
Shared Objects:
Locks, Condition Variables,

and Best Practices

Too Much Milk:
Lessons

Last solution works, but it is really unsatisfactory:
Complicated; proving correctness is tricky even for
the simple example
Inefficient: while thread is waiting, it is consuming
CPU time
Asymmetric: hard to scale to many threads
Incorrect(?) : instruction reordering can produce
surprising results

A better way
How can we do better?

Define higher-level programming abstractions (shared
objects, synchronization variables) to simplify
concurrent programming

lock.acquire() - wait until lock is free, then grab it • atomic
lock.release() - unlock, waking up a waiter, if any • atomic

Use hardware to support atomic operations beyond
load and store

 Jack/Jill/even Dame Dob!

Kitchen::buyIfNeeded() {
lock.acquire():
if (milk == 0) {

milk++;
}

lock.release();
}

A better way
Extend the modularity of OO programming to
multithreaded programming

Details of synchronization are hidden behind a clean
interface
Synchronization variables regulate ! ! ! ! !
access to shared variables
Hardware support for more !! ! ! ! ! !
powerful atomic operations

State
variables

Synchronization
variablesPu

bl
ic
 M

et
ho

ds

Shared object

Concurrent Program

Shared Objects
(bounded buffer, barber chair...)

Synchronization Objects
(lock, condition variable,...)

Atomic Read-Modify-Write
(test&set, disable interrupts...)

Critical Sections
A critical section is a segment of code involved in reading
and writing a shared data area

It appears to execute atomically

Critical sections are used profusely in an OS to protect
data structures (e.g., queues, shared variables, lists, …)

Key assumptions:

Finite Progress Axiom: Processes execute at a finite, but
otherwise unknown, speed.

Processes can halt only outside of the critical section
(by failing, or just terminating)

The Critical Section
Problem

Mutual Exclusion: At most one thread is executing in
the CS (Safety)

The Critical Section
Problem

Mutual Exclusion: At most one thread is executing in
the CS (Safety)

Access Opportunity: If no threads are executing in the
CS and some threads attempts to enter the CS, then
eventually a thread succeeds (Liveness)

The Critical Section
Problem

Mutual Exclusion: At most one thread is executing in
the CS (Safety)

Access Opportunity: If no threads are executing in the
CS and some threads attempts to enter the CS, then
eventually a thread succeeds (Liveness)

Bounded waiting: If thread T attempts to enter the CS,
then there exists a bound on the number of times
other threads succeed in entering the CS before T
does. (Safety? Liveness?)

If the bound is left unspecified, it is a liveness property, because I
could always extend the execution to show that a bound exists
As soon as a specific bound is offered, though, it becomes a safety
property, since it must hold in every prefix of the execution

Locks: API
Two states

Busy
Free

Two methods
Lock::acquire()

waits until lock is Free and then atomically makes lock Busy

Lock::release()
makes lock Free. If there are pending acquire(), causes one
to proceed

Locks and critical section
Mutual Exclusion: At most one thread holds a lock
(Safety)

Access Opportunity: If no threads holds the lock and
some threads attempt to acquire it, then eventually a
thread succeeds in acquiring it (Liveness)

Bounded waiting: If thread T attempts to acquire the
lock, then there exists a bound on the number of
times other threads successfully acquire the lock
before T does. (Safety? Liveness?)

If the bound is left unspecified, it is a liveness property, because I
could always extend the execution to show that a bound exists
As soon as a specific bound is offered, though, it becomes a safety
property, since it must hold in every prefix of the execution

Mutual Exclusion: At most one thread holds a lock
(Safety)

Access Opportunity: If no threads holds the lock and
some threads attempt to acquire it, then eventually a
thread succeeds in acquiring it (Liveness)

Bounded waiting: If thread T attempts to acquire the
lock, then there exists a bound on the number of
times other threads successfully acquire the lock
before T does. (Safety? Liveness?)

