
The Kernel
wants to be your friend

Boxing them in
Buggy apps can crash
other apps

Buggy apps can crash the
OS

Buggy apps can hog all
resources

Malicious apps can violate
privacy of other apps

Malicious apps can change
the OS

App 1 App 2 App 3

Operating System

Reading and writing memory,
managing resources, accessing I/O...
would you trust it all to him?

The Process
An abstraction for protection

the execution of an application
program with restricted rights

Must not hinder functionality
still efficient use of hardware
enable safe communication

App 1

OS

The Process
An abstraction for protection

the execution of an application
program with restricted rights

Restricting rights must not
hinder functionality

still efficient use of hardware
enable safe communication

SO...
What is a process? How is it
different from a program?
How does the OS implement
processes?

App 1

OS

Getting to know you

A process is a program during execution
program is a static file
process = executing program = program + execution state

Source code

compiler
Code

Header

Initialized data

Executable File

Code Data Heap Stack Code Data Heap Stack Physical memory

OS copy

Keeping track of a process

A process has code
OS must track program counter

A process has a stack
OS must track stack pointer

OS stores state of process !! ! ! !
in Process Control Block (PCB)

Data (program instructions, stack & heap)
resides in memory, metadata is in PCB

PC
Stack Pointer

Registers
PID
UID

Priority
List of open files

…

Process Control
Block

How can the OS
enforce restricted rights?

Easy: OS interprets each instruction!
slow
most instructions are safe: can we just run them in
hardware?

Dual Mode Operation
hardware to the rescue: use a mode bit

in user mode, processor checks every instruction
in kernel mode, unrestricted rights

hardware to the rescue (again) to make checks efficient

Efficient protection in
dual mode operation

Hardware must support at least three features:
Privileged instructions

in user mode, no way to execute potentially unsafe
instructions

Memory protection
in user mode, memory accesses outside a process’
memory region are prohibited

Timer interrupts
kernel must be able to periodically regain control from
running process

Privileged instructions

Set mode bit
but how can an app do I/O then?

system calls achieve access to kernel mode only at
specific locations specified by OS

Set accessible memory

Disable interrupts

Executing a privileged instruction while in user
mode causes a processor exception....

...which passes control to the kernel

Memory Protection via
Address Translation

Virtualize memory
processes run on physical memory, but perceive the
illusion of running on a (almost) infinite virtual memory

Virtual address space: set of memory
! addresses that process can “touch”

CPU works with virtual addresses

Physical address space: set of memory
addresses supported by hardware

Virtual
address space

Stack

Code

Initialized data

Heap

DLL’s

mapped segments

Address Translation

A function that maps into

a486d9

5e3a07

Virtual Physical

Advantages:
protection
relocation
data sharing
multiplexing

〈pid, virtual address〉
physical address

pi

Protection

At all times, the functions used by different
processes map to disjoint ranges

pi

pj

Relocation

The range of the function used by a process can
change over time

pi

Relocation

The range of the function used by a process can
change over time

pi

Data Sharing

Map different virtual addresses of different
processes to the same physical address

pi

pj

5e3a07

04d26a

119af3

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

A simple mapping mechanism:
Base & Bound

CPU

Bound
Register

Base
Register

1500

1000

0

MAXsys

500 1000

p’s physical
address
space

≤ +yes

no

Memory
Exception

Logical
addresses

Physical
addresses

On Base & Limit

Contiguous Allocation: contiguous virtual
addresses are mapped to contiguous physical
addresses
Protection is easy, but sharing is hard

Two copies of emacs: want to share code, but have
data and stack distinct...

Managing heap and stack dynamically is hard
We want them as far as as possible in virtual
address space, but...

Timer Interrupts

Hardware timer
can be set to expire after specified delay
(time or instructions)
when it does, control is passed back tot he
kernel

Other interrupts (e.g. I/O completion) also give
control to kernel

Crossing the line
user process

kernel

user process executing calls system call return from system call

execute system call

 trap

mode bit := 0

 mode bit := 1

return

mode bit = 1

mode bit = 0

From user mode
to kernel mode...

Exceptions
user program acts silly (e.g. division by zero)
attempt to perform a privileged instruction

sometime on purpose! (breakpoints)

synchronous

Interrupts
HW device requires OS service

timer, I/O device, interprocessor
aysnchronous

System calls
user program requests OS service
synchronous

...and viceversa

New process
copies program in memory, set PC and SP; toggles mode

Resume after exception, interrupt or system call
restores PC, SP, registers; toggles mode

Switch to different process
loads PC, SP, registers from other process PCB; toggles
mode

User-level upcall
a sort of user-level interrupt handling

Safe mode switch

Common sequences of instructions to cross
boundary, which provide:

Limited entry
entry point in the kernel set up by kernel

Atomic changes to process state
PC, SP, memory protection, mode

Transparent restartable execution
user program must be restarted exactly as it was
before kernel got control

Interrupt vector

0

handleTimerInterrupt() {
...

}

31

handleDivideByZero() {
...

}

128

255

handleTrap() {
...

