graph construc-
tion, and reachability analysis. The averages for all programs are 29%, 47%, and
24%, respectively.

One way to do that is to use cycles in a flowgraph to drive the graph con-

struction. For example, if there is no modification to a flow value d in a loop, then

the nodes for d in the exploded graph will form an SCC. We therefore do not have

to create all these nodes.

We experiment with an algorithm EC that adopts this strategy. The problem

with EC is that it is limited to detecting cycles on nodes with the same flow value.

Consequently, it is overshadowed by the Sparse IFDS algorithm, since the latter is

already not creating cycles. Experiment results show that EC adds no benefit to

Sparse IFDS. But since Sparse IFDS has to use a flow-sensitive pointer analysis, we

also try applying EC to an IFDS analysis with FICI pointer analysis. Unfortunately,

EC does not seem to affect performance at all.

161

6.7 Conclusion and Future Work

In this chapter, we have studied the performance of the IFDS algorithms in the

presence of pointers. Our study has revealed that the original algorithm presented

by Reps et al. is space inefficient, so it cannot complete on large programs with

pointers where the datasets could be large. We modify the internal data structure

in order to trade-off time for space.

The pointer analysis is critical to the IFDS algorithms: a flow-sensitive

pointer analysis helps improve performance in all three dimensions—time, space,

and precision—of the IFDS algorithm; a context-sensitive pointer analysis is even

better except that it itself is too expensive—it only completes on a third of our

benchmarks. A flow- and context-insensitive pointer analysis is worst: it leads to

fewer completed cases, which are also less precise.

We have presented algorithms that reduce the graphs used in analysis. The

difference between the original and reduced graphs, and the analysis cost on these

graphs, represent unimportant computations. Our Sparse IFDS algorithm exploits

the sparsity in the exploded graph by reducing the number of nodes and edges

created in each statement. Our Variable-Pruning IFDS algorithm also reduces the

graph, by reducing the set of variables—and hence, dataflow values—used in the

graph construction. By reducing graph sizes, these algorithms are removing unim-

portant computations by (i) avoiding constructing nodes that carry redundant in-

formation, and by (ii) removing reachability analysis on these redundant nodes. Our

results show that, on average, relative to the baseline algorithm’s IFDS analysis time,

the Sparse IFDS algorithm achieves 2.6× speedup, the Variable-Pruning IFDS algo-

rithm achieves 3.3× speedup, while a combined algorithm of the two achieves 5.5×

speedup, both relative to the baseline algorithm. When comparing total pointer and

162

IFDS analysis time, the new combined Sparse and Feedback-based Variable-Pruning

IFDS algorithm is the best algorithm, which achieves 2.6× speedup.

Finally, our experiments also show that even with our improvement, our best

IFDS algorithm is slower than the Client-Driven analysis, which is a very efficient

and precise dataflow analysis algorithm.

163

Chapter 7

Related Work

We view our work in this thesis as part of our efforts to improve scalability of pre-

cise analyses by finding and removing unimportant computations in these analyses.

There is no previous work that specifically studies, as a general problem, unimpor-

tant computations in static program analysis. In order to improve scalability, each

previous work usually focuses on one dimension of precision. To place our work in

context, we group the discussion in this section according to the major ideas in this

dissertation.

7.1 Worklist

Flow-sensitive analyses often use a worklist; hence, the worklist algorithm plays

a major role in the amount of repeated computations. Our solution to reduce

unimportant computations in flow-sensitive analysis is through improving worklist

algorithms. In this section, we will discuss existing worklist algorithms and other

related algorithms.

Previous work on comparing worklist algorithms includes Atkinson and Gris-

164

wold’s work [8], which shows that the performance difference between a round-robin

algorithm and a worklist algorithm can be huge. They propose a hybrid algorithm

that combines the benefits of the two. In separate work, Hind and Pioli [67] exploit

loop structure by using a priority queue. Their algorithm still conservatively adds

all reachable blocks to worklist. Their study on a worklist’s impact on performance

is one of the more recent. We find that Atkinson and Griswold’s hybrid algorithm

can sometimes be better and sometimes worse than Hind and Pioli’s algorithm. All

these studies do not measure the amount of repeated computations. To provide

a basis for comparison with our new algorithm, we use as our baseline a version

of the priority-queue approach that does not use the identity transfer function or

IN/OUT sets. Our solution leads to a more efficient worklist, because we take data

dependences into consideration. We find that exploiting def-use chains yields greater

improvement than exploiting loop structure.

Other than worklist algorithms, the class of iterative algorithms also include

round-robin and node listing [75, 2]. The round-robin approach is simple but is

generally known to be inefficient, because it always revisits all blocks. A node listing

is a statistically defined worklist order with repetition of nodes. This approach may

be efficient for “bit-vector” separable dataflow problems, but it does not consider

data dependences. Both the round-robin and node listing approaches are dense

analyses in the sense that blocks are reanalyzed needlessly. Consequently, worklist

algorithms are the only viable option for sparse analysis.

Besides iterative algorithms, the other family of dataflow algorithms are the

elimination methods [132]. These methods, such as interval analysis, solve systems

of equations. Two properties of these equations limit scalability of these methods.

First, the use of IN/OUT sets in the equations inherently requires dense analysis.

165

Second, in the presence of pointers, the GEN and KILL sets in the equations may

be unavailable or incomplete without complete pointer information in advance.

7.1.1 Other Approaches

For some classes of dataflow analysis problems, there exist techniques for efficient

analysis. For example, demand algorithms also avoid unimportant computations:

information irrelevant to answering queries are not computed. An example is the

demand interprocedural dataflow analysis [70], which can produce precise results in

polynomial time for interprocedural, finite, distributive, subset problems (IFDS).

Unfortunately, this class excludes pointer analysis, and a separate pointer analysis

phase may be required.

In the context of pointer analysis itself, previous work on flow-sensitive

pointer analysis algorithms that makes use of worklists [131, 24] do not attempt to

tune the worklist, so our worklist algorithm can be applied to such work to improve

their performance. Other pointer analysis algorithms sometimes trade precision

for scalability [66, 65, 62]. Our algorithm improves the efficiency of the worklist

component that drives the analysis, without affecting the precision of the analysis.

Worklist algorithms have also been studied from other perspectives. For ex-

ample, Cobleigh et al. [28] study the effects of worklist algorithms in model checking.

They identify a few dimensions along which an algorithm can be varied. Their main

result is that different algorithms perform best during different phases of analysis.