If the bound is left unspecified, it is a liveness property, because I
could always extend the execution to show that a bound exists
As soon as a specific bound is offered, though, it becomes a safety
property, since it must hold in every prefix of the execution

Locks and critical section
 has returned from acquire()
more often than release()

 not yet returned from a call to acquire()

A thread-safe queue

const int MAX = 10
class TSQueue {
private:

Lock lock;

int items[MAX];
int nFull;
int firstFull;
int nextEmpty;

public:
TSQueue();
~TSQueue(){ };
bool tryInsert(int item);
bool tryRemove(int *item);

bool
TSQueue::tryInsert(int item)
{

bool ret = false;
lock.Acquire();
if (nFull < MAX){

items[nextEmpty] = item;
nFull++;
nextEmpty = (nextEmpty + 1) % MAX
ret = true;

}
lock.Release();
return ret;

}

bool
TSQueue::tryRemove(int *item)
{

bool ret = false;
lock.Acquire();
if (nFull > 0){

*item = items[firstFull] ;
nFull--;
firstFull = (firstFull + 1) % MAX
ret = true;

}
lock.Release();
return ret;

}

Using the queue
int main (int argc, char **argv)
{

TSQueue * queue[3];
sthread_t workers[3];;
int ii, jj, ret;
bool success;

for (ii = 0; ii < 3; ii++) {
queues[ii] = new TSQueue();
sthread_create_p(&workers[ii], putSome,

 queues[ii]);

for (ii = 0; ii < 3; ii++) {
printf (“Queue %d: \n”, ii);
for (jj = 0; jj < 20; jj++) {

success = queues[ii]->tryRemove(&ret);
if (success) {

printf(“Got %d\n”, ret);
}
else {

printf(“Nothing there\n”);
}

}
}

}

void *putSome(void *tsqueuePtr) {
int ii;
TSQueue * queue = (TSQueue *) tsqueuePtr;

for (ii = 0; ii < 100; ii++) {
queue->tryInsert(ii);

}
return NULL;

}

Implementing locks

Generally requires some degree of hw support

Two common approaches
Disable interrupts

uniprocess architectures only

Atomic read-modify-writes instructions
uni and multi-processor architectures

Disabling Interrupts
Key observations:

On a uni-processor, an operation is atomic if no
context-switch in the middle of the operation

Mutual exclusion by preventing context switch
Context switch occurs because of:

Internal events: system calls and exceptions
External events: interrupts

Preventing context switches
Eliminate internal events: easy (under program control)
Eliminate external events: disable interrupts!

A simple solution
Lock::Acquire() { disable interrupts(); }
Lock::Release() { enable interrupts(); }

A simple solution

Once interrupts are disabled, thread can’t be
stopped

Critical section can be very long
can’t wait too long to respond to interrupts

Lock::Acquire() { disable interrupts(); }
Lock::Release() { enable interrupts(); }

flawed A better solution
(queueing locks on a uniprocessor)

Disable interrupts just to protect the lock’s data
structure

Reenable interrupts as soon as lock is acquired

class Lock {
private:

int value = FREE;
Queue waiting;

void Lock::Release() {
disableInterrupts();
if (waiting.notEmpty() {

move one TCB from waiting to ready
}
else {

value = FREE;
}
enableInterrupts();

}
}

public:
void Lock::Acquire() {

disableInterrupts();
if (value = BUSY) {

waiting.add (current thread’s TCB);
suspend();

}
else {

value = BUSY;
}
enableInterrupts();

}

A better solution
(queueing locks on a uniprocessor)

Disable interrupts just to protect the lock’s data
structure

Reenable interrupts as soon as lock is acquired

class Lock {
private:

int value = FREE;
Queue waiting;

void Lock::Release() {
disableInterrupts();
if (waiting.notEmpty() {

move one TCB from waiting to ready
}
else {

value = FREE;
}
enableInterrupts();

}
}

public:
void Lock::Acquire() {

disableInterrupts();
if (value = BUSY) {

waiting.add (current thread’s TCB);
suspend();

}
else {

value = BUSY;
}
enableInterrupts();

}

Ready Running

Waiting

lock queues

ready
queue

Of course, threads
may not be reenabled
in a FIFO order!

