
Networked Systems

Distributed system

A collection of physically separate computers working together
cheaper to build 

easier to add capabilities incrementally
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Diamonds and Rust
Higher availability

if one machine fails, 
another can step in

Better reliability
replication

More security
easier to make each 
smaller piece secure 
in cloud, professional 
system management

Diamonds and Rust
Higher availability

if one machine fails, 
another can step in

Better reliability
replication

More security
easier to make each 
smaller piece secure 
in cloud, professional 
system management

Lower availability
may stop if any 
machine fails



What is a  distributed 
system?

“A distributed system is one in which the failure of a 
computer you didn’t even know existed can 
render your own computer unusable.”

Leslie Lamport

Diamonds and Rust
Higher availability

if one machine fails, 
another can step in

Better reliability
redundancy through 
replication

More security
easier to make each 
smaller piece secure 
in cloud, professional 
system management

Worse reliability
hard to coordinate 
replicas

Lower availabity
may stop if any 
machine fails

Less security
anyone in the world 
can break into the 
system
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Message transmission
OS sees network as just another device

Network Interface Controller (NIC) added to bus
transfer data to/from memory to NIC through DMA 
or memory mapped I/O
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Networks
Ethernet

Xerox PARC, 1973

co-invented by Bob Metcalfe, now at UT!

bandwidth: from 3Mb/s to 1 Gb/s
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Ethernet adapter
   globally unique 48bit address

Ethernet port

An Ethernet segment

Multiple LAN can be connected in a 
WAN (Wide Area Network)
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hub copies every bit it receives on a 
port to every other port 

Encapsulation allows internetworking
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Routing
Need to send a message to the right process on the 
right host

Each host has a unique network ID (e.g. IP address 
128.83.120.156)

a process can create a port on the host
UTCS web server: 128.83.120.39:80

Sender finds IP address of intended receiver through 
Domain Name Service (DNS)

distributed hierarchical database
maps names such as nikon.cs.utexas.edu to 128.83.120.156
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Distance Vector Routing
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1" Initialization
2"   for all destinations y in N:
3"     Dx(y) = c(x,y) /* ∞ if not neighbor */
4"   for all neighbor w
5"     Dw(y) = ∞ for all destinations y in N
6"   for all neighbor w
7"     send distance vector Dx = [Dx(y) ; y in N] to w
8
9" loop
10"   wait (until link cost changes for some w or
11"          received a distance vector from some w)
12
13"   for all y in N:
14"     Dx(y) = minv{c(x,v) + Dv(y)}
15
16"   if Dx(y) changed for any destination y
17"     for all neighbor w
18"       send distance vector Dx = [Dx(y) ; y in N] to w
19
20" forever

Address Resolution 
Protocol

Each adapter has a unique link layer address (MAC)
6 bytes, burned in ROM
ARP (Address Resolution Protocol) maps between link 
and network address (MAC and IP)

Host1

Host2

Host3

Host4

IP: 111.111.111.111

IP: 111.111.111.112 IP: 222.222.222.222

IP: 222.222.222.221

74-29-9C-E8-FF-55

74-29-9C-E8-FF-55

IP: 111.111.111.110
E6-E9-00-17-BB-4B

IP: 222.222.222.220
1A-23-F9-CD-06-9B

88-B2-2F-54-1A-0F

49-BD-D2-C7-56-2A

What if Host 1
want to send a 

message to Host 4?

1) Host1 contacts DNS to get IP address of Host4

2) adds  TCP header
specifies port

3) adds IP header
4) contacts DNS to learn router’s IP address
5) uses ARP to get router’s MAC address and 
adds header

1) Router strips MAC header
2) checks IP header to determine 
interface on which to forward 

222.222.222.220
3) uses ARP to find MAC of Host4

4) adds header and forwards

Message Loss

Solution 1: use acks
a) sender sends (msg, msgId) and sets 

timer

b) receiver receives message and sends 
(ack, msgId)

c) sender receives (ack, msgId) and 
clears timer

if timer goes off, go to a)

“at least once” semantics

Low throughput
1 packet/roundtrip latency

1KB per 10ms = 100 KB/s

Solution2: pipeline Solution 1
multiple packets in flight
resend unacked packets after 
timeout

Optimizations
cumulative acks

ack i acks packets 1 to i 

immediate resend on nack (or repeated acks 
to previously acked message)

delayed acks

for bidirectional communication, use 
application response as implicit ack

Nagle’s algorithm

combine small packets to reduce overheads

as long as there is a sent packet for 
which sender has not received ack, buffer 
output until packet is full

good for telnet, bad for real-time applications

Buffers overflow, interference, etc



Congestion: 
causes and costs

Two senders, a router with infinite buffer
senders send at same rate
linK capacity R

Two senders and a router, with finite buffer
needed retransmissions due to overflow reduce effective 
throughput
unneeded retransmissions caused by large delays reduce  
effective throughput

Multiple senders, multihop paths
dropped packets waist resources used to forward "" "  
them to the place they are dropped
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TCP Flow Control
Prevents sender from overflowing receiver’s buffer
Sender maintains

RcvWindow - estimate of buffer space at receiver
LastByteSent, LastByteAcked

Receiver maintains
RcvBuffer
LastByteRead, LastByteRcvd

To avoid overflowing
LastByteRcvd-LastByteRead ≤ RcvBuffer

Hence, sender ensures
LastByteSent - LastByteAcked ≤ RcvWindow = RcvBuffer - (LastByteRcvd - LastByteRead)

TCP data
in bufferSpare room

RcvBuffer
RcvWindow

Application ProcessData from IP

TCP Congestion Control
Both sides of a connection keep track of CongWin

LastByteRcvd-LastByteRead ≤      CongWin
send rate: CongWin/RTT (assuming negligible retransmission and loss)

If acks are received regularly, CongWin grows

If ack loss is detected, CongWin shrinks
ack loss detected as

timeout
receipt of 3 duplicate acks

Congestion Control algorithm has five major components
additive increase, multiplicative decrease
slow start
reaction to timeout events
round trip variance estimation
exponential retransmit timer backoff

, RcvBuffer}min{

Additive increase,
multiplicative decrease

Multiplicative decrease
half CongWin after loss event* (until one reaches 1 
MSS)

Additive increase
increase CongWin by 1 MSS every roundtrip

on each received ack, increase by MSS x (MSS/CongWin)
segments in flight
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Slow Start
At start, CongWin set to 1 MSS

Too slow to grow linearly
during slow start phase, exponential growth...

