
Concurrency and Threads

Thread: an abstraction
for concurrency

A single-execution stream of instructions that
represents a separately schedulable task

OS can run, suspend resume thread at any time
Finite Progress Axiom: execution proceeds at
some unspecified, non-zero speed

Virtualizes the processor
programs run on machine with !! ! ! ! !
an infinite number of processors

Allows to specify tasks that should be run
concurrently...

...and lets us code each task sequentially

Abstraction Reality

Where threads
are useful

To express a natural program structure
updating the screen, fetching new data,
receiving user input

Exploiting multiple processors
different threads may be mapped to distinct
processors

Masking long latency of I/O devices
do useful work while waiting

A simple API
void sthread_create(thread, func, arg)

creates a new thread in thread, which will execute
function func with arguments arg

void sthread_yield()

calling thread gives up the processor

sthread_join(thread)

wait for thread to finish, then return the value
thread passed to sthread_exit.

sthread_exit(ret)

finish caller; store ret in caller’s TCB and wake up any
thread that invoked sthread_join(caller)

Implementing the thread
abstraction: the state

Shared
State

Per-Thread
State

Per-Thread
State

Heap

Global
Variables

Code

Thread Control Block
(TCB)

Stack pointer

Thread metadata (ID, priority, etc)

Other Registers (PC, etc)

Stack

Thread Control Block
(TCB)

Stack pointer

Thread metadata (ID, priority, etc)

Other Registers (PC, etc)

Stack

Stack frame

Stack frame
Stack frame

Stack frame

Note: No protection enforced at the thread level!

One abstraction,
many flavors

In-kernel threads

Single-threaded processes
add protection

Multi-threaded processes with
kernel supported thread

thread management through
procedure calls & system calls
TCBs & PCBs on in kernel ready list

User-level threads
thread management through
procedure calls
TCBs in user space ready list

Kernel

User Space
Process 1 Process 2 Process 3

Kernel

User Space
Process 1 Process 2

Kernel

Process 3

User Space
Process 1 Process 2

Kernel

Process 3

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

TCB: being created
Registers: in TCB

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

Scheduler
resumes thread

TCB: Ready list
Registers: in TCB

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

Scheduler
resumes thread

TCB: Running list
Registers: Processor

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

Scheduler
resumes thread

TCB: Ready list
Registers: in TCB

Thread yields
Scheduler suspends thread

(e.g. sthread_yield())

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

Scheduler
resumes thread

Thread yields
Scheduler suspends thread

(e.g. sthread_yield())

TCB: Running list
Registers: Processor

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

Scheduler
resumes thread

Thread waits for event
(e.g. sthread_join())

Thread yields
Scheduler suspends thread

(e.g. sthread_yield())

TCB: Synchronization
variable’s waiting list
Registers: TCB

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

Scheduler
resumes thread

TCB: Ready list
Registers: in TCB

Thread yields
Scheduler suspends thread

(e.g. sthread_yield()) Thread waits for event
(e.g. sthread_join())

Event occurs
(e.g. other thread

calls sthread_exit())

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

Scheduler
resumes thread

Thread yields
Scheduler suspends thread

(e.g. sthread_yield()) Thread waits for event
(e.g. sthread_join())

Event occurs
(e.g. other thread

calls sthread_exit())

TCB: Running list
Registers: Processor

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. sthread_create())

Scheduler
resumes thread

Thread yields
Scheduler suspends thread

(e.g. sthread_yield()) Thread waits for event
(e.g. sthread_join())

Event occurs
(e.g. other thread

calls sthread_exit())

TCB: Finished list
(to pass exit value),
then deleted
Registers: TCB

Thread exit
(e.g. sthread_exit())

Context switching
in-kernel threads

You know the drill:
Thread is running
Switch to kernel
Save thread state (to TCB)
Choose new thread to run
Load its state (from TCB)
Thread is running

Context switching
in-kernel threads

You know the drill:
Thread is running
Switch to kernel
Save thread state (to TCB)
Choose new thread to run
Load its state (from TCB)
Thread is running

Policy decision
left to the scheduler{

What triggers
a context switch?

