
Thread Synchronization:
Too Much Milk

Safety and Liveness
Properties defined over an execution of a program

Safety: “nothing bad happens”
holds in every finite execution prefix

Windows™ never crashes
No patient is ever given the wrong medication
A program never terminates with a wrong answer

Liveness: “something good eventually happens”
no partial execution is irremediable

Windows™ always reboots
Medications are eventually distributed to patients
A program eventually terminates

A Really Cool Theorem

“Every property defined on an execution of a program
is a combination of a safety property and a liveness
property”

(Alpern and Schneider, 1987)

Too Much Milk!
Jack

Look in the fridge:
out of milk
Leave for store
Arrive at store
Buy milk
Arrive at home:
put milk away

Jill

Look in fridge: no milk
Leave for store
Arrive at store
Buy milk
Arrive at home: put
milk away
Oh no!

Formalizing
“Too Much Milk”

Shared variables
“Look in the fridge for milk” - check a
variable
“Put milk away” - update a variable

Safety
At most one person buys milk

Liveness
If milk is needed, eventually somebody buys
milk

Solution #1:
Leave a note

If you find a note from your
roommate don’t buy!

Leave note ≈ lock
Remove note ≈ unlock

 Jack/Jill
if (noMilk) {

if (noNote) {
leave Note;
buy milk;
remove Note

}
}

Solution #1:
Leave a note

If you find a note from your
roommate don’t buy!

Leave note ≈ lock
Remove note ≈ unlock

 Jack/Jill
if (milk == 0) {

if (note==0) {
note = 1;
milk++;
note = 0;

}
}

if (milk == 0) {

T1

if (milk == 0) {
if (note==0) {

note = 1;
milk++;
note = 0;

}
}

T2

if (note==0) {
note = 1;
milk++;
note = 0;

}
}

T1

Oh no!
S
w
i
t
c
h

S
w
i
t
c
h

Safe?

Solution #1:
Leave a note

If you find a note from your
roommate don’t buy!

Leave note ≈ lock
Remove note ≈ unlock

 Jack/Jill
if (milk == 0) {

if (note==0) {
note = 1;
milk++;
note = 0;

}
}Safe?

This “solution” makes the problem worse!
sometime works, sometime doesn’t

Solution #2: Colors
Jack

Leave Blue note
if (noPinknote) {

if (noMilk) {
buy milk;

}
}
Remove Blue note

Jill
Leave Pink note
if (noBluenote) {

if (noMilk) {
buy milk;

}
}
Remove Pink note

Solution #2: Colors
Jack

noteA = 1;
if (noteB == 0) {

if (milk == 0) {
milk++;

}
}
noteA = 0;

Jill
noteB = 1;
if (noteA == 0) {

if (milk == 0) {
milk++;

}
}
noteB = 0;

Proof of Safety
By contradiction:
Suppose Jack and Jill both buy milk
Consider the state of variables (noteB,milk) at A1

A1
A2
A3

Case 3: noteB == 0, milk == 0

Impossible. Jill cannot be executing in B1-B5.
Since notaA==1, then Jill will not pass B1

B1
B2
B3

B4
B5

Case 1: noteB == 1

 Impossible, since Jack ends up buying milk

Case 2: noteB == 0, milk > 0

Impossible. milk > 0 is a stable property, so
Jack would fail test A2 and never buy milk

Solution #2: Colors
Jack

noteA = 1;
if (noteB == 0) {

if (milk == 0) {
milk++;

}
}
noteA = 0;

Jill
noteB = 1;
if (noteA == 0) {

if (milk == 0) {
milk++;

}
}
noteB = 0;

Proof of Liveness

A1
A2
A3

B1
B2
B3

B4
B5

Not Live!

Solution #3

Proof of Safety
Similar to previous case

Jack
noteA = 1;
while (noteB == 1) {

;
}
if (milk == 0) {

milk++;
}

}
noteA = 0;

Jill
noteB = 1;
if (noteA == 0) {

if (milk == 0) {
milk++;

}
}
noteB = 0;

Proof of Liveness
Jill will eventually sets noteB = 0
Jack will then reach line A1

if Jack finds milk, done
If still no milk, Jack will buy it

A1

Too Much Milk:
Lessons

Last solution works, but it is really unsatisfactory:
Complicated; proving correctness is tricky even
for the simple example
Inefficient: while thread is waiting, it is
consuming CPU time
Asymmetric: hard to scale to many threads
Incorrect(?) : instruction reordering can produce
surprising results

A better way
How can we do better?

Define higher-level programming abstractions
(shared objects, synchronization variables) to
simplify concurrent programming

lock.acquire() - wait until lock is free, then grab it • atomic
lock.release() - unlock, waking up a waiter, if any • atomic

Use hardware to support atomic operations
beyond load and store

 Jack/Jill/even Dame Dob!

Kitchen::buyIfNeeded() {
lock.acquire():
if (milk == 0) {

milk++;
}

lock.release();
}

