
Networked Systems

Distributed system

A collection of physically separate computers working together
cheaper to build

easier to add capabilities incrementally

Decade Technology $/machine Sales volume Users/machine

50’s
60’s

70’s

80’s
90’s
00’s

custom

mainframe
minicomputers

PCs
PCs, portables, PDAs

appliances

$10M
$1M

$100K
$10K
$1K

100

10K

1M
100M

1B
10B

1000’s

100’s
10’s

1
1/10

1/100
cloud $1K

$0.1K
??? 1/1K - 1/10K

Diamonds and Rust
Higher availability

if one machine fails,
another can step in

Better reliability
replication

More security
easier to make each
smaller piece secure
in cloud, professional
system management

Diamonds and Rust
Higher availability

if one machine fails,
another can step in

Better reliability
replication

More security
easier to make each
smaller piece secure
in cloud, professional
system management

Lower availability
may stop if any
machine fails

What is a distributed
system?

“A distributed system is one in which the failure of a
computer you didn’t even know existed can
render your own computer unusable.”

Leslie Lamport

Diamonds and Rust
Higher availability

if one machine fails,
another can step in

Better reliability
redundancy through
replication

More security
easier to make each
smaller piece secure
in cloud, professional
system management

Worse reliability
hard to coordinate
replicas

Lower availabity
may stop if any
machine fails

Less security
anyone in the world
can break into the
system

USB
Controller

Graphics
Adapter

Disk
Controller

Message transmission
OS sees network as just another device

Network Interface Controller (NIC) added to bus
transfer data to/from memory to NIC through DMA
or memory mapped I/O

Bus interface

CPU
I/O

Bridge

Main
memory

Mouse Keyboard Monitor

NIC

Disk
Network

Memory bus
System
 bus

I/O bus

Networks
Ethernet

Xerox PARC, 1973

co-invented by Bob Metcalfe, now at UT!

bandwidth: from 3Mb/s to 1 Gb/s

Hub

Host Host Host

Ethernet adapter
 globally unique 48bit address

Ethernet port

An Ethernet segment

Multiple LAN can be connected in a
WAN (Wide Area Network)

Host Host Host Host Host Host

Router Router Router
WAN

LAN

hub copies every bit it receives on a
port to every other port

Encapsulation allows internetworking

Host Host Host

Hub Bridge

Host Host

Hub

BridgeHub Hub

Host Host

Host Host

Host Host Host

100 Mb/s

100 Mb/s

1 Gb/s

A B
X

Y C

LAN 1
Adapter

LAN 2
Adapter

Protocol Software

LAN 1
Adapter

Protocol
Software

Data

Data IPH FH1

Data IPH FH1

Data IPH FH1 Data IPH FH2

LAN 2
Adapter

Data IPH FH2

Protocol
Software

Data IPH FH2

Data

multiple segments can be connected into
a larger LAN (Local Area Network)

Client Server

Router

Host A Host B

LAN 1 LAN 2

Routing
Need to send a message to the right process on the
right host

Each host has a unique network ID (e.g. IP address
128.83.120.156)

a process can create a port on the host
UTCS web server: 128.83.120.39:80

Sender finds IP address of intended receiver through
Domain Name Service (DNS)

distributed hierarchical database
maps names such as nikon.cs.utexas.edu to 128.83.120.156

A

A

A

A

B

B

B

B

C

C

C

C D

D

D

D

A
B
C

A
B
C

A
B
C
D

C
D

55 2 0

55 2 0

55 2 0

55 2 0

3 0 2 7

3 0 2 7

3 0 2 7

Distance Vector Routing

A C

DB

23

23 5

A

A

A

A

B

B

B

B

C

C

C

C D

D

D

D

A

A

A

B

B

B

C

C

C

C

D

D

0 3 23 ∞
∞
∞∞∞∞

∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

5 0∞ ∞

23 2 0 5

∞3 0 2

A B C D
A
B
C

A B C D
A
B
C

A B C D
A
B
C
D

A B C D

C
D

A

A

A

A

B

B

B

B

C

C

C

C D

D

D

D

A
B
C

A
B
C

A
B
C
D

C
D28 5 07

28 5 07

0 3 23 ∞

0 3 23 ∞

∞3 0 2

∞3 0 2

23 2 0 5

23 2 0 5

23 2 0 5

5 0∞ ∞

5 280 3

3 0 2 7

5 52 0 55 2 0

55 2 0

55 2 0

55 2 0

10 07 5 010 7 5

010 7 5

3 0 2 7

3 0 2 7

3 0 2 7
0 3 5 10 0 3 5 10

0 3 5 10

0 3 5 10

0 3 5 28

0 3 5 28

1" Initialization
2" for all destinations y in N:
3" Dx(y) = c(x,y) /* ∞ if not neighbor */
4" for all neighbor w
5" Dw(y) = ∞ for all destinations y in N
6" for all neighbor w
7" send distance vector Dx = [Dx(y) ; y in N] to w
8
9" loop
10" wait (until link cost changes for some w or
11" received a distance vector from some w)
12
13" for all y in N:
14" Dx(y) = minv{c(x,v) + Dv(y)}
15
16" if Dx(y) changed for any destination y
17" for all neighbor w
18" send distance vector Dx = [Dx(y) ; y in N] to w
19
20" forever