A better solution
(queueing locks on a uniprocessor)

Disable interrupts just to protect the lock’s data
structure

Reenable interrupts as soon as lock is acquired

class Lock {
private:

int value = FREE;
Queue waiting;

void Lock::Release() {
disableInterrupts();
if (waiting.notEmpty() {

move one TCB from waiting to ready
}
else {

value = FREE;
}
enableInterrupts();

}
}

public:
void Lock::Acquire() {

disableInterrupts();
if (value = BUSY) {

waiting.add (current thread’s TCB);
suspend();

}
else {

value = BUSY;
}
enableInterrupts();

}

Thread calls suspend() with interrupts disabled:
who reenables them?

The next thread to run!

What about
multiprocessors?

Disabling interrupts is not enough!

Atomic Read-Modify write instructions
Test&Set

atomically
reads a value from a memory location
writes “1” to that location

Compare&Swap (CAS)
atomically

compares content of a memory location to a given value
if identical, sets memory location to a given new value

Load linked/Store conditional (LL/SC)
LL returns the value of a memory location
A subsequent SC to that memory location succeeds only if
that location has not been updated since LL

Multiprocessor spinlocks

A thread waiting for a BUSY lock “spins”
not too bad as long as critical section is much shorter
than time between context switches

class SpinLock {
private:

int value = 0; // 0 = FREE; 1 = BUSY

public:
void SpinLock::Acquire() {

while (test_and_set (&value)) // while BUSY
; // spin

}

void SpinLock::Release() {
value = 0;

}
}

Multiprocessor
queueing locks

class Lock {
private:

SpinLock spinlock;
int value = FREE;
Queue waiting;

public:
void Lock::Release() {

spinlock.Acquire();;
if (waiting.notEmpty() {

otherTCB = waiting.removeOne();
readyList->add(otherTCB);

}
else {

value = FREE;
}
spinLock.Release();

}

void Lock::Acquire() {
spinlock.Acquire();
if (value = BUSY) {

disableInterrupts();
readyList->removeSelf(myTCB);
waiting.add (myTCB);
spinlock.Release();
suspend();
enableInterrupts();

}
else {

value = BUSY;
spinlock.Release();

}
}

}

Multiprocessor
queueing locks

class Lock {
private:

SpinLock spinlock;
int value = FREE;
Queue waiting;

public:
void Lock::Release() {

spinlock.Acquire();
if (waiting.notEmpty() {

otherTCB = waiting.removeOne();
readyList->add(otherTCB);

}
else {

value = FREE;
}
spinLock.Release();

}

void Lock::Acquire() {
spinlock.Acquire();
if (value = BUSY) {

disableInterrupts();
readyList->removeSelf(myTCB);
waiting.add (myTCB);
spinlock.Release();
suspend();
enableInterrupts();

}
else {

value = BUSY;
spinlock.Release();

}
}

}

 Disable interrupts to avoid
“context switch of death”

Multiprocessor
queueing locks

class Lock {
private:

SpinLock spinlock;
int value = FREE;
Queue waiting;

public:
void Lock::Release() {

spinlock.Acquire();
if (waiting.notEmpty() {

otherTCB = waiting.removeOne();
readyList->add(otherTCB);

}
else {

value = FREE;
}
spinLock.Release();

}

void Lock::Acquire() {
spinlock.Acquire();
if (value = BUSY) {

disableInterrupts();
readyList->removeSelf(myTCB);
waiting.add (myTCB);
spinlock.Release();
suspend();
enableInterrupts();

}
else {

value = BUSY;
spinlock.Release();

}
}

}

 Disable interrupts to avoid
“context switch of death”

 readyList is protected
by its own (spin) lock!