We do not attempt to partition an analysis into phases. Similarly, we do not ad-

dress the issue of partitioning the problem into subproblems [129], nor do we divide

a large program into manageable modules [128, 125, 97]. We leave all these issues

for future studies.

166

7.2 Sparse Analysis

The idea of exploiting sparsity to speedup analysis can be traced back to Reif and

Lewis [117, 118]. Wegman and Zadeck use the idea by proposing using def-use

chains to enable sparse constant propagation [147]. Their technique inspires our

new worklist algorithm. We improve upon their approach by handling pointers, and

we address the need to discover def-use chains on the fly as the analysis progresses.

Our new approach poses the challenge that some information is not available when

it is needed. Wegman and Zadeck’s technique also help us develop our Sparse IFDS

algorithm, in which we use def-use chains to create nodes in the graphs.

Another possible method of exploiting sparsity is to use a sparse evaluation

graph (SEG) or its variants [25, 114], which are refinements of CFGs that eliminate

irrelevant statements. Hind and Pioli report improvement with pointer analysis

when an SEG is used [67], but because their use of IN/OUT sets does not fully

exploit sparsity, it is unclear how much our worklist or our Sparse IFDS algorithm

can benefit from an SEG, and we leave this study to future research.

7.3 Context-Sensitive Analysis

This section discusses work related to Relevance-Based Context Partitioning and

Coupled Analyses.

7.3.1 Partitioning Contexts

In general, context-sensitive analysis improves the precision of analysis results [156,

83], but they can be very expensive. Previous solutions have recognized that ex-

ploiting similarities among contexts can improve performance. These previous work

167

did not explicitly discuss the roles of unimportant computation, and they did not

consider the role of client analysis. For example, Grove et al. present a general

framework for partitioning contexts [47]. Within this framework, the simplest ap-

proach to partitioning contexts is to limit context-sensitivity to the top k procedures

on the call stack, but this solution loses precision and identifies partitions arbitrarily.

Another example is Agesen’s Cartesian Product Algorithm [1], which partitions pro-

cedure contexts based on parameters’ concrete types at call sites, so as to improve

type inference in programs with parametric polymorphism. Our Relevance-Based

Context Partitioning is built on this algorithm, but we instead aims to improve

pointers analysis in the presence of a client dataflow analysis.

Wilson and Lam [153] exploit the fact that many contexts of a procedure

share the same input/output relationships. They use Partial Transfer Functions

to group similar contexts, so that analysis results for one context may be reused

for another, thus avoiding repeating some computations. Their PTF is one design

choice from a space of PTFs, as described by Murphy and Lam [101]. The PTFs in

this space differ in tradeoffs in complexity and precision. Their description of the

domain space, however, does not consider the role of a client analysis. Therefore any

choice is hardly justifiable based on performance needs and precision requirements

by client analysis.

Our RBCP is conceptually similar to PTFs, but instead of partitioning con-

texts based on alias patterns, we partition based on the client’s flow values, and

instead of fixing a partitioning criterion at design time, we adaptively partition the

contexts according to the client’s needs. Our technique, therefore, is able to compute

important flow values precisely, but computes unimportant flow values imprecisely.

Our algorithm is applicable to a wide variety of dataflow analyses. It is not directly

168

applicable to pointer analysis in isolation: the pointer analysis has to be analyzed

concurrently with a client analysis.

7.3.2 Other Context-Sensitive Analyses

More recently, BDD’s have been used to cope with the high cost of context sensitive

pointer analysis [150, 157]. The technique works well by exploiting similarities in

the flow information, so that flow values from all contexts of a procedure can be

represented compactly and completely. Consequently, analysis on a procedure is

computed just once, aside from convergence on the call graph. For C programs, flow-

insensitive, context-sensitive BDD-based analysis has been used to analyze programs

on the order of 30,000 lines [9, 157]. The use of BDD’s to perform flow-sensitive

analysis remains an open problem. Besides, the algorithms sometimes require hand-

tuning of the BDD data structure.

Client-Driven pointer analysis [54] provides selective flow-sensitivity and

context-sensitivity as determined by the needs of the client analysis. Because

only important flow values are computed precisely, unimportant computations are

avoided. Relevance-Based Context-Sensitivity is complementary to Client-Driven

analysis. The latter shrinks the set of procedures that are analyzed with context-

sensitivity, while the former optimizes the context-sensitive analysis by reducing the

number of contexts that must be considered. Client-Driven analysis interacts well

with Relevance-Based Context-Sensitivity, improving both performance and preci-

sion.

169

7.3.3 Context-Loss Problem

Nystrom et al. [106] argue that there are two forms of context-sensitivity. The

bottom-up context-sensitivity, which receives the attention of most previous work,

focuses on eliminating propagations along unrealizable paths. The top-down

context-sensitivity aims at removing the context-loss problem, which is impreci-

sion in the callee due to the merging of flow values from different calls. Nystrom et

al. present an efficient solution that only works for flow-insensitive pointer analysis.

Our Relevance-Based Context Partitioning algorithm is both bottom-up and top-

down context-sensitive for client analysis with pointer analysis, and our solution has

no restriction on flow sensitivity.

Many other approaches construct procedure summaries [80, 36, 153, 21] and

apply them to call sites. These approaches provide context-sensitive analysis, since

they prevent propagation along unrealizable paths. They typically use symbolic

names to represent invisible variables (e.g., *p where p is a formal parameter), so

there are extra steps of mapping and unmapping variables at call sites. If only one

summary is used per procedure, summary-based algorithms may suffer from the

context-loss problem. Some recovery is possible by qualifying the summaries with

constraints (such as assumed alias sets [80, 21]) or by using cloning-based techniques,

including PTFs.

7.3.4 Coupled Analysis

Previous work [27, 19] has discussed the benefits of combining analyses and has

described frameworks for integrating analyses. We instead focus on exploiting the

relation between client and service analyses to improve the performance of the ser-

vice analysis. The Client-Driven pointer analysis [54] was the first to exploit this

170

type of coupling, using the client to shrink the set of procedures analyzed in a

context-sensitive manner. Relevance-Based Context Partitioning instead optimizes

the context-sensitive analysis in a different way: with the help from the client analy-

sis, RBCP partitions procedure contexts so each procedure is analyzed fewer times.

7.4 Reachability-Based Analysis

This section compares IFDS analysis to other types of analysis and describes how

our new IFDS algorithms compare with previous work. Note that, in Section 7.2, we

discussed how previous work on sparse analysis inspired our Sparse IFDS algorithm.

