
Intro to security

You can’t trust
computers

Goal: try to prevent their misuse

Big picture
why do computers fail?

Key Lesson
technical solution alone is insufficient
must consider how system will be developed,
maintained, used

Later
basics of authentication

The security mindset
Bruce Schneier

Me: What an elegant solution!

A liquid containing a code which can be read under ultraviolet light.

Applied to valuable items, so that if they are stolen and later seized by
police, their original owner can be determined

 Another application is a sprinkler system that sprays a burglar with the
(invisible) fluid, which cannot be washed off and lasts for months, to generate
evidence which connects a suspect to a specific location.

Me: What an elegant solution!

Schneier: It would be cool to paint
mine on your valuables, and then
call the police can send ants to
anyone!

Schneier: I can send ants to anyone!

Closer to home
Tenex (a Unix competitor)

we think of functions as black boxes
but they run on computers

Tempest
we think of computers as things that process bits
but they are physical systems

Why cryptosystems fail
Technologists like to focus on technical stuff, but
most failures are non technical

top three reasons for ATM phantom withdrawals:
background noise

hard to keep below 1 error in 104 transactions

UK: before litigation, government claimed 1 in 1.5 x 106

postal interception
theft by bank staff

Moral Hazard
hard to set the right incentives

Anderson: cost of failure should be born by party that can
prevent/fix problem

Why cryptosystems fail
End-to-end design

users, environment, other programmers
many problems come when one layer breaks assumptions of
another layer

think through APIs

make it hard to misuse your layer and easy to use it correctly

“security through endless warning dialogs” does not work

“Blend together into a giant “click here
to get work done” button that nobody
bothers to read anymore” Jeff Atwood

Why cryptosystems fail
In design of security for ATM, engineers focused
on technical attacks

break crypto
intercept & insert network messages

And indeed these attacks happened

Why cryptosystems fail
In design of security for ATM, engineers focused
on technical attacks

break crypto
intercept & insert network messages

And indeed these attacks happened
twice

a telephone engineer in Japan recorded customer card data
and PINs from a phone line
technicians programmed a communications processor to send
only positive authorizations to an ATM where accomplices
where waiting

Real reasons for ATM failures?

Moral Hazard:
the ATM story

Suppose you say you did not withdraw money from
your account through an ATM

The bank says you did

Who wins?
1980: a NY court believes the customer!

Federal Reserve then passes regulation requiring U.S. banks
to refund disputed electronic transactions, unless they can
prove customer is lying
cameras appear everywhere on ATMs!

Moral Hazard:
the ATM story

Suppose you say you did not withdraw money from
your account through an ATM

The bank says you did

Who wins?
Banks have managed to deny they were at fault;
customers are lying!

customers must show the bank is lying

Technical problems
are hard too

Fundamental asymmetry
Defender needs to find and fix all bugs
Attacker only needs to find and exploit one bug

Try to cover every possible failure
systems becomes complex
implementation errors make system insecure

Focus on common failures
missed attack can be exploited

Ken Thompson’s
Turing Award lecture
Created with Dennis Ritchie
UNIX operating system

Created programming
language “B”

guess what came next...

1983 Turing Award
Lecture: “Reflections on
trusting trust”

1999 National !! ! !
! Medal of !! !
! Technology

Reflections on
trusting trust

"I am a programmer. On my 1040 form, that is
what I put down as my occupation. As a
programmer, I write programs. "

"I would like to present to you the cutest program
I ever wrote."

Trusting trust: some
observations

Stage I
A program can, when executed, output its own source
code

Stage II
A compiler can learn the meaning of a symbol

Stage III
A compiler may (deliberately) output incorrect machine
code

Stage I: A self-
reproducing program

main() {
! char *s=”main() { char *s=%c%s%c; printf(s,34,s,34); }”
printf(s,34,s,34);
}

Stage II: A learning
compiler

Somewhere inside a C compiler...

We wish to add the vertical tab (\v) symbol
We return its ASCII value (11) if the symbol is \v
We recompile our compiler, and we can now
change our implementation to return \v

Stage III: a bugged
compiler

bug 2 is a self-reproducing program that inserts
both trojan horses

source
code of
bugged
compiler

What happens

source
code of
innocent
compiler

source code
of /bin/login

compiler

compiler bugged
compiler

bugged
compiler

BWAHAHAHAHA! Moral
"The moral is obvious. You can't trust code that
you did not totally create yourself. (Especially code
from companies that employ people like me.)"