Beyond mutual exclusion

Locks provide mutual exclusion
protect critical sections
implementation may involve a critical section

Atomic RMW-operations to break cycle

“There are more things in heaven and earth...”
wait for another thread to take action

wait to remove item until bounded queue is not empty

Polling

Check repeatedly the state of interest

int TSQueue::remove()
{

int ret;
bool empty;
do {

empty = tryRemove(&ret);
} until (!empty)
return ret;

}

Wasteful
may actually delay running the
thread that will change the state
and restore progress!

Adding a delay after each check
is no fix

suspending and scheduling is not
free
higher latency

Condition Variables
Enable threads to wait efficiently for changes to
shared state protected by a lock

Has no state... just a waiting queue
not much of a variable!

Three methods
CV::wait(Lock *lock)

releases lock and atomically suspends calling thread by moving
its TCB on the waiting queue

CV:signal()
moves one thread from waiting queue to ready list; no-op if none

CV::broadcast()
moves all threads from waiting queue to ready list; no-op if none

How do we use
condition variables?

IMPORTANT
no atomicity between signal() and return from wait()

when formerly waiting thread finally runs, test on shared
state may not pass!

wait must always be called within a loop

SharedObject::someMethodThatWaits()
{

lock.Acquire();
// read or write shared state here

while(!testOnSharedState()) {
cv.wait(&lock};

}
assert(testOnSharedState());
// read or write shared state here
lock.Release()

}

SharedObject::someMethodThatSignals()
{

lock.Acquire();
// read or write shared state here

// If the state has changed in a way
that allows another thread to make
progress, signal (or broadcast) on the
appropriate cv
cv.signal();
lock.Release()

}

Blocking Bounded Queue
#include “Cond.h”
const int MAX = 10;
class BBQ {

private
// Syncrhonization variables
Lock lock;
Cond itemAdded;
Cond itemRemoved;
// State variables
int items[MAX];
int nFull;
int firstFull;
int nextEmpty;

public:
BBQ();
~BBQ(){ };
bool insert(int item);
bool tryRemove(int *item);

private:
inline bool isFull() {

return (nFull == MAX ? true : false);
}
inline bool isEmpty() {

return (nFull == 0 ? true : false);
}

}

BBQ.h

void BBQ:: insert(int item)
{

lock.Acquire();
while(isFull()) {

itemRemoved.Wait(&lock};
}
assert(! isFull());
items[nextEmpty] = item;
nFull++;
nextEmpty = (nextEmpty + 1) % MAX

itemAdded.Signal()
lock.Release()
return;

}

int BBQ:: remove(void)
{

int ret;
lock.Acquire();
while(isEmpty()) {

itemAdded.Wait(&lock};
}
assert(! isEmpty());
ret = items[firstFull];
nFull--;
firstFull = (firstFull + 1) % MAX

itemRemoved.Signal()
lock.Release()
return ret;

}

BBQ:: BBQ()
{

nFull = 0;
firstFull = 0;
nextEmpty = 0;

}

BBQ.cc

CV semantics:
Hansen vs. Hoare

The condition variables we have defined obey
Hansen (or Mesa) semantics

signaled thread is moved to ready list, but mot
guaranteed to run right away

Hoare proposes an alternative semantics
signaling thread is suspended and, atomically,
ownership of the lock is passed to one of the waiting
threads, whose execution is immediately resumed

What are the
implications?

Hansen/Mesa semantics
signal() and broadcast() are hints

adding them affects
performance, never safety

Shared state must be checked in a
loop (could have changed)

robust to spurious wakeups

Simple implementation
no special code for thread
scheduling or acquiring lock

Used in most systems

Sponsored by a Turing Award
Butler Lampson

 Hoare semantics
signaling is atomic with the
resumption of waiting thread

shared state cannot change
before waiting thread is resumed

Shared state can be checked using
an if statement

Makes it easier to prove liveness

Tricky to implement

Used in most books

Sponsored by a Turing Award
Tony Hoare

Implementing
Condition Variables

void Cond::Wait(Lock *lock) {
spinlock.Acquire();
disableInterrupts();
readyList->removeSelf(myTCB);
waiting.add(myTCB);
lock->Release();
spinlock.Release();
suspend;

enableInterrupts();
lock.Acquire();

