
Atomic Commit

The objective

Preserve data consistency for distributed
transactions in the presence of failures

Model
For each distributed transaction T:

one coordinator
a set of participants

Coordinator knows participants; participants
don’t necessarily know each other

Each process has access to a Distributed
Transaction Log (DT Log) on stable storage

The setup

Each process has an input value :
 Yes, No

Each process has output value :
 Commit, Abort

votei

decisioni

decisioni ∈ { }

pi

pi

votei ∈ { }

AC Specification
AC-1: All processes that reach a decision reach the
same one.
AC-2: A process cannot reverse its decision after it has
reached one.
AC-3: The Commit decision can only be reached if all
processes vote Yes.
AC-4: If there are no failures and all processes vote
Yes, then the decision will be Commit.
AC-5: If all failures are repaired and there are no
more failures, then all processes will eventually decide.

Comments
AC1:

We do not require all processes to
reach a decision
We do not even require all correct
processes to reach a decision
(impossible to accomplish if links fail)

AC4:
Avoids triviality
Allows Abort even if all processes
have voted yes

NOTE:
A process that does not vote Yes
can unilaterally abort

AC-1: All processes that reach a
decision reach the same one.
AC-2: A process cannot reverse its
decision after it has reached one
AC-3: The Commit decision can only
be reached if all processes vote
Yes
AC-4: If there are no failures and
all processes vote Yes, then the
decision will be Commit
AC-5: If all failures are reported
and there are no more failures,
then all processes will eventually
decide

Liveness & Uncertainty

A process is uncertain if it has voted Yes but
does not have sufficient information to commit

While uncertain, a process cannot decide
unilaterally

Uncertainty + communication failures =
blocking!

Liveness &
Independent Recovery

Suppose process fails while running AC.

If, during recovery, can reach a decision
without communicating with other processes,
we say that can independently recover

Total failure (i.e. all processes fail) -
independent recovery = blocking

p

p

p

A few character-building
facts

Proposition 1
If communication failures or total failures are
possible, then every AC protocol may cause
processes to become blocked

Proposition 2
No AC protocol can guarantee independent
recovery of failed processes

2-Phase Commit
cCoordinator

I. sends VOTE-REQ to all participants
piParticipant

II. sends to Coordinator
! if = NO then

! := ABORT
halt

2-Phase Commit

votei

decidei

cCoordinator
I. sends VOTE-REQ to all participants

votei

piParticipant

III. if (all votes YES) then
 := COMMIT

send COMMIT to all
else

 := ABORT
send ABORT to all who voted YES

halt

II. sends to Coordinator
! if = NO then

! := ABORT
halt

2-Phase Commit

votei

decidei

decidec

decidec

cCoordinator
I. sends VOTE-REQ to all participants

votei

piParticipant

III. if (all votes YES) then
 := COMMIT

send COMMIT to all
else

 := ABORT
send ABORT to all who voted YES

halt

II. sends to Coordinator
! if = NO then

! := ABORT
halt

2-Phase Commit

votei

decidei

pi

decidec

decidec

decidei

decidei

cCoordinator Participant
I. sends VOTE-REQ to all participants

votei

IV. if received COMMIT then
:= COMMIT

else
:= ABORT !

halt

Notes on 2PC

Satisfies AC-1 to AC-4

But not AC-5 (at least “as is”)
i. A process may be waiting for a message that

may never arrive
Use Timeout Actions

ii. No guarantee that a recovered process will
reach a decision consistent with that of
other processes

Processes save protocol state in DT-Log

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 ! Coordinator is waiting
for vote from participants

pi

Step 4 ! (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 ! Coordinator is waiting
for vote from participants

Since it is has not cast its vote
yet, can decide ABORT and
halt.

pi

pi

Step 4 ! (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 ! Coordinator is waiting
for vote from participants

Since it is has not cast its vote
yet, can decide ABORT and
halt.

pi

pi

Coordinator can decide ABORT,
send ABORT to all participants

which voted YES, and halt.