7.4.1 Relation to Other Analyses

The IFDS algorithm is based on an earlier framework defined by Sharir and

Pnueli [136], who describe two general approaches to interprocedural analysis: the

functional approach, which the IFDS algorithm belongs to, and the call string ap-

proach.

Solving dataflow problems by reducing them to reachability problems has

been studied by Kou [78] and Cooper and Kennedy [30, 29]. All of these focus on

intraprocedural and flow-insensitive problems. Reps et al.’s IFDS solution is more

precise, because it is interprocedural and flow-sensitive.

The IFDS framework is useful for many distributive problems, includ-

ing locally-separable problems such as reaching definitions and liveness analysis.

Reps [120] discussed how program analysis can be solved by transforming them to

graph-reachability problems. In particular, the general context-free-language (CFL)

reachability problems are used in context-sensitive analysis because their solutions

exclude unrealizable paths in program executions. He used as examples program

171

slicing, a version of shape analysis, and a flow-insensitive points-to analysis. In this

dissertation, we focus on general IFDS problems.

Melski and Reps [94] showed that certain reachability problems are equivalent

to certain set constraint problems. While this result has significant implications from

both conceptual and implementation standpoints, we leave as future work the study

of our ideas to set constraint problems.

The IDE framework is a strict generalization of IFDS framework. In the

IFDS framework, the set of dataflow facts Dp is finite, while in the IDE frame-

work, the lattice for Dp has finite height. While IFDS algorithms are used to solve

realizable-path reachability problems, IDE algorithms are used to solve realizable-

path summary problems. All IFDS problems can be encoded as IDE problems,

but not vice versa. The copy-constant and linear-constant propagation problems

are example problems solvable with the IDE framework. Sagiv et al. [133] report

that running IFDS problems using IDE framework requires less memory and, there-

fore, can analyze larger programs. There is no other empirical evaluation of these

algorithms that compare with other types of program analysis, such as dataflow

analysis.

7.4.2 Variable Pruning

Weiser [148] first introduces the concept of program slice as a reduced, executable

program S from a program P by removing statements, such that S replicates part

of the behavior of P . Tip [144] provides a comprehensive survey and comparison

of slicing techniques. Generally, there are two approaches to the problem: using

dataflow equations [148] or using Program Dependence Graph (PDG) or other vari-

ants [148, 107, 69]. For example, a basic PDG-based algorithm can take up to

172

O(V 3), where V is the number of PDG nodes. Adding features to this basic algo-

rithm adds complexity to the new algorithms. For instance, to handle procedures,

both context-insensitive [149] and -sensitive variants are presented [69, 71]. Differ-

ent improvements are suggested in order to handle unstructured control flow [10, 23]

and pointers [107, 68] correctly. There is also an algorithm to handle distributed

programs [22]. On the other hand, there are also many algorithms that perform

dynamic slicing [144, 96, 155].

The Variable Pruning algorithm does not utilize any of the flow equations or

PDG variants used by the above slicing algorithms. Instead, we simply augment a

pointer analysis with a low-cost operation—gather dependences—at each statement.

Variable Pruning is very much a quick and deflated program slicing algorithm, es-

pecially given its flow-insensitive nature. That is, it does not trace the data and

control dependences of statements. Therefore, it does not observe dominance rela-

tions between assignments, and it cannot perform statement pruning. When used

to construct an exploded graph, the resulting graph can, therefore, be larger than

if another more precise slicing algorithm is used.

While a more precise slicing algorithm can replace Variable Pruning, such

algorithm comes with a higher cost. Even though the slicing algorithm may eliminate

more nodes, these extra nodes do not contribute to answering the queries in the

analysis; that is, the precision of IFDS analysis is not affected. Besides being simple

and fast, Variable Pruning has the additional benefit that the dependence graph

for a program can be recycled for another analysis problem: only the queries are

different.

173

7.5 Cycle Elimination

Andersen first described the inclusion-based or constraint-based alias analysis in

terms of type theory [6]. Faehndrich et al. [38] later reformulated the problem as

computing the dynamic transitive closure of constraint graphs. Since then, tech-

niques for cycle detection prove to be crucial for scalability of the alias analy-

sis [60, 63, 110, 111]. On the other hand, Rountev et al. [126] introduce Offline

Variable Substitution whose aim is to find and collapse pointer-equivalent variables.

All these previous work reduce unimportant computations by detecting and remov-

ing equivalent information, effectively shrinking the problem size and dramatically

reducing analysis time and memory usage. We tried to apply similar cycle elimina-

tion techniques to reduce the graphs used in reachability analysis. Unfortunately,

we did not obtain significant improvement due to high overhead and limited oppor-

tunity for optimization.

174

Chapter 8

Conclusion

Developing precise and scalable program analysis continues to be challenging and

demanding. Many previous work trades off between scalability and precision, which

may result in unacceptable output qualities. We observe that some algorithms are

precise but inefficient: they perform many unimportant computations, either be-

cause the same computations are repeated many times or because a lot of unimpor-

tant or irrelevant information is computed precisely. By identifying and removing

these computations, we improve analysis time of analyses without sacrificing preci-

sion.

8.1 Contributions

In this dissertation, we have presented new algorithms for improving scalability of

interprocedural program analysis. We identify and eliminate the source of repeated

computations in flow-sensitive dataflow analysis by implementing a new worklist

management algorithm. Our Relevance-Based Context Partitioning algorithm im-

proves context-sensitive dataflow analysis by grouping similar contexts in such a way

175

that procedures are analyzed fewer times, and the analysis does not lose precision

on important information. We also present new algorithms for reachability-based

analysis. Our Sparse IFDS and Variable-Pruning IFDS algorithms and their vari-

ants work by reducing the graph used in an IFDS analysis. All our new algorithms

produce significant improvement over existing to-date algorithms without sacrific-

ing output qualities; in many cases, our new algorithm can complete when existing

algorithms cannot, because they consume too much memory.

8.2 Future Work

Our work represents case studies of eliminating unimportant computations in precise

program analysis. Besides flow- and context-sensitive analysis, there exist similar

optimization opportunities in other precision dimensions. For example, not all paths

are “interesting” in a path-sensitive analysis. In a field-sensitive analysis, certain

fields may be merged or removed from the analysis when those fields do not carry

important flow information relevant to a client analysis. Additional examples can

be defined with object-oriented programs [130].