}

class Cond
{

private:
Spinlock spinlock;
Queue = waiting;

public:

void Cond::Signal() {
spinlock.Acquire();
if (waiting.notEmpty()) {

otherTCB = waiting removeOne();
readyList->add(otherTCB)

}
spinlock.Release();

}

void Cond::Broadcast() {
spinlock.Acquire();
if (waiting.notEmpty()) {

move all TCBs from
waiting to ready;

}
spinlock.Release();

}

}

Semaphores
Introduced by Dijkstra in the THE operating
system

Stateful
a semaphore has a non negative VALUE associated to it

Two operations

Semaphore::P()
wait until VALUE is positive
when so, atomically
decrement VALUE by 1

Semaphore::V()
increment VALUE by 1
resume (if any) a thread is
waiting on P(); that thread
will decrement VALUE and
return

Semaphores in mutex and
condition synchronization

General synchronization
initialize VALUE to 0
Semaphore::P() similar to
Cond::Wait(&lock)
Semaphore::(V) similar to
Cond::Signal()
BIG DIFFERENCE

if no one is waiting, signal() is a
no-op
V() always increments VALUE
useful when hw device and OS
share a data structure

Semaphore new mutex(1)

Jack/Jill/even Dame Dob!

Kitchen::buyIfNeeded() {
mutex.P():
if (milk == 0) {

milk++;
}

mutex.(V)();
}

Designing
multithreaded programs

Building a shared object class involves familiar steps
decompose the problem into objects
for each object

define a clear interface
identify right internal state an invariants
implement methods that manipulate state appropriately

The new steps are straightforward
add a lock
add code to acquire and release the lock
identify and add condition variables
add loops to wait using condition variable(s)
add signal() and broadcast() calls

Managing locks
Add a lock as a member variable for each object
in the class, to enforce mutual exclusion on the
object’s shared state

Acquire a lock at the start of each public method

Release the lock at the end of each public method
You will be tempted to acquire/release lock midway
through a method
RESIST!

Identifying
condition variables

Ask yourself: when can this method wait?

Map each opportunity for waiting to a condition
variable

itemRemoved vs itemAdded in BBQ example

But you can also live with a single CV
in BBQ, just use somethingChanged

Identifying
condition variables

Ask yourself: when can this method wait?

Map each opportunity for waiting to a condition
variable

itemRemoved vs itemAdded in BBQ example

But you can also live with a single CV
in BBQ, just use somethingChanged
...but now insert() and remove() need to call broadcast(),
not signal()

Waiting using
condition variables

Every call to Condition::Wait() should be enclosed
in a loop

Loop tests the appropriate predicate on the state

Hint: encapsulate details of state testing in a
private method function

get the structure of the public method right before
worrying about the details

Signal vs Broadcast
It is always safe to use broadcast() instead of
signal()

all that is affected is performance

signal() is preferable when
at most one waiting thread can make progress
any thread waiting on the condition variable can make
progress

broadcast() is preferable when
multiple waiting threads may be able to make progress
the same condition variable is used for multiple
predicates

some waiting threads can make progress; others can’t

The Six Commandments
1. Thou shalt always do things the same way

habit allows you to focus on core problem
easier to review, maintain and debug your code

2. Thou shalt always synchronize with locks and condition variables
either CV & locks or semaphores
CV and locks make code clearer

3. Thou shalt always acquire the lock at the beginning of a method
and release at the end

make a chunk of code that requires a lock its own
procedure

The Six Commandments
4. Always hold a lock when operating on a condition variable

condition variables are useless without shared state
shared state should only be accessed using a lock

5. Always wait in a while() loop
while works every time if does
makes signals hints
protects against spurious wakeups

6. (Almost) never sleep()
use sleep() only if an action should occur at a specific
real time
never wait on sleep()