Internal events
system call

thread blocks for I/O
synchronization: thread wait for another thread to do
something
thread explicitly gives up CPU (sthread_yield())

exception

External events
interrupt

I/O (type character, disk request finishes,...)
timer interrupt

One story,
two perspectives

Thread 1

while (true) {
 sthread_yield()
}

System calls: one story,
two perspectives

Thread 2

while (true) {
 sthread_yield()
}

In-kernel thread’s viewpoint

Thread 1

while (true) {
 sthread_yield()
}

System calls: one story,
two perspectives

Thread 2

while (true) {
 sthread_yield()
}

In-kernel thread’s viewpoint

Thread 1

while (true) {
 sthread_yield()
}

System calls: one story,
two perspectives

call sthread_yield()
save state to stack
save state to TCB
choose to run T2
load T2’s state

Thread 2

while (true) {
 sthread_yield()
}

In-kernel thread’s viewpoint

1. change SP to T2’s
2. pop T2’s general purpose
registers
3. pop IP and execution flags

Thread 1

while (true) {
 sthread_yield()
}

System calls: one story,
two perspectives

call sthread_yield()
save state to stack
save state to TCB
choose to run T2
load T2’s state

call sthread_yield()
save state to stack
save state to TCB
choose to run T1
load T1’s state

Thread 2

while (true) {
 sthread_yield()
}

In-kernel thread’s viewpoint

Thread 1

while (true) {
 sthread_yield()
}

System calls: one story,
two perspectives

call sthread_yield()
save state to stack
save state to TCB
choose to run T2
load T2’s state

return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T2
load T2’s state

call sthread_yield()
save state to stack
save state to TCB
choose to run T1
load T1’s state

Thread 2

while (true) {
 sthread_yield()
}

In-kernel thread’s viewpoint

Thread 1

while (true) {
 sthread_yield()
}

System calls: one story,
two perspectives

call sthread_yield()
save state to stack
save state to TCB
choose to run T2
load T2’s state

return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T2
load T2’s state

call sthread_yield()
save state to stack
save state to TCB
choose to run T1
load T1’s state

return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T1
load T1’s state

Thread 2

while (true) {
 sthread_yield()
}

In-kernel thread’s viewpoint

Thread 1

while (true) {
 sthread_yield()
}

System calls: one story,
two perspectives

call sthread_yield()
save state to stack
save state to TCB
choose to run T2
load T2’s state

return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T2
load T2’s state

return sthread_yield()

call sthread_yield()
save state to stack
save state to TCB
choose to run T1
load T1’s state

return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T1
load T1’s state

Thread 2

while (true) {
 sthread_yield()
}

In-kernel thread’s viewpoint

Thread 1

while (true) {
 sthread_yield()
}

System calls: one story,
two perspectives

call sthread_yield()
save state to stack
save state to TCB
choose to run T2
load T2’s state

return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T2
load T2’s state

return sthread_yield()

call sthread_yield()
save state to stack
save state to TCB
choose to run T1
load T1’s state

return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T1
load T1’s state

Thread 2

while (true) {
 sthread_yield()
}

call sthread_yield()
save state to stack
save state to TCB
choose to run T2
load T2’s state
call sthread_yield()
save state to stack
save state to TCB
choose to run T1
load T1’s state
return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T2
load T2’s state
return sthread_yield()
call sthread_yield
save state to stack
save state to TCB
choose to run T1
load T1s state
return sthread_yield()

Processor’s viewpointIn-kernel thread’s viewpoint

Multi-threaded kernel,
single-threaded processes

Globals

Heap

Code

TCB 1 TCB 2 TCB 3 PCB 1

PCB 2
Stack Stack Stack

Exception
Stack

Process 1

Stack

Globals

Heap

Code

Process 2

Stack

Globals

Heap

Code

Per
Process Per Thread

Address space Program
counter

Global variables Registers
Open Files Stack

Child processes State
Pending alarms

Signals and
their handlers
Accounting info

In-kernel ready list includes
both TCBs and PCBs

Interrupts/exceptions
hw & sw cooperate

... but no need to save SP
when within kernel

Library calls vs System calls
in kernel, use simple
procedure call
in user mode, needs system
call to access PCB in kernel