We observe that Relevance-Based Context Partitioning is an example of the

broader notion of Coupled Analyses, where information from the client analysis can

improve the performance of a service analysis. We believe this important paradigm

is likely to become more important, and it deserves further study.

176

Bibliography

[1] Ole Agesen. The cartesian product algorithm: Simple and precise type infer-

ence of parametric polymorphism. In ECCOP’95 9th European Conference on

Object-Oriented Programming, LNCS 952, pages 2–26, 1995.

[2] A. V. Aho and J. D. Ullman. Node listings for reducible flow graphs. In

Proceedings of Seventh Annual ACM Symposium on Theory of Computing,

pages 177–185, 1975.

[3] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality

of variables in programs. In Proceedings of the 15th Annual ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pages 1–11,

January 1988.

[4] Stephen Alstrup, Peter W. Lauridsen, and Mikkel Thorup. Dominators in

linear time. SIAM Journal on Computing, 28(6):2117–2132, 1999.

[5] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Analysis of recursive

state machines. In Proc. 13th International Conference on Computer Aided

Verification (CAV’01), LNCS 2102, pages 207–220, 2001.

[6] Lars Ole Andersen. Program Analysis and Specialization for the C Program-

ming Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

177

[7] Paul Anderson, David Binkley, Genevieve Rosay, and Tim Teitelbaum. Flow

insensitive points-to sets. In Proceedings of the International Workshop on

Source Code Analysis and Manipulation (SCAM 2001), pages 79–89, Novem-

ber 2001.

[8] Darren C. Atkinson and William G. Griswold. Implementation techniques

for efficient data-flow analysis of large programs. In Proceedings of the IEEE

International Conference on Software Maintenance (ICSM’01), pages 52–61,

November 2001.

[9] Dzintars Avots, Michael Dalton, V. Benjabin, Livshits, and Monica S. Lam.

Improving software security with a C pointer analysis. In Proceedings of the

27th International Conference on Software Engineering, pages 332–341, May

2005.

[10] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control

flow. In In Proceedings of the 1st International Workshop on Automated and

Algorithmic Debugging, Lecture Notes in Computer Science 749, pages 206–

222. Springer-Verlag, New York, May 1993.

[11] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani.

Automatic predicate asbtraction of C programs. In ACM SIGPLAN 2001 Con-

ference on Programming Language Design and Implementation, pages 203–

213, June 2001.

[12] M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted

hierarchical state machines. In Proc. of ICALP 2001, 28th Int. Colloq. on

Automata, Languages, and Programming, Lecture Notes in Computer Science,

Vol. 2076, pages 652–666, July 2001.

178

[13] Jennifer Bevan and Jr E. James Whitehead. Identification of software instabil-

ities. In Proceedings of the 10th Working Conference on Reverse Engineering,

pages 134–144, November 2003.

[14] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jrme Feret, Laurent

Mauborgne, Antoine Min, David Monniaux, and Xavier Rival. Design and

implementation of a special-purpose static program analyzer for safety-critical

real-time embedded software. In The Essence of Computation: Complexity,

Analysis, Transformation, pages 85–108. Springer-Verlag, 2002.

[15] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jrme Feret, Laurent

Mauborgne, Antoine Min, David Monniaux, and Xavier Rival. A static

analyzer for large safety-critical software. In Proceedings of the ACM SIG-

PLAN 2003 Conference on Programming Language Design and Implementa-

tion, pages 196–207, June 2003.

[16] D. Callahan. The program summary graph and flow-sensitive interprocedual

data flow analysis. In Proceedings of the ACM SIGPLAN ’88 Conference on

Programming Language Design and Implementation, pages 47–56, June 1988.

[17] Paul R. Carini and Michael Hind. Flow-sensitive interprocedural constant

propagation. In ACM SIGPLAN’95 Conference on Programming Language

Design and Implementation, pages 23–31, 1995.

[18] Venkatesan T. Chakaravarthy. New results on the computability and complex-

ity of points-to analysis. In Proceedings of the 30th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 115–125, January

2003.

179

[19] Craig Chambers, Jeffrey Dean, and David Grove. Framework for intra- and

interprocedural dataflow analysis. Technical Report 96-11-02, University of

Washinton, November 1996.

[20] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers

and structures. In ACM SIGPLAN’90 Conference on Programming Language

Design and Implementation, pages 296–310, June 1990.

[21] Ramkrishna Chatterjee, Barbara G. Ryder, and W. A. Landi. Relevant con-

text inference. In Proceedings of the 26th ACM Annual SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 133–146, January

1999.

[22] Jingde Cheng. Slicing concurrent programs - a graph-theoretical approach. In

Automated and Algorithmic Debugging, pages 223–240, 1993.

[23] J. D. Choi and J. Ferrante. Static sicing in the presence of GOTO statements.

ACM Transactions on Programming Languages and Systems, 16(4):1097–1113,

July 1994.

[24] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive in-

terprocedural computation of pointer-induced aliases and side effects. In Pro-

ceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 232–245, 1993.

[25] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construc-

tion of sparse data flow evaluation graphs. In Proceedings of the 18th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 55–66, 1991.

180

[26] Stephen Chong and Radu Rugina. Static analysis of accessed regions in re-

cursive data structures. In Radhia Cousot, editor, 10th Annual International

Static Analysis Symposium (SAS’03), volume 2694 of Lecture Notes on Com-

puter Science, June 2003.

[27] Cliff Click and Keith D. Cooper. Combining analyses, combining optimiza-

tions. ACM Transactions on Programming Languages and Systems, 17(2):181–

196, March 1995.

[28] Jamieson M. Cobleigh, Lori A. Clarke, and Leon J. Osterweil. The right

algorithm at the right time: comparing data flow analysis algorithms for finite

state verification. In Proceedings of the 23rd International Conference on

Software Engineering (ICSE 2001), pages 37–46, May 2001.

[29] K. D. Cooper and K. Kennedy. Fast interprocedural alias analysis. In Proceed-

ings of the 15th Annual ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, pages 49–59, January 1988.

[30] K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear

time. In Proceedings of the ACM SIGPLAN ’88 Conference on Programming

Language Design and Implementation, pages 57–66, June 1988.

[31] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proceedings of

the Fourth ACM SIGPLAN International Conference on Functional Program-

ming, pages 233–248, September 1999.

[32] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, and Mark N. Wegman. Ef-

ficiently computing static single assignment form and the control depen-

dence graph. ACM Transactions on Programming Languages and Systems,

13(4):451–490, October 1991.