Address Resolution
Protocol

Each adapter has a unique link layer address (MAC)
6 bytes, burned in ROM
ARP (Address Resolution Protocol) maps between link
and network address (MAC and IP)

Host1

Host2

Host3

Host4

IP: 111.111.111.111

IP: 111.111.111.112 IP: 222.222.222.222

IP: 222.222.222.221

74-29-9C-E8-FF-55

74-29-9C-E8-FF-55

IP: 111.111.111.110
E6-E9-00-17-BB-4B

IP: 222.222.222.220
1A-23-F9-CD-06-9B

88-B2-2F-54-1A-0F

49-BD-D2-C7-56-2A

What if Host 1
want to send a

message to Host 4?

1) Host1 contacts DNS to get IP address of Host4

2) adds TCP header
specifies port

3) adds IP header
4) contacts DNS to learn router’s IP address
5) uses ARP to get router’s MAC address and
adds header

1) Router strips MAC header
2) checks IP header to determine
interface on which to forward

222.222.222.220
3) uses ARP to find MAC of Host4

4) adds header and forwards

Message Loss

Solution 1: use acks
a) sender sends (msg, msgId) and sets

timer

b) receiver receives message and sends
(ack, msgId)

c) sender receives (ack, msgId) and
clears timer

if timer goes off, go to a)

“at least once” semantics

Low throughput
1 packet/roundtrip latency

1KB per 10ms = 100 KB/s

Solution2: pipeline Solution 1
multiple packets in flight
resend unacked packets after
timeout

Optimizations
cumulative acks

ack i acks packets 1 to i

immediate resend on nack (or repeated acks
to previously acked message)

delayed acks

for bidirectional communication, use
application response as implicit ack

Nagle’s algorithm

combine small packets to reduce overheads

as long as there is a sent packet for
which sender has not received ack, buffer
output until packet is full

good for telnet, bad for real-time applications

Buffers overflow, interference, etc

Congestion:
causes and costs

Two senders, a router with infinite buffer
senders send at same rate
linK capacity R

Two senders and a router, with finite buffer
needed retransmissions due to overflow reduce effective
throughput
unneeded retransmissions caused by large delays reduce
effective throughput

Multiple senders, multihop paths
dropped packets waist resources used to forward "" "
them to the place they are dropped

R/2 R/2

Th
ro

ug
hp

ut

La
te

nc
y

R/2

Sending rate Sending rate

R/2

Sending rate

Th
ro

ug
hp

ut

TCP Flow Control
Prevents sender from overflowing receiver’s buffer
Sender maintains

RcvWindow - estimate of buffer space at receiver
LastByteSent, LastByteAcked

Receiver maintains
RcvBuffer
LastByteRead, LastByteRcvd

To avoid overflowing
LastByteRcvd-LastByteRead ≤ RcvBuffer

Hence, sender ensures
LastByteSent - LastByteAcked ≤ RcvWindow = RcvBuffer - (LastByteRcvd - LastByteRead)

TCP data
in bufferSpare room

RcvBuffer
RcvWindow

Application ProcessData from IP

TCP Congestion Control
Both sides of a connection keep track of CongWin

LastByteRcvd-LastByteRead ≤ CongWin
send rate: CongWin/RTT (assuming negligible retransmission and loss)

If acks are received regularly, CongWin grows

If ack loss is detected, CongWin shrinks
ack loss detected as

timeout
receipt of 3 duplicate acks

Congestion Control algorithm has five major components
additive increase, multiplicative decrease
slow start
reaction to timeout events
round trip variance estimation
exponential retransmit timer backoff

, RcvBuffer}min{

Additive increase,
multiplicative decrease

Multiplicative decrease
half CongWin after loss event* (until one reaches 1
MSS)

Additive increase
increase CongWin by 1 MSS every roundtrip

on each received ack, increase by MSS x (MSS/CongWin)
segments in flight

1

8K

16K

24K

Time

Co
ng

es
ti
on

 w
in

do
w

Slow Start
At start, CongWin set to 1 MSS

Too slow to grow linearly
during slow start phase, exponential growth...