Multi-threaded kernel,
multi-threaded processes

Globals

Heap

Code

PCB 1.1

TCB 1

Stack

Exception
Stack

Process 1

Stack

Globals

Heap

Code

Process creates threads via system call
thread’s PCB in kernel
stack in user space

TCB 2

Stack

TCB 3

Stack

PCB 1.2 PCB 2.2

PCB 2.1

Process 1 Process 2

Stack
1 2

Process 2

Stack

Globals

Heap

Code

Stack
1 2

User-level Threads
No OS support

TCBs, ready list, finished list, waiting list — in user space
thread library calls are just procedure calls!

Use upcalls to virtualize interrupts and exceptions
use system call to register a signal handler
on interrupt, save state of process P and run kernel handler;
when done:

copy P’s saved state in signal stack in P’s address space
load state with PC = &signal_handler; SP -> state on stack
signal handler moves state from stack to TCB
restores state of some other TCB on ready list

Pros and Cons of
User-level Threads

Pros

Better than nothing!
use to be only game in
town

More portable
Java’s green threads

Low context switch
cost

Cons

OS is unaware of
user-level threads

can’t use for parallel
processing
can’t use to mask I/O
latency

Processes and Threads
The process abstraction combines two concepts

Concurrency: each process is a sequential execution
stream of instructions
Protection: Each process defines an address space that
identifies what can be touched by the program

Threads
Key idea: decouple concurrency from protection
A thread represents a sequential execution stream of
instructions
A process defines the address space that may be shared
by multiple threads

Threads vs. Processes
Threads

No data segment or heap

Multiple can coexist in a process

Share code, data, heap and I/0

Have own stack and registers,
but no isolation from other
threads in the same process

Inexpensive to create

Inexpensive context switching

Processes
Have data/code/heap and other
segments

Include at least one thread

Have own address space, isolated
from other processes’

Expensive to create

Expensive context switching

Concurrency is great …

int a = 1, b = 2;
main() {
! CreateThread(fn1, 4);
! CreateThread(fn2, 5);
}
fn1(int arg1) {
! if(a) b++;
}
fn2(int arg1) {
! a = arg1;
}

What are the value of a and b
at the end of execution?

…but can be problematic

int a = 1, b = 2;
main() {
! CreateThread(fn1, 4);
! CreateThread(fn2, 5);
}
fn1(int arg1) {
! if(a) b++;
}
fn2(int arg1) {
! a = 0;
}

What are the values of a & b
at the end of execution?

Some More Examples

What are the possible values of x in these
cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1; Thread2: x = x + 2;

Everyone’s a winner (?)

Who wins?

Is a winner guaranteed?

What if they proceed in lockstep?

Thread A
i = 0;
while (i < 10) {

i = i+1;
}
print “A wins”

Thread B
i = 0;
while (i > - 10) {

i = i-1;
}
print “B wins”

This is because …
Order of process/thread execution is non-deterministic

A system may contain multiple processors and cooperating threads/
processes can execute simultaneously
Thread/process execution can be interleaved because of time-slicing

Operations are often not atomic
An atomic operation is one that executes to completion without any
interruption or failure---it is “all or nothing”

x := x+1 is not atomic
read x from memory into a register
increment register
store register back into memory

even loads and stores on 64 bit machines are not atomic

Goal: Ensure correctness under ALL possible interleaving

We have a problem...

Enumerating all cases is impractical

We need to
define constructs to help with synchronization
and coordination
develop a programming style that eases the
construction of concurrent programs

restore modularity
more fundamentally, we need to know what we
are talking about we we mention
“synchronization” or “coordination”...

	part1
	intermedio
	part2

