
Principles of
Computer Systems

Lorenzo Alvisi
Chao Xie

POX

How do we construct systems that are

reliable

portable

efficient

secure

?

Meet the OS

Software that manages a computer’s
resources

makes it easier to write the applications
you want to write

makes you want to use the applications
you wrote by running them efficiently

Why study
Operating Systems?

To learn how computers work

To learn how to manage complexity through
appropriate abstractions

infinite CPU, infinite memory, files, semaphores,
etc.

To learn about system design

performance vs. simplicity, HW vs. SW, etc.

Because OSs are everywhere!

Where’s the OS?
Las Vegas

Where’s the OS?
New York

Why study
Operating Systems?

Because you are worth it!

Running a Web Server

How does the OS
allow multiple applications to communicate with each other?
handle multiple concurrent requests?
support access to shared data (such as the cache)?
protect against malicious scripts?
enable different apps to share the data they have produced?
support consistent changes to complex data structures?
handle clients and servers of different speed?
transparently move to more powerful hardware?

Client Server x.html
1. Get x.html 2. Read

4. Data 3. Data

Three steps to
transmitting POX

1. How to approach problems

fundamental issues
coordination, abstraction

design space

case studies

Goal: Forever mutate your brain (Mwahahahaahhaha!)

Timescale: Big, long-term payoff

Three steps to
transmitting POX

2.How to apply specific techniques

Time-tested solutions to hard problems

Hacking will not succeed
concurrent programming, transactions, etc

Goal: Be a good engineer (Mwahahahaahhaha!)

Timescale: Now — and in 20 years

Three steps to
transmitting POX

3.How, in detail, current OSs work

FS, network stack, internal data structures,
VM... of

MacOS, Linux, iOS, Windows

Goal: Well...now in detail how current OSs work!

Timescale: Better be now, because all will
change tomorrow

What is an OS?

An Operating System implements a virtual
machine whose interface is more convenient*
that the raw hardware interface

Operating System

Application Application Application Application Application

Hardware

OS Interface

Physical Machine
Interface

* easier to use, simpler to code, more reliable, more secure...

More than one hat

Referee

Illusionist

Glue

More than one hat

Referee
Manages shared resources such as CPU, memory,
disks, networks, displays, cameras, etc.

Illusionist
Look! Infinite memory! Your own private processor!

Glue

More than one hat

Referee
Manages shared resources such as CPU, memory,
disks, networks, displays, cameras, etc.

Illusionist
Look! Infinite memory! Your own private processor!

Glue
Offers a set of common services (e.g. U.I. routines)

Separates apps from I/O devices

OS as a referee
Resource allocation

When multiple concurrent tasks, how does OS decide
who gets how much?

Isolation
A faulty app should not disrupt other apps or OS

OS must export less than full power of underlying
hardware

Communication
Apps need to coordinate and share state

Web site: select ads, cache recent data, fetch/merge
data from disk, etc

OS as an illusionist

Illusion of resources that are not physically
present

Virtualization

processor, memory, screen space, disk, network

We can virtualize the entire computer!

ease of debugging, portability, isolation

Operating System (VMM)

App

Hardware

Guest OSGuest OSApp

App App

Virtual Machine
Interface

OS as an illusionist

Illusion of resources that are not physically
present

Atomic operations

hardware guarantees atomicity at the word level

what happens during concurrent updates to
complex data structures?

what if computer crashes during a block write?

OS as a glue

Offers standard services to simplify app design
and facilitate sharing

send/receive of byte streams

read/write files

pass messages

share memory

Decouples hardware and app development
...but database may need to be aware of specific disk
drive

What makes a good OS?
Reliability

OS does exactly what is designed to do

Security
OS cannot be compromised by a malicious attacker

Portability
OS does not change as hardware changes

Performance
efficiency, overhead, fairness, latency, throughput, predictability

Adoption
Are applications ported to the OS widely available?

Is hardware supported by the OS widely available?

Reliability

The ability of a computer-related hardware or
software component to consistently perform
according to its specifications.

In theory, a reliable product is totally free of
technical errors (yeah, right)

Availability: percentage of time system is useful

Depends on MTTF and MTTR

Security
Includes privacy: data on the computer only
accessible to authorized users

Strong fault isolation helps, but not enough
Email gives no strong assurance of sender’s identity

Security mechanisms should not prevent legitimate
sharing!