181

[33] Manuvir Das. Unification-based pointer analysis with directional assignments.

In ACM SIGPLAN 2000 Conference on Programming Language Design and

Implementation, pages 35–46, June 2000.

[34] Manuvir Das, Ben Liblit, Manuel Fähndrich, and Jakob Rehof. Estimating

the impact of scalable pointer analysis on optimization. In 8th Annual Inter-

national Static Analysis Symposium (SAS’01), volume 2126 of Lecture Notes

on Computer Science, pages 260–279, 2001.

[35] Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, and Gleb Nau-

movich. Flow analysis for verifying properties of concurrent software systems.

ACM Transactions on Software Engineering and Methodology, 13(4):359–430,

October 2004.

[36] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive in-

terprocedural points-to analysis in the presence of function pointers. In ACM

SIGPLAN’94 Conference on Programming Language Design and Implemen-

tation, pages 242–256, June 1994.

[37] Dawson Engler and Ken Ashcraft. RacerX: Effective, static detection of race

conditions and deadlock. In Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles, pages 237–252, 2003.

[38] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken.

Partial online cycle elimination in inclusion constraint graphs. In Proceedings

of the ACM SIGPLAN ’98 Conference on Programming Language Design and

Implementation, pages 85–96, 1998.

[39] Christian Fecht and Helmut Seidl. Propagating differences: An efficient new

182

fixpoint algorithm for distributive constraint systems. In ESOP’98, 7th Euro-

pean Symposium on Programming, LNCS 1381, pages 90–104, 1998.

[40] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification:

Abstraction techniques and complexity results. In Radhia Cousot, editor,

10th Annual International Static Analysis Symposium (SAS’03), volume 2694

of Lecture Notes on Computer Science, pages 439–462, June 2003.

[41] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.

Effective typestate verification in the presence of aliasing. In ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA 2006),

pages 133–144, July 2006.

[42] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type quali-

fiers. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming

Language Design and Implementation, pages 1–12, June 2002.

[43] Rakesh Ghiya and Laurie J. Hendren. Connection analysis: A practical in-

terprocedural heap analysis for C. ACM International Journal of Parallel

Programming, 24(6):547–578, December 1996.

[44] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph? a

shape analysis for heap-directed pointers in c. In Proceedings of the 23th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 1–15, January 1996.

[45] Denis Gopan, Thomas Reps, and Mooly Sagiv. A framework for numeric

analysis of array operations. In Conference record of the 32th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 338–

350, January 2005.

183

[46] Carl Gould, Zhendong Su, and Premkumar Devanbu. Static checking of dy-

namically generated queries in database applications. In Proceedings of the

26th International Conference on Software Engineering, pages 645–654, May

2004.

[47] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph

construction in object-oriented languages. In ACM SIGPLAN Conference On

Object-Oriented Programming, Systems, Languages and Applications, pages

108–124, 1997.

[48] Sumit Gulwani and George C. Necula. Global value numbering using random

interpretation. In Conference record of the 31th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 342–352, January

2004.

[49] Sumit Gulwani and George C. Necula. Precise interprocedural analysis using

random interpretation. In Conference record of the 32th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 324–

337, January 2005.

[50] S.K.S. Gupta and S. Krishnamurthy. An interprocedural framework for deter-

mining efficient data redistributions in distributed memory machines. In Sixth

Symposium on the Frontiers of Massively Parallel Computing, pages 233–240,

Oct 1996.

[51] Samuel Guyer and Calvin Lin. Optimizing the use of high performance soft-

ware libraries. In Languages and Compilers for Parallel Computing, pages

227–243. Springer-Verlag, 2002.

184

[52] Samuel Z. Guyer. Incorporating Domain-Specific Information into the Com-

pilation Process. PhD thesis, The University of Texas at Austin, May 2003.

[53] Samuel Z. Guyer, Emery D. Berger, and Calvin Lin. Detecting errors with

configurable whole-program dataflow analysis. Technical Report TR-02-04,

University of Texas at Austin, 2002.

[54] Samuel Z. Guyer and Calvin Lin. Client driven pointer analysis. In Rad-

hia Cousot, editor, 10th Annual International Static Analysis Symposium

(SAS’03), volume 2694 of Lecture Notes on Computer Science, pages 214–

236, June 2003.

[55] Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing

software libraries. In 2nd Conference on Domain Specific Languages, pages

39–53, October 1999.

[56] Samuel Z. Guyer and Calvin Lin. Broadway: A software architecture for scien-

tific computing. In R. F. Boisvert and P. T. P. Tang, editors, The Architecture

of Scientific Software. Kluwer Academic Press, October 2000.

[57] Brian Hackett and Radu Rugina. Region-based shape analysis with tracked

locations. In Conference record of the 32th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 310–323, January 2005.

[58] Mary W. Hall and Ken Kennedy. Efficient call graph analysis. ACM Letters

on Programming Languages and Systems, 1(3):227–242, September 1992.

[59] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system

and language for building system-specific, static analyses. In Proceedings of

185

the ACM SIGPLAN 2002 Conference on Programming Language Design and

Implementation, pages 69–82, June 2002.

[60] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: Fast and accu-

rate pointer analysis for millions of lines of code. In Proceedings of the ACM

SIGPLAN 2007 Conference on Programming Language Design and Implemen-

tation, June 2007.

[61] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional

type analysis. In Proceedings of the 22th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 130–141, January 1995.

[62] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In ACM

SIGPLAN 2001 Conference on Programming Language Design and Implemen-

tation, pages 24–34, 2001.

[63] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using cla: a

million lines of C code in a second. In ACM SIGPLAN 2001 Conference on

Programming Language Design and Implementation, pages 254–263, 2001.

[64] Laurie J. Hendren, Joseph Hummell, and Alexandru Nicolau. Abstractions for

recursive pointer data structures: improving the analysis and transformation

of imperative programs. In ACM SIGPLAN’92 Proceedings of the 1992 PLDI,

pages 249–260, 1992.

[65] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In

PASTE 2001 Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering, pages 54–61, 2001.

[66] Michael Hind and Anthony Pioli. Which pointer analysis should I use? In

186

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 2000), pages 113–123, August 2000.

[67] Michael Hind and Anthony Pioli. Assessing the effects of flow-sensitivity on

pointer alias analysis. In 5th Annual International Static Analysis Symposium

(SAS’98), volume 1503 of Lecture Notes on Computer Science, pages 57–81,

September 1998.