}

32

Processor Register
Interrupt Vector

OS saves state of user program
Hardware identifies why
boundary is crossed

if a trap was invoked,
which hardware device
that caused interrupt,
what exception

Hardware selects entry from
interrupt vector
Appropriate handler is invoked

Saving the state of the
interrupted process

Privileged hw register points to Exception Stack
on switch, hw pushes some of interrupted process registers
(SP, PC, etc) on exception stack before handler runs. Why?
then handler pushes the rest !(pushad on x86)
On return, do the reverse !! (popad on x86)

Why not use user-level stack?
reliability: even if user’s stack points to invalid address,
handlers continue to work
security: kernel state should not be stored in user space
(or could be read/written)

One interrupt stack per processor/process/thread

Interrupt masking

What happens if an interrupt occurs while we
are running an interrupt handler?

can’t reset KSP to point to base of kernel’s exception
stack

Privileged instruction disables (defers) interrupts

If no reset, can also simply use the current KSP

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

EFLAGS

Other
Registers:
EAX, EBX,

...

SS:ESP

Stack segment Offset

CS:EIP

Code segment Offset

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Save key registers
2. Switch onto the kernel exception stack

EFLAGS

SS:ESP
CS:EIP

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Save key registers
2. Switch onto the kernel exception stack
3. Push key registers onto new stack

EFLAGS

SS:ESP

CS:EIP

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Save key registers
2. Switch onto the kernel exception stack
3. Push key registers onto new stack

EFLAGS

SS:ESP

CS:EIP

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Save key registers
2. Switch onto the kernel exception stack
3. Push key registers onto new stack
4. Save error code (optional)

EFLAGS

SS:ESP

CS:EIP

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Save key registers
2. Switch onto the kernel exception stack
3. Push key registers onto new stack
4. Save error code (optional)

EFLAGS

SS:ESP

CS:EIP

Error

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Save key registers
2. Switch onto the kernel exception stack
3. Push key registers onto new stack
4. Save error code (optional)
5. Invoke interrupt handler

EFLAGS

SS:ESP

CS:EIP

Error

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Save key registers
2. Switch onto the kernel exception stack
3. Push key registers onto new stack
4. Save error code (optional)
5. Invoke interrupt handler
6. Handler pushes all registers on stack

EFLAGS

SS:ESP

CS:EIP

Error

Mode switch on x86
User-level
Process Registers Kernel

Code
foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Stack

Code

handler() {
 pusha
 ...
}

Exception Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Save key registers
2. Switch onto the kernel exception stack
3. Push key registers onto new stack
4. Save error code (optional)
5. Invoke interrupt handler
6. Handler pushes all registers on stack

EFLAGS

SS:ESP

CS:EIP

Error

ALL Registers:
SS,ESP,CS,EIP,
EAX, EBX,...

Switching back

From an interrupt, just reverse all steps!

From exception and system call, increment PC
on return

on exception, handler changes PC at the
base of the stack
on system call, increment is done by hw

System calls

Programming interface to the
services provided by the OS
Mostly accessed through an API
(Application Programming Interface)

Win32, POSIX, Java API

Parameters passed according to
calling convention

registers, stack, etc.

User Program

system call interface

open()

i

open()
implementation of
open() system call
.
.
.

return

System call stubs

Set up parameters

call int 080 to context
switch

Locate system call
arguments

if passed on the stack,
they are virtual addresses

Validate parameters
defend against errors in
content and format of args

Copy before check
prevent TOCTOU

Copy back any result

User Kernel

open:
movl #SysCall_Open, %eax
int 080
ret

Starting a new process

A simple recipe:
Allocate & initialize PCB
Allocate memory
Copy program from disk
Allocate user-level and kernel-level stacks
Copy arguments (if any) to the base of the user-level
stack
Transfer control to user-mode

popad + iret
user stub handles return from main()

Upcalls:
virtualizing interrupts

Hardware-defined
Interrupts & exceptions

Interrupt vector for
handlers (kernel)

Interrupt stack (kernel)

Interrupt masking
(kernel)

Processor state (kernel)

Kernel-defined signals

Handlers (user)

Signal stack (user)

Signal masking (user)

Processor State (user)

Interrupts/Exceptions Upcalls/Signals

Unix signals
User-level
Process

foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Code

Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

User Exception Stack

Code

signal_handler() {
 ...
}

Unix signals
User-level
Process

foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Code

Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

User Exception Stack

Other Registers

SS: ESP
CS: EIP

Code

signal_handler() {
 ...
}

Unix signals
User-level
Process

foo() {
 while(...) {
 x = x+1;
 y = y-2
 }
}

Code

Stack

Other
Registers:
EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

Code

signal_handler() {
 ...
}

User Exception Stack
SS: ESP
CS: EIP

Other Registers

Booting an OS Kernel

Basic Input/Output System

In ROM, includes the first instructions fetched and executed

BIOS copies bootloader, using a cryptographic signature to
make sure it has not been tampered with

BIOS

bootloader
OS Kernel
login app

bootloader
OS Kernel

Booting an OS Kernel

Bootloader copies OS kernel, checking its cryptographic
signature

BIOS

bootloader
OS Kernel
login app

bootloader

OS Kernel

Booting an OS Kernel

Kernel initializes its data structures

Starts first process by copying it from disk

BIOS

bootloader
OS Kernel
login app

bootloader OS Kernel

login app

Let the dance BEGIN!