Today,'Ken'Thompson'
works'as'a'dis3nguished'
engineer'for'Google'

Tenex
Very popular at universities before Unix

Thought very secure. Created a team trying to
find loopholes

Ken Thompson: “I suspect that Daniel Bobrow would be
here instead of me if he could not afford a PDP-10
and had had to settle for a PDP-11”

Given all source code and documentation, and a
normal account

Oops...
In 48 hours, team had all passwords in the system

Password check code

Must try 268 combinations... secure?

for(i=0; i<8; i++)
! if(userPasswd[i] != realPasswd[i]
! go to error

The joys of virtual
memory

Force page fault at carefully designed time to
reveal password

put first character in string as last in a page
rest on next page
put page with first character in memory, rest on disk
Time how long it takes for password check

if fast, first character is wrong
if slow, page fault! first character is right!

Repeat

What do do?
Robustness

minor error should lead to minor problems
multiple minor errors should still lead to minor
problems

Explicitness
list failure modes
show how failure modes addressed
state implementation plan (technical and managerial)
test spec; analyze failures and derive feedback

More on Security
It may well be doubted whether
human ingenuity can construct an
enigma of this kind (a cryptogram)

which human ingenuity may not, with
proper application, resolve

Security in
the real world

Security decisions based on:

Value, Locks, Police

Some observations:

Not all locks are the same

People pay for security they need

Police are critical to the picture

Security is only as good as the weakest link

Security in
Computer Systems

In computer systems, this translates to:

Authorization

Authentication

Audit

This is the Gold Standard for Security (Lampson)

Some security goals:

Data confidentiality: secret data remains secret

Data integrity: no tampering of data

System availability: unable to make system unusable

Privacy: protecting from misuse of user’s information

Security Threats
Identified by Defense Science Board:

Incomplete, inquisitive and unintentional blunders.

Hackers driven by technical challenges.

Disgruntled employees or customers seeking revenge.

Criminals interested in personal financial gain or stealing services.

Organized crime with the intent of hiding something or financial gain.

Organized terrorist groups attempting to influence U.S. policy by isolated attacks.

Foreign espionage agents seeking to exploit information for economic, political, or
military purposes.

Tactical countermeasures intended to disrupt specific weapons or command
structures.

Multifaceted tactical information warfare applied in a broad orchestrated manner to
disrupt a major U.S. military mission.

Large organized groups or nation-states intent on overthrowing the US

Cryptography Overview
Encrypt data so it only makes sense to authorized users

Input data is a message or file called plaintext

Encrypted data is called ciphertext

Encryption and decryption functions should be public

Security by obscurity is not a good idea!

Secret-Key Cryptography
Also called symmetric cryptography

Encryption algorithm is publicly known

E(message, key) = ciphertext D(ciphertext, key) = message

Naïve scheme: monoalphabetic substitution

Plaintext : ABCDEFGHIJKLMNOPQRSTUVWXYZ

Ciphertext: QWERTYUIOPASDFGHJKLZXCVBNM

So, attack is encrypted to: qzzqea

26! possible keys ~ 4x1026 possibilities

1 µs per permutation ⇒ 10 trillion years to break

easy to break this scheme! How?

‘e’ occurs 14%, ‘t’ 9.85%, ‘q’ 0.26%

Symmetric Key
Cryptography

Which encryption algorithm is good?

DES was proposed in the 1970s

Encrypts 64 bits of data with 56 bit key to give 64-bit ciphertext

Uses 16 rounds of substitution and permutation

EFF invested $250000 to break DES message in 56 hours

DES made powerful by encrypting message 3 times (DES3)

Current standard is AES

A result of 3-year competition with entries from 12 countries

Winning entry was from Belgium, called ‘Rijndael’

Must try 2127 keys, on average, to find the right one

At 1015 keys per second, this would require over 1021 seconds, or 1000 billion
years!

Strong algorithms, such as DES3, RC4 are used

WEP uses RC4

Unbreakable codes
There is such a thing as an unbreakable code: one-time pad

use a truly random key as long as the message to be encoded
XOR the message with the key one bit at a time

Code is unbreakable because
key could be anything
without key, message could be anything with the correct number of bits
in it

Difficulty: distributing key it is as hard as distributing message

Difficulty: generating truly random bits
Cant use computer random gnerator!
May use physical processes

radioactive decay
lava lamps!