CongWin grows by 1 MSS for each received ack

until first loss event occurs

Reaction to
time out events

TCP actually treats loss events differently
on receipt of three duplicate acks

multiplicative decrease, additive increase

on a timeout
drop to 1 MSS
slow start mode until CongWin reaches a threshold (typically half of CongWin before loss)
additive increase after threshold reached

Why the difference?
old versions of TCP (TCP Tahoe) resorted to slow start also on receipt of duplicate
acks, but...
...receipt of acks, even if duplicate, shows that some packets get to destination

fast recovery eliminates slow start phase (TCP Reno)

Recent proposals (TCP Vegas)
detect congestion in the router before packet loss occurs
lower rate linearly when imminent packet loss is detected

longer RTT indicates greater congestion

RTT variance and
retransmit backoff

Original TCP set timeout to twice the estimated RTT
but with high load (above 75%) RTT can vary by 16X

lots of unnecessary sends under load (great...)

Current versions set timeout to
estimated RTT + 4 x MeanDev(RTT)

Retransmit backoff is exponential
provably needed for stability
this is why web browser stalls for 5 sec, then for 10 then...

hint: hit reload if page no there after 5 sec

TCP friendly rate control
Measure loss probability L and RTT

Use them as parameters to model TCP throughput

Average throughput
of a connection =

1.22 x MSS
RTT x √L

TCP friendly protocols use a congestion control
mechanism that consumes no more bandwidth than

1.22 x MSS
RTT x √L

Process coordination:
two fundamental approaches

Communication and
synchronization based on...

shared memory
assume processes/threads can read
& write a set of shared memory
locations
implicit inter-process communication
explicit synchronization
difficult to provide across machine
boundaries

message passing
explicit inter process communication
implicit synchronization

Process 1

Stack

Globals

Heap

Code

Stack
1 2

process process

send(message) receive(message)

Send and Receive
Primitives

Many ways to design the message passing API

send (dest,
type,
msg)

receive (src,
type,
msg)

pid, port, ...

msg type

buffer, n-bytes

pid, port, any...

expected
msg type

buffer, ?-bytes

Semantics of
message passing

Send message to receiver
Wait until message is
accepted

Broadcast message to all
receivers. Wait until
message is accepted by all

Implicit
(group)

Explicit
(single)

Send message to
receiver

Broadcast message to all
receivers

Blocking Non-blocking

Synchronization

Na
m
in

g

send(receiver,message)

Semantics of
message passing

Wait for a message
from sender

Wait for a message
from any sender

Implicit
(group)

Explicit
(single)

If there is a message
from sender then
receive it, else continue

If there is a message
from any sender then
receive it, else continue

Blocking Non-blocking

Synchronization

Na
m
in

g

receive(sender,message)

Buffering messages
No buffering

sender must wait until receiver receives message
rendezvous on each message

Bounded buffer
finite size
sender blocks on buffer full

Unbounded buffer
“infinite” size
sender never blocks

Direct Communication
A single buffer at the receiver

multiple processes may send
messages to the receiver
receiving from a specific
sender requires searching
entire buffer

A buffer at each sender
sender may send messages to
multiple receivers
receiving a message requires
searching through whole
buffer

Indirect Communication
Mailbox abstraction

many-to-many
communication
requires open/close of
mailbox

Buffering
buffer, mutex and
condition variables at
the mailbox

mbox

Limitations of
message passing

Easy for OS, hard for programmer
programmer must code synchronization
programmer may have to code format conversions,
flow control, error control
no dynamic resource discovery

Remote Procedure Call
(RPC)

RPC mechanism
hides message passing I/O from
programmer
(almost) a procedure call–but on
the server

RPC invocation
calling process (client) is suspended
procedure parameters passed
across network to called process
(server)
return parameters send back
across network
calling process resumes

Birrell & Nelson, 1984

Application

Stub Stub

File
Server

Kernel Kernel

Network

More about RPC
Similarities between procedure call and RPC

paramenters request message
result reply message
name of procedure passed in request message
return address mailbox of client

Implementation issues
stub generation

can be automated
requires signature of the procedure

binding (how client locates a server)
static (fixed at compile time)
dynamic (at run time, with the help of a name service)

if server fails, automatic fail over

types of arguments
and return value

Problems with RPC
Achieves location transparency, except for

performance
cost of procedure call << same machine RPC << network RPC

failures (message loss, machine crash)
three execution semantics

“at least once” (SUN RPC)

“at most once” (Java RMI)

“exactly once”

consistency/replication
can’t automatically update an object replicated at multiple
machines

what would I need to do so?

security

implemented by retransmission on timeout
works only if operation is idempotent

implemented by server filtering duplicate requests

if succeeds: at least one execution
if fails: none, partial, multiple

if succeeds: exactly once
if fails: none, partial, one

if succeeds: exactly once
if fails: none,

impossible