[68] Susan Horwitz, Phil Pfeiffer, and Thomas Reps. Dependence analysis for

pointer variables. In Proceedings SIGPLAN’89 Symposium on Compiler Con-

struction, pages 28–40, June 1989. Published as SIGPLAN Notices Vol. 24(7).

[69] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing

using dependence graphs. ACM Transactions on Programming Languages and

Systems, 12(1):26–60, January 1990.

[70] Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interprocedural

dataflow analysis. In ACM SIGSOFT’95 3rd Symposium on the Foundations

of Software Engineering, pages 104–115, October 1995.

[71] J. Hwang, M. Du, and C. Chou. Finding program slices for recursive proce-

dures. In Proceedings of the 12th Annual International Compiler Software and

Applications Conference, 1988.

[72] Bertrand Jeannet, Alexey Loginov, Thomas Reps, and Mooly Sagiv. A rela-

tional approach to interprocedural shape analysis. In 11th Annual Interna-

tional Static Analysis Symposium (SAS’04), volume 3148 of Lecture Notes on

Computer Science, Aug 2004.

187

[73] Neil D. Jones and Steven S. Muchnick. Complexity of flow analysis, induc-

tive assertion synthesis, and a language due to Dijkstra. In S. S. Muchnick

and N. D. Jones, editors, Program Flow Analysis: Theory and Applications,

chapter 12, pages 380–393. Prentice-Hall, 1981.

[74] John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative

algorithms. Journal of the ACM, 23(1):158–171, January 1976.

[75] K. W. Kennedy. Node listings applied to data flow analysis. In Proceedings

of the 2th ACM Symposium on Principles of Programming Languages, pages

10–21, 1975.

[76] Jens Knoop, Oliver Rthing, and Bernhard Steffen. Towards a tool kit for

the automatic generation of interprocedural data flow analyses. Journal of

Programming Languages, 4(4):211–246, December 1996.

[77] Jens Knoop and Bernhard Steffen. Efficient and optimal bit-vector data flow

analyses: A uniform interprocedural framework. Technical report, Institut fr

Informatik und Praktische Mathematik, Christian-Albrechts-Universitt Kiel,

Germany, Bericht Nr. 9309, 1993.

[78] L. T. Kou. On live-dead analysis for global data flow problems. Journal of

the ACM, 24(3):473–483, July 1977.

[79] Arun Lakhotia. Constructing call multigraphs using dependence graphs. In

Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 273–284, January 1993.

[80] William Landi and Barbara G. Ryder. A safe approximate algorithm for

188

interprocedural aliasing. In ACM SIGPLAN’92 Proceedings of the 1992 PLDI,

pages 235–248, 1992.

[81] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses.

In Proceedings of the ACM SIGPLAN ’88 Conference on Programming Lan-

guage Design and Implementation, pages 24–31, June 1988.

[82] Xavier Leroy. Unboxed objects and polymorphic typing. In Proceedings of

the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 177–188, 1992.

[83] Ondrej Lhotak and Laurie Hendren. Context-sensitive points-to analysis: is

it worth it? Technical Report 2005-2, McGill University, 2005.

[84] Donglin Liang and Mary Jean Harrold. Efficient points-to analysis for whole-

program analysis. In Proceedings of the 7th European Engineering Conference

and 7th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 199–215, 1999.

[85] Donglin Liang and Mary Jean Harrold. Efficient computation of parameterized

pointer information for interprocedural analyses. In 8th Annual International

Static Analysis Symposium (SAS’01), volume 2126 of Lecture Notes on Com-

puter Science, pages 279–298, July 2001.

[86] Yanhong A. Liu, Tom Rothamel, Fuxiang Yu, Scott D. Stoller, and Nan-

jun Hu. Parametric regular path queries. In Proceedings of the ACM SIG-

PLAN 2004 Conference on Programming Language Design and Implementa-

tion, pages 219–230, June 2004.

189

[87] Edward S. Lowry and C. W. Medlock. Object code optimization. Communi-

cations of the ACM, 12(1):13–22, January 1969.

[88] Roman Manevich, Mooly Sagiv, G. Ramalingam, and John Field. Partially

disjunctive heap abstraction. In 11th Annual International Static Analysis

Symposium (SAS’04), volume 3148 of Lecture Notes on Computer Science,

August 2004.

[89] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and Zhe

Yang. PSE: Explaining program failures via postmortem static analysis. In

Proceedings of the 12th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, pages 63–72, October 2004.

[90] Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. Maintain-

ing a topological order under edge insertions. Information Processing Letters,

59(1):53–58, 1996.

[91] F. Masdupuy. Array Indices Relational Semantic Analysis using Rational

Cosets and Trapezoids. PhD thesis, Ecole Polytechnique, 1993.

[92] Stephen McCamant and Michael D. Ernst. Early identification of incompati-

bilities in multi-component upgrades. In In ECOOP 18th European Conference

on Object-Oriented Programming, pages 440–464, June 16-18 2004.

[93] Markus Müeller-Olm, Helmut Seidl, and Bernhard Steffen. Interprocedural

analysis (almost) for free. Technical Report 790, Fachbereich Informatik, Uni-

versitt Dortmund, July 2004.

[94] David Melski and Thomas Reps. Interconvertibility of set constraints and

190

context-free language reachability. In Symposium on Partial Evaluation and

Semantics-Based Program Manipulation, pages 74–89, June 1997.

[95] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object

sensitivity for pointsto and side-effect analyses for java. ACM Transactions

on Software Engineering and Methodology, 14(1):1–41, January 2005.

[96] Markus Mock, Darren C. Atkinson, Crag Chambers, and Susan J. Eggers.

Improving program slicing with dynamic points-to data. In Proceedings of the

10th ACM SIGSOFT Symposium on Foundations of Software Engineering,

pages 71–80, 2002.

[97] Sungdo Moon, Xinliang Li, Robert Hundt, Dhruva Chakrabarti, Luis Lozano,

Uma Srinivasan, and Shin-Ming Liu. SYZYGY — a framework for scalable

cross-module IPO. In 2004 International Symposium on Code Generation

and Optimization with Special Emphasis on Feedback-Directed and Runtime

Optimization, pages 65–74, March 2004.

[98] Etienne Morel and Claude Renvoise. Interprocedural elimination of partial

redundancies. In S. S. Muchnick and N. D. Jones, editors, Program Flow

Analysis: Theory and Applications, chapter 6, pages 160–188. Prentice-Hall,

1981.