Public Key Cryptography
Diffie and Hellman, 1976

All users get a public key and a private key

Public key is published

Private key is not known to anyone else

If Alice has a packet to send to Bob,

She encrypts the packet with Bob’s public key

Bob uses his private key to decrypt Alice’s packet

Private key linked mathematically to public key

Difficult to derive by making it computationally infeasible (RSA)

Pros: more security, convenient, digital signatures

Cons: slower

Digital Signatures

Hashing function hard to invert, e.g. MD5, SHA

Apply private key to hash (decrypt hash)

Called signature block

Receiver uses sender’s public key on signature block

E(D(x)) = x should work (works for RSA)

Authentication
Establish the identity of user/machine by

Something you know (password, secret)

Something you have (credit card, smart card)

Something you are (retinal scan, fingerprint)

In the case of an OS this is done during login

OS wants to know who the user is

Passwords: secret known only to the subject

Simplest OS implementation keeps (login, password) pair

Authenticates user on login by checking the password

Try to make this scheme as secure as possible!

Display the password when being typed? (Windows, UNIX)

Online passwords attacks

Online attacks: system used to verify the guesses

How someone broke into LBL

Thwart these attacks:

limit the number of guesses

better passwords

Offline password attacks
Depends on how passwords are stored

Approach 1: store username/password in a file

Attacker only needs to read the password file

Security of system now depends on protection of this file!

Approach 2: store username/encrypted password in file

Properties of the one-way hash function h:

h is not invertible: h(m) easy to compute, h-1(m) difficult

It is hard to find m and m’ s.t. h(m) = h(m’)

Should use standard functions, such as SHA, MD5, etc.

Crypto hash Compare Password
FILE

More offline attacks
Previous scheme can be attacked: Dictionary Attack

Attacker builds dictionary of likely passwords offline

At leisure, builds hash of all the entries

Checks file to see if hash matches any entry in password file

There will be a match unless passwords are truly random

20-30% of passwords in UNIX are variants of common words

Morris, Thompson 1979, Klein 1990, Kabay 1997

Solutions:

Shadow files: move password file to /etc/shadow

This is accessible only to users with root permissions

Salt: store (user name, salt, E(password+salt))

Simple dictionary attack will not work. Search space is more.

Salting Example

If the hacker guesses Dog, he has to try Dog0001, …

UNIX adds 12-bit of salt

Passwords should be made secure:

Length, case, digits, not from dictionary

Can be imposed by the OS! This has its own
tradeoffs

One time passwords
Password lasts only once

User gets book with passwords

Each login uses next password in list

Much easier approach (Lamport 1981)

Uses one-way hash functions
User stores Server stores

uid, passwd

S = hn(passwd)

uid, n, m, H=hm(passwd)

n = n-1

if (hm-n(S) == H) then
! m=n; H=S; accept
else reject

uid

S

n

Lamport’s hash notes

When n=1, user resets password and n. Sends to
server

Authentication is not mutual! User does not know
is it is talking to server

Care against the small n attack

Note that 1st password is h(h(h(h(x)))), 2nd
h(h(h(x))), 3rd h(h(x))

A captured password yields past passwords, but
no future ones

Challenge Response
Scheme

New user provides server with list of ques/ans pairs

Server asks one of them at random

Requires a long list of question answer pairs

Prove identity by computing a secret function

User picks an algorithm, e.g. x2

Server picks a challenge, e.g. x=7

User sends back 49

Should be difficult to deduce function by looking at results

In practice

The algorithm is fixed, e.g. one-way hash, but user selects a key

The server’s challenge is combined with user’s key to provide input to the
function

Authentication Using
Physical Objects

Door keys have been around long

Plastic card inserted into reader associated with comp

Also a password known to user, to protect against lost card

Magnetic stripe cards: about 140 bytes info glued to card

Is read by terminal and sent to computer

Info contains encrypted user password (only bank knows key)

Chip cards: have an integrated circuit

Stored value cards: have EEPROM memory but no CPU

Value on card can only be changed by CPU on another comp

Smart cards: 4 MHz 8-bit CPU, 16 KB ROM, 4 KB EEPROM, 512
bytes RAM, 9600 bps comm. channel

Smart Cards
Better security than stored value cards

Card sends a small encrypted msg. to merchant, who
can later use it to get money from the bank

Pros: no online connection to bank required

Perform local computations, remember long passwords

Biometrics:
something you are

System has 2 components:

Enrollment: measure characteristics and store on comp

Identification: match with user supplied values!
What are good characteristics?

Finger length, voice, hair color, retinal pattern, voice,
blood

Pros: user carries around a good password

Cons: difficult to change password, can be subverted

