
Distributed File Systems

Distributed File Systems
Provide transparent access to files stored on 
remote disks

Issues
Naming: How do we locate a file?
Performance: How well does a distributed file system 
perform as compared to a local file system?
Failure handling: How do applications deal with remote 
server failures?
Consistency: How do we allow multiple remote clients 
to access the same files?

Naming
Two approaches

Explicit naming: <file server: file name>
e.g. windows file shares

Implicit naming
Location Transparency: file name does not include name of 
server where file is stored
Location Independence: file name does not change even if 
file location does

But how is a server 
identified?

Most common solution
static, location-transparent mapping
NFS Mount protocol

mount/attach remote directories as local directories
maintain a mount table with directory >> server mapping

/home/lorenzo >> zathras:/vol/vol0/users/lorenzo
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Performance: 
the simple view

Straightforward RPC
use RPC to forward every 
file system request to 
remote server
server executes request 
locally
responds back

Advantage
clients see consistent view 
of file system

Disadvantage
poor performance

network traffic
server a bottleneck
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Client caching!

SUN’s NFS 
(Networked File System) 1984

Use caching to reduce 
network load

Advantage
clients can execute reads, 
writes, etc locally 

reduce network load
improve client 
performance

cache blocks, headers, 
etc. at both server and 
clients

in memory

Disadvantages?
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SUN’s NFS Issues: 
Consistency 

What if multiple client share the same file?
easy if both are reading...
what happens on writes?

Client-initiated weak consistency protocol
clients poll servers periodically to check if file has changed
when file is changed, server is notified

data in server’s memory is lost

when clients notices file has changed at server, it retrieves new 
version
what if multiple clients write to the same file?

generally, using a delayed write-back policy

HTTP uses essentially the same protocol!

Alternative: server-initiated protocol

SUN’s NFS Issues: 
Failures 

What if server crashes?
data in server’s memory is lost
shared state across RPCs is lost

what happens if server crashes after seek?

commands may be retried

What if client crashes?
data in client’s cache is lost



The eternal sunshine of 
the stateless server

Server is stateless
keeps no state about clients or open files

except as hints to improve performance

each file request provide server with all info needed to complete operation
ReadAt(inode,position), not Read(openFile)

Operations are as much as possible idempotent
“at least once” semantics
what happens on “remove”?

Server failures are transparent to clients
when server fails

hangs until server recovers      or
eventually crashes

why not return an error?

NFS: Summary
Key features

location transparent naming
client-side and server-side caching for performance
stateless architecture
client-drive weak consistency

Advantages
simple
highly portable

Disadvantages
lack of strong consistency

Scaling
Distribute

partition data and computation across multiple machine
Java applets, DNS, WWW

Replicate
make copies of data available at different machines

mirrored web sites, replicated fs, replicated db

Cache
allow client processes to access local copies

Web caches, file cachingCon
sist

enc
y The Model

Shared data is kept in a data store

a register, a file system, a database...

Clients access the data store through read and 
write operations

Consistency Semantics: a contract between the 
data store and its clients that specifies the 
results that clients can expect to obtain when 
accessing the data store



Coherence vs. Staleness 
vs. Consistency

Coherence: ! restricts order of reads and 
! ! ! ! ! writes to one location

Staleness:! ! bound maximum (real-time) delay 
! ! ! ! ! between writes and reads to one 
! ! ! ! ! location

Consistency:! restricts orders of reads and 
! ! ! ! ! writes across locations

Coherence
A read should return the result of the latest write 
to a memory location

A memory that is not coherent may return
1 2 3 3 3 4 8 10 9 11 12 13

How could this happen?
writer sends updates via Internet; updates are reordered 
in route
reader switches between two servers (e.g. redirected to 
a different Akamai node)

P1:
for (ii = 0; ii < 100; ii++) {
 write(A,ii);
}

P2:
while(1){
 printf(“%d”, read(A);
}

Staleness

Assume perfectly synchronized clocks and a real 
time OS

Reads may return

Why staleness?
NFS polling interval
cache update/invalidation delayed by network

P1:
while(1) {
 sleep(1000ms);
 write (T, A, “At %t price is %d\n”);
}

P2:
while(1){
 sleep (1000ms);
 printf(“%s”, read (A);
}

At 1:00:00 price is 10.50
At 1:00:01 price is 10:55
At 1:00:02 price is 10.65
At 1:00:02 price is 10:65
At 1:00:05 price is 13:18
....