CongWin grows by 1 MSS for each received ack

until first loss event occurs

Reaction to 
time out events

TCP actually treats loss events differently
on receipt of three duplicate acks

multiplicative decrease, additive increase

on a timeout
drop to 1 MSS
slow start mode until CongWin reaches a threshold (typically half of CongWin before loss)
additive increase after threshold reached

Why the difference?
old versions of TCP (TCP Tahoe) resorted to slow start also on receipt of duplicate 
acks, but... 
...receipt of acks, even if duplicate, shows that some packets get to destination

fast recovery eliminates slow start phase (TCP Reno)

Recent proposals (TCP Vegas) 
detect congestion in the router before packet loss occurs
lower rate linearly when imminent packet loss is detected

longer RTT indicates greater congestion 

RTT variance and 
retransmit backoff

Original TCP set timeout to twice the estimated RTT
but with high load (above 75%) RTT can vary by 16X

lots of unnecessary sends under load (great...) 

Current versions set timeout to
estimated RTT + 4 x MeanDev(RTT)

Retransmit backoff is exponential
provably needed for stability 
this is why web browser stalls for 5 sec, then for 10 then...

hint: hit reload if page no there after 5 sec

TCP friendly rate control
Measure loss probability L and RTT

Use them as parameters to model TCP throughput 

Average throughput
of a connection =

1.22 x MSS
RTT x √L

TCP friendly protocols use a congestion control 
mechanism that consumes no more bandwidth than 

1.22 x MSS
RTT x √L



Process coordination:
two fundamental approaches

Communication and 
synchronization based on...

shared memory
assume processes/threads can read 
& write a set of shared memory 
locations
implicit inter-process communication
explicit synchronization
difficult to provide across machine 
boundaries

message passing
explicit inter process communication
implicit synchronization

Process 1

Stack

Globals

Heap

Code

Stack
1 2

process process

send(message) receive(message)

Send and Receive 
Primitives

Many ways to design the message passing API

send (dest, 
type, 
msg)

receive (src, 
type, 
msg)

pid, port, ...

msg type

buffer, n-bytes

pid, port, any...

expected
msg type

buffer, ?-bytes

Semantics of 
message passing

Send message to receiver
Wait until message is 
accepted

Broadcast message to all 
receivers. Wait until 
message is accepted by all

Implicit
(group)

Explicit
(single)

Send message to 
receiver

Broadcast message to all 
receivers

Blocking Non-blocking

Synchronization

Na
m
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g

send(receiver,message)

Semantics of 
message passing

Wait for a message 
from sender

Wait for a message 
from any sender

Implicit
(group)

Explicit
(single)

If there is a message  
from sender then 
receive it, else continue

If there is a message  
from any sender then 
receive it, else continue

Blocking Non-blocking

Synchronization

Na
m
in

g

receive(sender,message)



Buffering messages
No buffering

sender must wait until receiver receives message
rendezvous on each message

Bounded buffer
finite size
sender blocks on buffer full

Unbounded buffer
“infinite” size
sender never blocks

Direct Communication
A single buffer at the receiver

multiple processes may send 
messages to the receiver
receiving from a specific 
sender requires searching 
entire buffer

A buffer at each sender
sender may send messages to 
multiple receivers
receiving a message requires 
searching through whole 
buffer

Indirect Communication
Mailbox abstraction

many-to-many 
communication
requires open/close of 
mailbox

Buffering
buffer, mutex and 
condition variables at 
the mailbox

mbox

Limitations of 
message passing

Easy for OS, hard for programmer
programmer must code synchronization
programmer may have to code format conversions, 
flow control, error control
no dynamic resource discovery



Remote Procedure Call 
(RPC)

RPC mechanism
hides message passing I/O from 
programmer
(almost) a procedure call–but on 
the server

RPC invocation
calling process (client) is suspended
procedure parameters passed 
across network to called process 
(server)
return parameters send back 
across network
calling process resumes

Birrell & Nelson, 1984

Application

Stub Stub

File
Server

Kernel Kernel

Network

More about RPC
Similarities between procedure call and RPC

paramenters      request message
result     reply message
name of procedure      passed in request message
return address      mailbox of client

Implementation issues
stub generation

can be automated
requires signature of the procedure

binding (how client locates a server)
static (fixed at compile time)
dynamic (at run time, with the help of a name service)

if server fails, automatic fail over

types of arguments 
and return value

Problems with RPC
Achieves location transparency, except for

performance
cost of procedure call << same machine RPC << network RPC

failures (message loss, machine crash)
three execution semantics

“at least once” (SUN RPC)

“at most once” (Java RMI)

“exactly once”

consistency/replication
can’t automatically update an object replicated at multiple 
machines

what would I need to do so?

security

implemented by retransmission on timeout
works only if operation is idempotent 

implemented by server filtering duplicate requests

if succeeds: at least one execution
if fails: none, partial, multiple

if succeeds: exactly once
if fails: none, partial, one

if succeeds: exactly once
if fails: none,

impossible