Step 4 ! (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 ! Coordinator is waiting
for vote from participants

Since it is has not cast its vote
yet, can decide ABORT and
halt.

pi

pi

Coordinator can decide ABORT,
send ABORT to all participants

which voted YES, and halt.

Step 4 ! (who voted YES) is waiting
for COMMIT or ABORT

pi

 cannot decide: it must run a
termination protocol

pi

Termination protocols

I. Wait for coordinator to recover
It always works, since the coordinator is
never uncertain

may block recovering process unnecessarily

II. Ask other participants

Cooperative Termination
 appends list of participants to VOTE-REQ
when an uncertain process times out, it
sends a DECISION-REQ message to every
other participant
if has decided, then it sends its decision
value to , which decides accordingly
if has not yet voted, then it decides
ABORT, and sends ABORT to
What if is uncertain?

c

p

q

q

p

q

p

q

Logging actions
1. When sends VOTE-REQ, it writes START-2PC to its DT

Log
2. When is ready to vote YES,

i. writes YES to DT Log
ii. sends YES to (writes also list of participants)

3. When is ready to vote NO, it writes ABORT to DT Log
4. When is ready to decide COMMIT, it writes COMMIT

to DT Log before sending COMMIT to participants
5. When is ready to decide ABORT, it writes ABORT to DT

Log
6. After receives decision value, it writes it to DT Log

pi

c

c pi

pi

pi

pi

pi

c

c

 recovers p

1. When coordinator sends VOTE-REQ,
 it writes START-2PC to its DT Log
2. When participant is ready to vote
 Yes, writes Yes to DT Log before
 sending yes to coordinator (writes
 also list of participants)
 When participant is ready to vote No,
 it writes ABORT to DT Log
3. When coordinator is ready to decide
 COMMIT, it writes COMMIT to DT Log
 before sending COMMIT to participants
 When coordinator is ready to decide
 ABORT, it writes ABORT to DT Log
4. After participant receives decision
 value, it writes it to DT Log

 recovers
if DT Log contains START-2PC,
then :

if DT Log contains a decision
value, then decide accordingly
else decide ABORT

p

p = c

1. When coordinator sends VOTE-REQ,
 it writes START-2PC to its DT Log
2. When participant is ready to vote
 Yes, writes Yes to DT Log before
 sending yes to coordinator (writes
 also list of participants)
 When participant is ready to vote No,
 it writes ABORT to DT Log
3. When coordinator is ready to decide
 COMMIT, it writes COMMIT to DT Log
 before sending COMMIT to participants
 When coordinator is ready to decide
 ABORT, it writes ABORT to DT Log
4. After participant receives decision
 value, it writes it to DT Log

 recovers
if DT Log contains START-2PC,
then :

if DT Log contains a decision
value, then decide accordingly
else decide ABORT

otherwise, is a participant:
if DT Log contains a decision
value, then decide accordingly
else if it does not contain a
Yes vote, decide ABORT
else (Yes but no decision)
run a termination protocol

p

p = c

p

1. When coordinator sends VOTE-REQ,
 it writes START-2PC to its DT Log
2. When participant is ready to vote
 Yes, writes Yes to DT Log before
 sending yes to coordinator (writes
 also list of participants)
 When participant is ready to vote No,
 it writes ABORT to DT Log
3. When coordinator is ready to decide
 COMMIT, it writes COMMIT to DT Log
 before sending COMMIT to participants
 When coordinator is ready to decide
 ABORT, it writes ABORT to DT Log
4. After participant receives decision
 value, it writes it to DT Log

2PC and blocking

Blocking occurs whenever the progress of a
process depends on the repairing of failures

No AC protocol is non blocking in the presence
of communication or total failures

But 2PC can block even with non-total
failures and no communication failures among
operating processes!

3-Phase Commit
Two approaches:
1. Focus only on site failures

Non-blocking, unless all sites fails
Timeout site at the other end failed
Communication failures can produce
inconsistencies

2. Tolerate both site and communication
failures
partial failures can still cause blocking,
but less often than in 2PC

≡

Blocking and uncertainty

Why does uncertainty lead to blocking?

Blocking and uncertainty

Why does uncertainty lead to blocking?