Consistency
Restricts order of reads and writes across locations

A memory that is not consistent may return
(0,0),(0,1),(1,2),(4,3),(4,8),(8,9),(9,9),(9,10),(10,10),(11,10),(11,11),(12,12)

Is there also incoherence?
...

P1:
for (ii = 0; ii < 100; ii++) {
 write(A,ii);
 write(B,ii);
}

P2:
while(1){
 printf(“(%d, %d)”, read(A), read(B));
}



Sequential Consistency
“The result of any execution is the same as if the operations of all the 
processes were executed in some sequential order and the operations 
of each individual process appear in this sequence in the order specified 
by its program” (Lamport, 1979)

In other words:, create a total order that includes all the operations  
of the execution, such that:

the total order respects the local history of each process

every read returns the result of the latest write, according to the 
total order (data coherence)

Consistency
Another example

Which outputs are legal under strict coherence? 
Under sequential consistency?
a) “P1.”   •    •
b) “P2.”  •    •
c) “”     •    •
d) “P1.P2.”  •    
e) “P2.P1.”  •    

P1:
write(A,0);
...
write(A,1)
if(read(B) == 0) {
 printf(“P1.”);
}

P2:
write(B,0);
...
write(B,1)
if(read(A) == 0) {
 printf(“P2.”);
}

Sequential Consistency
“The result of any execution is the same as if the operations of all 
the processes were executed in some sequential order and the 
operations of each individual process appear in this sequence in the 
order specified by its program” (Lamport, 1979)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

Is this data store sequentially consistent?

R(x)a

R(x)b

R(x)b

R(x)a
1 2

2 1

Sequential Consistency
“The result of any execution is the same as if the operations of all 
the processes were executed in some sequential order and the 
operations of each individual process appear in this sequence in the 
order specified by its program” (Lamport, 1979)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)a

Is this data store sequentially consistent?

1 2

1 2
R(x)a

R(x)b



Linearizability
“The result of any execution is the same as if the operations of all 
the processes were executed in some sequential order and the 
operations of each individual process appear in this sequence in the 
order specified by its program.

In addition, if                         , then operation           should 
precede           in this sequence (Herlihy & Wing, 1991)

tsOP1(x) < tsOP2(y) OP1(x)

OP2(y)

P1:
write(A,1);
write(B,1)

P2:
sleep(1 year)
...
read(a),read(B)
printf(“A=%d B=%d”,A,B);
}

”A=0 B=0” is legal under sequential consistency, but not under 
linearizability

Limitations of Strong 
Consistency

So, linearizability it is, then?
implementing strong semantics has intrinsic costs

Lipton and Sandberg: in sequential consistency can have 
either fast reads or fast writes, but not both

CAP theorem: it is impossible in a distributed system 
to provide simultaneously

Consistency: all nodes see the same data at the same time, 
even in the presence of updates
Availability: every request  receives a response
Partition Tolerance: the system properties hold even when 
the system is partitioned

one can only have two properties out of three...

Weaker Consistency: 
Causal Consistency

Writes that are potentially causally related must be seen by all 
processes in the same order. Concurrent writes may be seen in a 
different order on different machines. (Hutto and Ahamad, 1990)

Is this data store sequentially consistent?  
Causally consistent? 

Weakening Sequential Consistency: 
Causal Consistency

Writes that are potentially causally related must be seen by all 
processes in the same order. Concurrent writes may be seen in a 
different order on different machines. (Hutto and Ahamad, 1990)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c



Weakening Sequential Consistency: 
Causal Consistency

Writes that are potentially causally related must be seen by all 
processes in the same order. Concurrent writes may be seen in a 
different order on different machines. (Hutto and Ahamad, 1990)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

Is this data store sequentially consistent?  
Causally consistent? 

No

2 1

1 2

Is this data store sequentially consistent?  
Causally consistent? 

Weakening Sequential Consistency: 
Causal Consistency

Writes that are potentially causally related must be seen by all 
processes in the same order. Concurrent writes may be seen in a 
different order on different machines. (Hutto and Ahamad, 1990)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

No
Yes

Writes that are potentially causally related must be seen by all 
processes in the same order. Concurrent writes may be seen in a 
different order on different machines. (Hutto and Ahamad, 1990)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

Is this data store sequentially consistent? 