Readers/Writers
Two types of users

Readers: never modify data
Writers: read and modify data

The problem: shared database access
Multiple threads can safely read a record
If a thread is writing a record, no other thread should
be reading or writing that record

Using a lock for mutual exclusion is inefficient
implement new RWLock shared object

rwLock->startRead();
// Read database entry
rwLock->doneRead();

rwLock->startWrite();
// Read/Write database entry
rwLock->doneWrite();

To read To write

Readers/Writers
Two types of users

Readers: never modify data
Writers: read and modify data

The problem: shared database access
Multiple threads can safely read a record
If a thread is writing a record, no other thread should
be reading or writing that record

Using a lock for mutual exclusion is inefficient
implement new RWLock shared object

rwLock->startRead();
// Read database entry
rwLock->doneRead();

rwLock->startWrite();
// Read/Write database entry
rwLock->doneWrite();

To read To write

Interface and
member variables

private:
// Synchronization
variables
Lock lock;
Cond readGo;
Cond writeGo;

// State variables
int activeReaders;
int activeWriters;
int waiting Readers;
int waitingWriters;

class RWLock{

public:
RWLock();
~RWLock() {};

// Public methods
void startRead();
void doneRead();
void startWrite();
void doneWrite();

}

}

whether
to wait

} whom to
signal

private:
// Functions testing
state
bool readShouldWait();;
bool writeShouldWait();

Interface and
member variables

private:
// Synchronization
variables
Lock lock;
Cond readGo;
Cond writeGo;

// State variables
int activeReaders;
int activeWriters;
int waiting Readers;
int waitingWriters;

class RWLock{

public:
RWLock();
~RWLock() {};

// Public methods
void startRead();
void doneRead();
void startWrite();
void doneWrite();

}

}

whether
to wait

} whom to
signal

private:
// Functions testing
state
bool readShouldWait();;
bool writeShouldWait();

Reading methods
rwLock->startRead();
// Read database entry
rwLock->doneRead();

To read

void RWLock::startRead()
{

lock.Acquire();
while(readShouldWait() {

waitingReaders++;
goRead.wait(&lock);
waitingReaders--;

}
activeReaders++;
lock.Release();

}

void RWLock::doneRead()
{

lock.Acquire();
activeReaders--;
if (waitingWriters > 0 and activeReaders == 0) {

goWrite.signal();
}
lock.Release();

}

Reading methods
rwLock->startRead();
// Read database entry
rwLock->doneRead();

To read

void RWLock::startRead()
{

lock.Acquire();
while(readShouldWait() {

waitingReaders++;
goRead.wait(&lock);
waitingReaders--;

}
activeReaders++;
lock.Release();

}

void RWLock::doneRead()
{

lock.Acquire();
activeReaders--;
if (waitingWriters > 0 and activeReaders == 0) {

goWrite.signal();
}
lock.Release();

}

Reading methods
rwLock->startRead();
// Read database entry
rwLock->doneRead();

To read

void RWLock::startRead()
{

lock.Acquire();
while(readShouldWait() {

waitingReaders++;
goRead.wait(&lock);
waitingReaders--;

}
activeReaders++;
lock.Release();

}

void RWLock::doneRead()
{

lock.Acquire();
activeReaders--;
if (waitingWriters > 0 and activeReaders == 0) {

goWrite.signal();
}
lock.Release();

}

Reading methods
rwLock->startRead();
// Read database entry
rwLock->doneRead();

To read

void RWLock::startRead()
{

lock.Acquire();
waitingReaders++;
while(readShouldWait() {

goRead.wait(&lock);
}
waitingReaders--;
activeReaders++;
lock.Release();

}

void RWLock::doneRead()
{

lock.Acquire();
activeReaders--;
if (waitingWriters > 0 and activeReaders == 0) {

goWrite.signal();
}
lock.Release();

}

Reading methods
rwLock->startRead();
// Read database entry
rwLock->doneRead();

To read

void RWLock::doneRead()
{

lock.Acquire();
activeReaders--;
if (waitingWriters > 0 and activeReaders == 0) {

goWrite.signal();
}
lock.Release();