An uncertain process does not know
whether it can safely decide COMMIT or
ABORT because some of the processes it
cannot reach could have decided either

Blocking and uncertainty

Why does uncertainty lead to blocking?

An uncertain process does not know
whether it can safely decide COMMIT or
ABORT because some of the processes it
cannot reach could have decided either

Non-blocking Property
If any operational process is uncertain, then
no process has decided COMMIT

C

2PC Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT In U, both A and C are
reachable!

pi

C

2PC Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT

In U, both A and C are
reachable!

pi

C

2PC Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT

pi

PC

In state PC
a process knows that it

will commit unless it fails

C

2PC Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT

pi

PC

FS

C

2PC Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT

pi

PC

FS

3PC: The Protocol
I. sends VOTE-REQ to all participants.
II. When receives a VOTE-REQ, it responds by sending a vote to

if = No, then := ABORT and halts.
III. collects votes from all.

if all votes are Yes, then sends PRECOMMIT to all
else := ABORT; sends ABORT to all who voted Yes !halts

IV. if receives PRECOMMIT then it sends ACK to
V. collects ACKs from all.

When all ACKs have been received, := COMMIT;
! sends COMMIT to all.

VI. When receives COMMIT, sets := COMMIT and halts.

Dale Skeen (1982)

c

pi

votei decidei

c

c

decidec

c

c

pi

pi

decidec

c

pi pi decidei

c

Wait a minute!
Messages are known to the
receiver before they are
sent...so, why are they sent?

c

pi

c

votei decidei

decidec

pi

c

c

c

c

pi c

decidec

c

c

decideipipi

pi

1. sends VOTE-REQ to all participants

2. When participant receives a VOTE-REQ,
 it responds by sending a vote to
 if = No, then = ABORT and halts

3. collects vote from all
 if all votes are Yes, then sends PRECOMMIT to all
 else = ABORT; sends ABORT to all who
 voted Yes
 halts

4. if receives PRECOMMIT then it sends ACK to

5. collects ACKs from all
 when all ACKs have been received, := COMMIT
 sends COMMIT to all

6. When receives COMMIT, sets := COMMIT
 halts

Wait a minute!
Messages are known to the
receiver before they are
sent...so, why are they sent?

They inform the recipient of
the protocol’s progress!

When receives ACK from ,
it knows is not uncertain

When receives COMMIT, it
knows no participant is
uncertain, so it can commit

c

pi

c

votei decidei

decidec

pi

c

c

c

c

pi c

decidec

c

c

decideipipi

pi

1. sends VOTE-REQ to all participants

2. When participant receives a VOTE-REQ,
 it responds by sending a vote to
 if = No, then = ABORT and halts

3. collects vote from all
 if all votes are Yes, then sends PRECOMMIT to all
 else = ABORT; sends ABORT to all who
 voted Yes
 halts

4. if receives PRECOMMIT then it sends ACK to

5. collects ACKs from all
 when all ACKs have been received, := COMMIT
 sends COMMIT to all

6. When receives COMMIT, sets := COMMIT
 halts

p

p

p

c

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 ! waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 ! waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 ! waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 ! waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Exactly as in 2PC

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 ! waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 ! waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Exactly as in 2PC Exactly as in 2PC

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 ! waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 ! waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Exactly as in 2PC Exactly as in 2PC

Coordinator sends COMMIT

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 ! waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 ! waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Exactly as in 2PC Exactly as in 2PC

Coordinator sends COMMITRun some Termination protocol

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 ! waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 ! waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Exactly as in 2PC Exactly as in 2PC

Coordinator sends COMMITRun some Termination protocol

Participant knows what is going to
receive…

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 ! waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 ! waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Exactly as in 2PC Exactly as in 2PC

Coordinator sends COMMITRun some Termination protocol

Participant knows what is going to
receive…
but NB property can be violated!Run some Termination protocol

Termination protocol:
Process states

At any time while running 3 PC, each participant
can be in exactly one of these 4 states:

Aborted !! Not voted, voted NO, received ABORT

Uncertain! Voted YES, not received PRECOMMIT

Committable! Received PRECOMMIT, not COMMIT

Committed!! Received COMMIT

Not all states
are compatible
Aborted Uncertain Committable Committed

Aborted Y Y N N
Uncertain Y Y Y N

Committable N Y Y Y
Committed N N Y Y

Termination protocol
When times out, it
starts an election protocol
to elect a new
coordinator
The new coordinator
sends STATE-REQ to all
processes that
participated in the
election
The new coordinator
collects the states and
follows a termination rule

TR1. if some process decided ABORT, then
 decide ABORT
 send ABORT to all
 halt
TR2. if some process decided COMMIT, then
 decide COMMIT
 send COMMIT to all
 halt
TR3. if all processes that reported state
 are uncertain, then
 decide ABORT
 send ABORT to all
 halt
TR4. if some process is committable, but
 none committed, then
 send PRECOMMIT to uncertain processes
 wait for ACKs
 send COMMIT to all
 halt

pi

Termination protocol and
failures

Processes can fail while executing the
termination protocol...

if times out on , it can just ignore

if fails, a new coordinator is elected and
the protocol is restarted (election protocol
to follow)

total failures will need special care...

c p p

c

 Recovering
if fails before sending YES, decide ABORT
if fails after having decided, follow decision
if fails after voting YES but before receiving
decision value

 asks other processes for help
3PC is non blocking: will receive a response with the
decision

if has received PRECOMMIT
still needs to ask other processes (cannot just COMMIT)

p

p

p

p

p

p

p

 Recovering
if fails before sending YES, decide ABORT
if fails after having decided, follow decision
if fails after voting YES but before receiving
decision value

 asks other processes for help
3PC is non blocking: will receive a response with the
decision

if has received PRECOMMIT
still needs to ask other processes (cannot just COMMIT)

No need to log PRECOMMIT!

p

p

p

p

p

p

p

The election protocol
Processes agree on linear ordering (e.g. by pid)

Each maintains set of all processes that
believes to be operational

When detects failure of , it removes from .
!!! and chooses smallest in to be new
coordinator

If = , then is new coordinator

Otherwise, sends UR-ELECTED to

p UPp

q

p

UPp

p c c

q

q UPp

p p

p

A few observations
What if , which has not detected the failure
of , receives a STATE-REQ from ?c

p
′

q

A few observations
What if , which has not detected the failure
of , receives a STATE-REQ from ?

it concludes that must be faulty
it removes from every

c

p
′

UPp′

q

q
′
< q

c

A few observations
What if , which has not detected the failure
of , receives a STATE-REQ from ?

it concludes that must be faulty
it removes from every

What if receives a STATE-REQ from after
it has changed the coordinator to ?

c

p
′

UPp′

q

p
′

c

q
′
< q

c

q

A few observations
What if , which has not detected the failure
of , receives a STATE-REQ from ?

it concludes that must be faulty
it removes from every

What if receives a STATE-REQ from after
it has changed the coordinator to ?

 ignores the request

c

p
′

UPp′

q

p
′

c

q
′
< q

c

q

p
′

Total failure
Suppose is the first process to recover, and
that is uncertain

Can decide ABORT?

Some processes could have decided COMMIT
after crashed!

p

p

p

p

Total failure
Suppose is the first process to recover, and
that is uncertain

Can decide ABORT?

Some processes could have decided COMMIT
after crashed!

 is blocked until some recovers s.t. either
 can recover independently
 is the last process to fail–then can
simply invoke the termination protocol

p

p

p

p

p

q

q q

q

Determining the last
process to fail

Suppose a set of processes has recovered

Does contain the last process to fail?

R

R

Determining the last
process to fail

Suppose a set of processes has recovered

Does contain the last process to fail?
the last process to fail is in the set of
every process
so the last process to fail must be in

R

R

UP

⋂
p∈R

UPp

Determining the last
process to fail

Suppose a set of processes has recovered

Does contain the last process to fail?
the last process to fail is in the set of
every process
so the last process to fail must be in

 contains the last process to fail if

R

R

UP

⋂
p∈R

UPp

⋂
p∈R

UPp ⊆ R

R