R(x)a

R(x)a

R(x)a

Weakening Sequential Consistency: 
Causal Consistency

No
Is this data store causally consistent? No

Writes that are potentially causally related must be seen by all 
processes in the same order. Concurrent writes may be seen in a 
different order on different machines. (Hutto and Ahamad, 1990)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b R(x)a

R(x)a

Weakening Sequential Consistency: 
Causal Consistency

YesIs this data store causally consistent? 



More Weakening:
FIFO Consistency

“Writes done by a single process are seen by all other processes in 
the order in which they were issued, but writes from different 
processes may be seen in a different order by different 
processes” (PRAM consistency, Lipton and Sandberg 1988)

More Weakening:
FIFO Consistency

“Writes done by a single process are seen by all other processes in 
the order in which they were issued, but writes from different 
processes may be seen in a different order by different 
processes” (PRAM consistency, Lipton and Sandberg 1988)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

Is this data store causally consistent? No
Is this data store FIFO consistent?

More Weakening:
FIFO Consistency

“Writes done by a single process are seen by all other processes in 
the order in which they were issued, but writes from different 
processes may be seen in a different order by different 
processes” (PRAM consistency, Lipton and Sandberg 1988)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

Is this data store causally consistent? No
Is this data store FIFO consistent? Yes

The Joys of 
Programming

Process 

if         then
kill

Process

if!! ! ! then
kill

x :=1

(y = 0)

(p2) (p1)

(x = 0)

y :=1

p1 p2

What are the possible outcomes?

Initially, x = y = 0



Andrew File System
CMU, 1987

Key features
callbacks

server keeps list of which client has which file

write-through on file close
when file changes, server notifies all clients with a copy

consistency: updates visible only on file close
more precise semantics

as if all reads on open, all writes on close

client local disk used for caching
server load is further reduced

server is stateful
on server failure, need a recovery protocol to rebuild state
can ask clients
but what if client crashes?

Saving the world
before bedtime

Two Generals’ Problem

Otherwise, 
         Barbarians win

Romans must 
coordinate their 
actions

S.P.Q.R. S.P.Q.R.

either both Generals 
attack or both retreat to 
fight another day

once they commit to an 
action, they cannot change 
their mind

S.P.Q.R. S.P.Q.R.

Two Generals’ Problem

Only communication is by messenger



Two Generals’ Problem
S.P.Q.R. S.P.Q.R.

Only communication is by messenger
Messengers must sneak through the valley

Two Generals’ Problem
S.P.Q.R. S.P.Q.R.

Only communication is by messenger
Messengers must sneak through the valley

Two Generals’ Problem
S.P.Q.R. S.P.Q.R.

Only communication is by messenger
Messengers must sneak through the valley
They don’t always make it

Two Generals’ Problem
S.P.Q.R. S.P.Q.R.

Problem:
Save Western 
Civilization

(i.e. design a protocol that 
ensures Romans always 
attack simultaneously)

Only communication is by messenger
Messengers must sneak through the valley
They don’t always make it



Two General’s Problem

Claim: There is no non-trivial protocol that guarantees 
that the Romans will always attack simultaneously

Two General’s Problem

Claim: There is no non-trivial protocol that guarantees 
that the Romans will always attack simultaneously

Proof: By contradiction
Let    be the smallest number of messages needed by a solution

Consider the  -th message

The state of the sender of        cannot depend on the receipt of 

The state of the receiver of        cannot depend on the receipt of !
! because in some executions        could be lost

So both sender and receiver would come to the same conclusion even without 
sending 

We now have a solution requiring only       messages – but   was supposed to 
be the smallest number of messages!

n

n mlast

mlast mlast

mlast mlast

mlast

mlast

n�1 n

Two General’s Problem

Claim: There is no non-trivial protocol that guarantees 
that the Romans will always attack simultaneously

Proof: By contradiction
Let    be the smallest number of messages needed by a solution

Consider the  -th message

The state of the sender of        cannot depend on the receipt of 

The state of the receiver of        cannot depend on the receipt of !
! because in some executions        could be lost

So both sender and receiver would come to the same conclusion even without 
sending 

We now have a solution requiring only       messages – but   was supposed to 
be the smallest number of messages! Contradiction

n

n mlast

mlast mlast

mlast mlast

mlast

mlast

n�1 n