Enforcement mechanism
Ensures only permitted actions are allowed

Security policy
Defines what is permitted

Portability
OSs can live more than your cat!

must support applications not yet written

must run on hardware not yet developed

Three interfaces
Abstract Machine Interface (AMI)

between OS and apps: API + memory access model + legally
executable instructions

Application Programming Interface (API)
function calls provided to apps

Hardware Abstraction Layer (HAL)
abstracts hardware internally to the OS

Logical OS Structure

Disks, Cache, Physical Memory, TLB, Hardware Devices

File System Process Management

Virtual Memory

Networking

Access Control

Windowing & graphics

CPU Scheduling

Applications

AMI/API

Device Drivers

ShellsSystem Utils

Quake Sql Server

Hardware-specific software

OS
HAL

Performance
Efficiency/Overhead

how much is lost by not running on bare hardware?

Fairness
how are resources divided?

Response time
how long does a task take to complete?

Throughput
how many tasks complete per unit of time?

Predictability
are performance metrics consistent over time?

Adoption

Network effect

Proprietary or Open?

Apps
designers like
OS with lots of

users!

Users like OS
with lots of

apps!

A Short History of
Operating Systems

History of Operating
Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems

Batching systems

Multi-programming systems

Hand programmed
machines (1945-1955)

Single user systems

OS = loader + libraries of
common subroutines

Problem: low utilization of
expensive components

observation interval
= % utilization

time device busy

Batch/Off-line processing
(1955-1965)

Card Reader:

CPU:

Printer:

Read Batch 1

Execute Batch 1 Batch 2 Batch 3

Batch 2 Batch 3

Print Batch 1 Batch 2 Batch 3

Card Reader:

CPU:

Printer:

Read Job 1

Job 2 Job 3Execute Job 1

Job 2 Job 3

Print Job 1 Job 2 Job 3

Sequential

Batching

Batch Processing
(1955-1965)

Operating system = loader + sequencer
+ output processor

Tape

Tape

Input
Compute

Output

Card
Reader

Printer

Tape Tape

Operating System

“System Software”

User Program

User Data

Multiprogramming
(1965-1980)

Keep several jobs in memory and multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

program P
begin
 :
 Read(var)
 :
end P

system call Read()
begin
 StartIO(input device)
 WaitIO(interrupt)
 EndIO(input device)
 :
end Read

Multiprogramming
(1965-1980)

Keep several jobs in memory and multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 I/O Device

k: read()

k+1:

endio()
interrupt

main{

}

}

OS

read{

startIO()
waitIO()

Multiprogramming
(1965-1980)

Keep several jobs in memory and multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 I/O Device

k: read()

k+1:
interrupt

main{

}

OS

read{

startIO()

endio{

}
schedule()

main{
}
schedule()

Program 2

History of Operating
Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems

Batching systems

Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
Time sharing: Users use cheap terminals and share servers

Timesharing (1970-)

A timer interrupt is used to multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 Program 2

k:

k+1:

main{

OS

schedule(){

}
main{

timer
interrupt

timer
interruptschedule(){

schedule(){

}timer
interrupt

History of Operating
Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems

Batching systems

Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Personal computing: One system per user

Distributed computing: many systems per user

Ubiquitous computing: LOTS of systems per users

Operating Systems for
PCs

Personal computing systems
Single user
Utilization is no longer a concern
Emphasis is on user interface and
API
Many services & features not present

Evolution
Initially: OS as a simple service
provider (simple libraries)
Now: Multi-application systems with
support for coordination

39

Distributed
Operating Systems

Abstraction: present a multi-processor system as a single processor
one.
New challenges in consistency, reliability, resource management,
performance, etc.
Examples: SANs, Oracle Parallel Server

OS
process

management

User
Program

OS
process management
memory management

User
Program

CPU

OS
file system

name services
mail services

Network

CPU CPU

Ubiquitous Computing

PDAs, cellular phones, sensors

Challenges
Small memory size
Slow processor
Battery concerns
Scale
Security
Naming

History of Operating
Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems

Batching systems

Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Personal computing: One system per user

Distributed computing: many systems per user

Ubiquitous computing: LOTS of systems per user

Richer Services
Real-time operating systems

Genealogy of modern
Operating Systems

MVS (60’s)

MSDOS (70’s)

Windows (80’s)

Windows
Mobile Windows NT (90’s)

Windows 7 (2010)

VMS (70’s)

Multics (60’s)

UNIX (70’s)

BSD UNIX (80’s)

Free BSD LINUX
(90’s-today)

Android

Mach (80’s)

Mac OSX

iOS

Mac OSNEXT

VMware

Cambia, Todo Cambia
Nothing wrong with batch systems
They were right for tradeoffs at the time

But tradeoffs change...

1981 1996 2011 Factor

MIPS 1 300 10000 10K

$/MIPS $100K $30 $0.50 200K

DRAM 128KB 128MB 10GB 100K

Disk 10MB 4GB 1TB 100K

Home Internet 9.6Kbps 256 Kbps 5Mbps 500

LAN Network 3Mbps
(shared) 10 Mbps 1Gbps 300

Users 100 100 Mb/s <<1 100+