}

void RWLock::startRead()
{

lock.Acquire();
waitingReaders++;
while(readShouldWait() {

goRead.wait(&lock);
}
waitingReaders--;
activeReaders++;
lock.Release();

}

Reading methods
rwLock->startRead();
// Read database entry
rwLock->doneRead();

To read

void RWLock::doneRead()
{

lock.Acquire();
activeReaders--;
if (waitingWriters > 0 and activeReaders == 0) {

goWrite.signal();
}
lock.Release();

}

void RWLock::startRead()
{

lock.Acquire();
waitingReaders++;
while(readShouldWait() {

goRead.wait(&lock);
}
waitingReaders--;
activeReaders++;
lock.Release();

}

Writing methods
rwLock->startWrite();
// Read database entry
rwLock->doneWrite();

To write

void RWLock::doneWrite()
{

lock.Acquire();
activeWriters--;
if (waitingWriters > 0} {

goWrite.signal();
}
else {

goRead.broadcast():
}
lock.Release();

}

void RWLock::startWrite()
{

lock.Acquire();
waitingWriters++;
while(writeShouldWait() {

goWrite.wait(&lock);
}
waitingWriters--;
activeWriters++;
lock.Release();

}

Writing methods
rwLock->startWrite();
// Read database entry
rwLock->doneWrite();

To write

void RWLock::doneWrite()
{

lock.Acquire();
activeWriters--;
if (waitingWriters > 0} {

goWrite.signal();
}
else {

goRead.broadcast():
}
lock.Release();

}

void RWLock::startWrite()
{

lock.Acquire();
waitingWriters++;
while(writeShouldWait() {

goWrite.wait(&lock);
}
waitingWriters--;
activeWriters++;
lock.Release();

}

Writing methods
rwLock->startWrite();
// Read database entry
rwLock->doneWrite();

To write

void RWLock::doneWrite()
{

lock.Acquire();
activeWriters--;
if (waitingWriters > 0} {

goWrite.signal();
}
else {

goRead.broadcast():
}
lock.Release();

}

void RWLock::startWrite()
{

lock.Acquire();
waitingWriters++;
while(writeShouldWait() {

goWrite.wait(&lock);
}
waitingWriters--;
activeWriters++;
lock.Release();

}

Writing methods
rwLock->startWrite();
// Read database entry
rwLock->doneWrite();

To write

void RWLock::doneWrite()
{

lock.Acquire();
activeWriters--;
if (waitingWriters > 0} {

goWrite.signal();
}
else {

goRead.broadcast():
}
lock.Release();

}

void RWLock::startWrite()
{

lock.Acquire();
waitingWriters++;
while(writeShouldWait() {

goWrite.wait(&lock);
}
waitingWriters--;
activeWriters++;
lock.Release();

}

State testing functions

bool RWLock::readShouldWait()
{

if (activeWriters > 0 ||
waitingWriters > 0) {
return true;

}
return false;

}

bool RWLock::writeShouldWait()
{

if (activeWriters > 0 ||
 activeReader > 0) {

return true;
}
return false;

}

State testing functions

bool RWLock::readShouldWait()
{

if (activeWriters > 0 ||
waitingWriters > 0) {
return true;

}
return false;

}

bool RWLock::writeShouldWait()
{

if (activeWriters > 0 ||
 activeReader > 0) {

return true;
}
return false;

}

State testing functions

bool RWLock::readShouldWait()
{

if (activeWriters > 0 ||
waitingWriters > 0) {
return true;

}
return false;

}

bool RWLock::writeShouldWait()
{

if (activeWriters > 0 ||
 activeReader > 0) {

return true;
}
return false;

}

State testing functions

bool RWLock::readShouldWait()
{

if (activeWriters > 0 ||
waitingWriters > 0) {
return true;

}
return false;

}

bool RWLock::writeShouldWait()
{

if (activeWriters > 0 ||
 activeReader > 0) {

return true;
}
return false;

}