[99] Etienne Morel and Claude Renvoise. Global optimizations by suppression of

partial redundancies. Communications of the ACM, 22(2):96–103, February

1981.

[100] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers, 1997.

191

[101] Brian R. Murphy and Monica S. Lam. Program analysis with partial transfer

functions. In Proceedings of the 2000 ACM SIGPLAN Workshop on Partial

Evaluation and Semantics-based Program Manipulation, pages 94–103, Jan-

uary 2000.

[102] Robert Muth and Saumya Debray. On the complexity of flow-sensitive

dataflow analyses. In Proceedings of the 27th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, pages 67–80, 2000.

[103] Eugene M. Myers. A precise inter-procedural data flow algorithm. In Pro-

ceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 219–230, January 1981.

[104] Tim Newsham. Format String Attacks. www.lava.net/ newsham/format-string-

attacks.pdf, September 2000.

[105] E. M. Nystrom, Hong-Seok Kim, and Wen mei W. Hwu. Importance of

heap specialization in pointer analysis. In Proceedings of 2004 SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering

(PASTE’04), pages 43–48, June 2004.

[106] Erik M. Nystrom, Hong-Seok Kim, and Wen mei W. Hwu. Bottom-up and

top-down context-sensitive summary-based pointer analysis. In 11th Annual

International Static Analysis Symposium (SAS’04), volume 3148 of Lecture

Notes on Computer Science, August 2004.

[107] K. Ottenstein and L. Ottenstein. The program dependence graph in a software

development environment. In Proceedings of the ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Software Development Envi-

ronment, pages 177–184, 1984.

192

[108] Jens Palsberg and Andrew A. Chien. Object-oriented type inference. In OOP-

SLA’91: Conference Proceedings on Object-Oriented Programming, Systems,

Languages, and Applications, pages 146–161, November 1991.

[109] David. J. Pearce and Paul. H. J. Kelly. A dynamic algorithm for topologically

sorting directed acyclic graphs. In Proceedings of the Workshop on Efficient

and Experimental Algorithms, volume 3059 of Lecture Notes in Computer Sci-

ence, pages 383–398, 2004.

[110] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient field-sensitive

pointer analysis for C. In Proceedings of 2004 SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering (PASTE’04), pages

37–42, June 2004.

[111] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Online cycle detection

and difference propagation for pointer analysis. In Proceedings of the 3rd

International Workshop on Source Code Analysis and Manipulation (SCAM

2003), pages 3–12, September 2003.

[112] Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof. Summarizing procedures

in concurrent programs. In Conference record of the 31th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 245–

255, January 2004.

[113] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is un-

decidable. ACM Transactions on Programming Languages and Systems,

22(2):416–430, 2000.

[114] G. Ramalingam. On sparse evaluation representations. Research Report RC

21245(94831), IBM Research, July 1998.

193

[115] G. Ramalingam, John Field, and Frank Tip. Aggregate structure identifi-

cation and its application to program analysis. In Proceedings of the 26th

ACM Annual SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 119–132, January 1999.

[116] G. Ramalingam, Alex Warshavsky, John Field, Deepak Goyal, and Mooly

Sagiv. Deriving specialized program analyses for certifying component-client

conformance. In Proceedings of the ACM SIGPLAN 2002 Conference on Pro-

gramming Language Design and Implementation, pages 83–94, June 2002.

[117] John H. Reif and Harry R. Lewis. Symbolic evaluation and the global value

graph. In Proceedings of the 4th ACM Symposium on Principles of Program-

ming Languages, pages 104–118, 1977.

[118] John H Reif and Harry R Lewis. Efficient symbolic analysis of programs.

Journal of Computer and System Sciences, 32(3):280–313, June 1986.

[119] T. Reps and G. Rosay. Precise interprocedural chopping. In ACM SIG-

SOFT’95 3rd Symposium on the Foundations of Software Engineering, pages

41–52, October 1995. also in ACM SIGSOFT Software Engineering Notes

20(4).

[120] Thomas Reps. Program analysis via graph reachability. Information and

Software Technology, 40(11–12):701–726, November/December 1998.

[121] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural

dataflow analysis via graph reachability. In Proceedings of the 22th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 49–61, January 1995.

194

[122] N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive pro-

grams. In Proceedings of the 10th International Conference on Compiler Con-

struction, number 2027 in Lecture Notes in Computer Science, pages 133–149,

April 2001.

[123] Noam Rinetzky, Jrg Bauer, Thomas Reps, Mooly Sagiv, and Reinhard Wil-

helm. A semantics for procedure-local heaps and its abstractions. In Confer-

ence record of the 32th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 296–309, January 2005.

[124] Noam Rinetzky, Mooly Sagiv, and Eran Yahav. Interprocedural shape anal-

ysis for cutpoint-free programs. In 12th Annual International Static Analysis

Symposium (SAS’05), volume 3672 of Lecture Notes on Computer Science,

September 2005.

[125] Atanas Rountev. Dataflow Analysis of Software Fragments. PhD thesis, Rut-

gers University, August 2002. Technical Report DCS-TR-501.

[126] Atanas Rountev and Satish Chandra. Off-line variable substitution for scal-

ing points-to analysis. In ACM SIGPLAN 2000 Conference on Programming

Language Design and Implementation, pages 47–56, June 2000.

[127] Atanas Rountev and Beth Harkness Connell. Object naming analysis for

reverse-engineered sequence diagrams. In Proceedings of the 27th International

Conference on Software Engineering, pages 254–263, May 2005.

[128] Atanas Rountev, Barbara G. Ryder, and William A. Landi. Data-flow analysis

of program fragments. In Proceedings of the 7th European Engineering Con-

ference and 7th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pages 235–253, September 1999.

195

[129] Erik Ruf. Partitioning dataflow analyses using types. In Proceedings of

the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 15–26, January 1997.

[130] Barbara G. Ryder. Dimensions of precision in reference analysis of object-

oriented programming languages. In Proceedings of the 12th International

Conference on Compiler Construction, number 2622 in Lecture Notes in Com-

puter Science, pages 126–137, May 2003.

[131] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and Rita

Altucher. A schema for interprocedural modification side-effect analysis with

pointer aliasing. ACM Transactions on Programming Languages and Systems,

23(2):105–186, March 2001.

[132] Barbara G. Ryder and Marvin C. Paull. Elimination algorithms for data flow

analysis. ACM Computing Surveys (CSUR), 18(3):277–316, September 1986.

[133] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis

with applications to constant propagation. Theoretical Computer Science,

167:131–170, 1996.

[134] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis

problems in languages with destructive updating. In Proceedings of the 23th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 16–31, January 1996.

[135] Zhong Shao. Flexible representation analysis. In 1997 ACM International

Conference on Functional Programming, pages 85–98, June 1997.

[136] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

196

In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory

and Applications, chapter 7, pages 189–233. Prentice-Hall, 1981.

[137] O. Shivers. Control flow analysis in scheme. In Proceedings of the ACM SIG-

PLAN ’88 Conference on Programming Language Design and Implementation,

pages 164–174, June 1988.

[138] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,

Carnegie Mellon University School of Computer Science, May 1991.

[139] Ganesh Sittampalam, Oege de Moor, and Ken Friis Larsen. Incremental ex-

ecution of transformation specifications. In Conference record of the 31th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 26–38, January 2004.

[140] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of

the 23th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 32–41, 1996.

[141] Philip A. Stocks, Barbara G. Ryder, William A. Landi, and Sean Zhang. Com-

paring flow and context sensitivity on the modification-side-effects problem. In

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 1998), pages 21–31, March 1998.

[142] Strom and Yemini. Typestate: A programming language concept for enhanc-

ing software reliability. IEEE Trans. Software Engineering, 12(1), February

1986.

[143] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

of Computing, 1(2):146–160, June 1972.

197

[144] Frank Tip. A survey of program slicing techniques. Journal of Programming

Languages, 3, 1995.

[145] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Variable precision reaching

definitions analysis for software maintenance. In First Euromicro Conference

on Software Maintenance and Reengineering, EUROMICRO 97, pages 60–67,

March 1997.

[146] Cheng Wang and Zhiyuan Li. Parametric analysis for adaptive computation

offloading. In Proceedings of the ACM SIGPLAN 2004 Conference on Pro-

gramming Language Design and Implementation, pages 119–130, June 2004.

[147] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with condi-

tional branches. ACM Transactions on Programming Languages and Systems,

13(2):181–210, April 1991.

[148] M. Weiser. Program slices: formal, psychological, and practical investigations

of an automatic program abstraction method. PhD thesis, University of Michi-

gan, Ann Arbor, 1979.

[149] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,

10(4):352–357, 1985.

[150] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer

alias analyses using binary decision diagrams. In Proceedings of the ACM

SIGPLAN 2004 Conference on Programming Language Design and Imple-

mentation, pages 131–144, June 2004.

[151] Reinhard Wilhelm, Mooly Sagiv, and Thomas Reps. Shape analysis. In Pro-

198

ceedings of the 9th International Conference on Compiler Construction, num-

ber 1781 in Lecture Notes in Computer Science, March 2000.

[152] Robert P. Wilson. Efficient, Context-Sensitive Pointer Analysis for C Pro-

grams. PhD thesis, Stanford University, December 1997.

[153] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer anal-

ysis for C program. In ACM SIGPLAN’95 Conference on Programming Lan-

guage Design and Implementation, pages 1–12, June 1995.

[154] C. L. Wong. Thread Escape Analysis for a Memory Consistency Model Aware

Compiler. PhD thesis, University of Illinois at Urbana-Champaign, 2004.

[155] X. Zhang and R. Gupta. Cost effective dynamic program slicing. In Pro-

ceedings of the ACM SIGPLAN 2004 Conference on Programming Language

Design and Implementation, pages 94–106, June 2004.

[156] Bixia Zheng and Pen chung Yew. A hierarchical approach to context-sensitive

interprocedural alias analysis. Technical Report 99-018, University of Min-

nesota, Computer Science and Engineering, April 1999.

[157] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited. In Pro-

ceedings of the ACM SIGPLAN 2004 Conference on Programming Language

Design and Implementation, pages 145–157, June 2004.

199

Vita

Teck Bok Tok was born in Singapore on January 10, 1973, the son of Hock Bee

Tok and Hoo Leong Ong. After graduating from high school, he served in the

military for 30 months to fulfill the mandatory National Service. He then attended

the National University of Singapore in July 1994, where he earned a Bachelor of

Science degree with an Honors First Class designation in 1998, followed by a Master

of Science degree in 1999. During this period, he was twice listed on the Dean’s

List, and has worked as a part-time teaching assistant for two years. He also briefly

attended the University of Western Australia in February 1996 for one semester, as

an exchange program student. In September 1999, he entered the Graduate School

at The University of Texas at Austin to pursue a Ph.D. in Computer Sciences.

Permanent Address: Blk 434 Hougang Avenue 8

#11-912, Singapore 530434

Republic of Singapore

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

200

Index

DU , 57, 64

DUloop , 66

memoryBlock, 36

accuracy, 40

analysis configurations, 132

annotation language, 40

BB-change, 67

BB-visit, 67

benchmarks, 50

bundle, 55, 62

CFL reachability problems, 109

client analysis, 40

computation granularity, 16

context-insensitive heap model, 37

context-insensitive memory model, 37

context-loss problem, 23

context-sensitivity, 35, 169

contour, 79, 81

contour refinement, 80

coupled analysis, 104

def-use chain, 37

default contour, 82

Demand IFDS

algorithm, 129

results, 143

dominator tree, 44

expanded dominator trees, 45

exploded graph, 110

Feedback-based algorithms, 132

field-sensitivity, 27

flow-sensitivity, 35

heap model

context-insensitive, 37

heap variables, 37

IFDS

algorithm, 114

analysis, 114

baseline algorithm, 111, 114

201

problems, 110, 114, 115

independent-attribute analysis, 21

lattice, 15

levels of context-sensitivity, 35

levels of flow-sensitivity, 36

memory model, 36

context-insensitive, 37

default, 37

nearest reaching definition, 44

Partitioning Vector, 81

path edges, 116

pointer analysis, 39

FICI, FICS, FSCI, FSCS, 39

precision, 15, 16, 35, 40

precision dimensions, 2

PTF, 91, 103

queries, 40

RBCP, Relevance-Based Context Parti-

tioning, 76

RBCS, Relevance-Based Context-

Sensitive pointer analysis,

76

reachable value, 86

reachable variables, 84

realizable paths, 23, 109

relational-attribute analysis, 21

root procedure, 33

sound analysis, 17, 36, 39, 41, 48

Sparse IFDS

algorithm, 123

results, 139, 142

summary edge, 117

typestate, 48

use-def chain, 37

Variable-Pruning IFDS

algorithm, 125

results, 140, 142, 143

worklist efficiency, 67

202

