
Advanced Synchronization
and Deadlock

A house of cards?
Locks + CV/signal a great way to regulate access
to a single shared object...

...but general multi-threaded programs touch
multiple shared objects

How can we atomically modify multiple objects to
maintain

Safety: prevent applications from seeing inconsistent
states
Liveness: avoid deadlock

a cycle of threads forever stuck waiting for one another

Contra Threads: Events
John Ousterhout: “Why Threads Are a Bad Idea
(for most purposes)”
casual All programmers wizards

Visual basic programmers
C programmers

C++ programmers
Thread programmers

Contra Threads: Events
John Ousterhout: “Why Threads Are a Bad Idea
(for most purposes)”
casual All programmers wizards

Visual basic programmers
C programmers

C++ programmers
Thread programmers

Event-driven Programming
No concurrency: one execution stream
Register interest in events (callbacks)
Wait for events; invoke (short-lived)
handlers
Complicated only for unusual cases
Easier to debug

Event
Loop

H1 H2 H3 H4 H5

Multi-object
synchronization

Transfer $100 from account A to account B
A->subtract(100);
B->add(100);

Fine-grain locking
Hash table:

put(key, value) value = get(key) value = remove(key)
one lock for whole table? one lock per bucket?

Complexity vs Performance
Beware of premature optimizations!

} Individual operations are atomic
Sequence is not

Solutions:
Careful class design

You design the API!
Too Much Milk with 2 objects

Fridge! Fridge::checkForMilk(); Fridge::addMilk()
Note!! Note::readNote(); noteWriteNote()

back to square one...
Instead

Fridge::checkForMilkAndSetNoteIfNeeded()
Fridge::addMilk()

No panacea
still need to think carefully how objects interact

Solutions:
Serialization

Divide work into logically separate tasks

Ensure serializable execution of tasks
tasks may execute concurrently...
...but result of each task equivalent to what would be
obtained if tasks executed one at a time in some
serial order

A few ways to get there
one big lock
lock-all/release-all
two phase locking

Solutions:
Serialization

Divide work into logically separate tasks

Ensure serializable execution of tasks
tasks may execute concurrently...
...but result of each task equivalent to what would be
obtained if tasks executed one at a time in some
serial order

A few ways to get there
one big lock
lock-all/release-all

need to know all locks

two phase locking

Lock(A,B) A=A+1 B=B+2 Unlock(A,B)

Lock(C,D) C=C+3 D=D+4 Unlock(C,D)

Lock(A,B) A=A+5 B=B+6 Unlock(A,b)

Lock(A,B) A=A+1 B=B+2 Unlock(A,B)

Lock(C,D) C=C+3 D=D+4 Unlock(C,D)

Lock(A,B) A=A+5 B=B+6 Unlock(A,b)

Equivalent sequential execution

Solutions:
Serialization

Divide work into logically separate tasks

Ensure serializable execution of tasks
tasks may execute concurrently...
...but result of each task equivalent to what would be
obtained if tasks executed one at a time in some
serial order

A few ways to get there
one big lock
lock-all/release-all
two phase locking

serializable

Phase 1
acquire locks

upgrade reader to writer
lock if necessary

Phase 2
release locks

downgrade writer to reader
lock if necessary

Solutions:
ownership pattern

Shared container
put things in; take them out; access them without a
lock (own them)

Network Stage Parse Stage Render Stage
One thread/network connection One thread/object One thread/object

Solution:
staged architecture

Each stage has local state and some thread that
operate on it

No state shared across stages

Connect
Read
and

Parse

Read
Static
Page

Generate
Dynamic

Page

Send
Page

Deadlock
A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Mutually recursive
locking

lock.Acquire()

lock.Acquire()

waiting
for unlock

waiting
for unlock

1

2

S1

S2

Nested waiting

lock.Acquire()

lock.Acquire() waiting
for unlock

waiting for signal

1 2

S1

S2

Dining Philosophers

N philosophers; N plates; N chopsticks

If all philosophers grab right chopstick
deadlock!

Deadlock only if the all hold
Bounded resources

A finite number of threads can use a
resource; resources are finite

No preemption
the resource is mine, MINE! (until I
release it)

Wait while holding
holds one resource while waiting for
another

Circular waiting
Ti waits for Ti+1 and holds a resource
requested by Ti-1
sufficient if one instance of each
resource

Not sufficient in general

P1

P0

P2P3

P4

waiting for

owned
by

Necessary conditions
for deadlock

cycle

Preventing deadlock
Remove one of the necessary conditions

Provide sufficient resources
Removes “Bounded resources”

Preempt resources
Removes “No preemption”

Abort requests
Removes “Wait while holding”

Atomically acquire all resources
Removes “Wait while holding”

Lock ordering
Removes “Circular waiting”
Nested waiting?

Avoiding Deadlock:
The Banker’s Algorithm

Sum of maximum resources
needs can exceed the total
available resources

if there exists a schedule of
loan fulfillments such that

all clients receive their
maximal loan
build their house
pay back all the loan

More efficient than acquiring
atomically all resources

E.W. Dijkstra & N. Habermann

Living dangerously:
Safe, Unsafe, Deadlocked

Safe: For any possible set of resource
requests, there exists one safe schedule of
processing requests that succeeds in granting
all pending and future requests

no deadlock as long as system can
enforce safe schedule

Unsafe: There exists a set of (pending and
future) resource requests that leads to a
deadlock, for any schedule in which requests
are processed

unlucky set of requests can force
deadlock

Deadlocked: The system has at least one
deadlock

Safe

Deadlock

Unsafe

A system’s trajectory
through its state space

The Banker’s books
Maxij = max amount of units of resource Rj needed by Pi

MaxClaimi = Maxij

Allocij = current allocation of Rj held by Pi

HasNowi = Allocij

Availj = number of units of Rj available

A request by Pk is safe if there is schedule P1, P2,...Pn such
that, for all Pi, assuming the request is granted,

mX

j=1

mX

j=1

MaxClaimi-HasNowi ≤ Avail + HasNowi
i�1X

j=1

An Example
5 processes, 4 resources

Is this a safe state?

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Alloc

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Avail
R1 R2 R3 R4

An Example
5 processes, 4 resources

Is this a safe state?

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Alloc

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Avail
R1 R2 R3 R4

-
0 0 0 0
0 7 5 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

MaxRequest

While safe sequence does not include all processes:
Is there a Pi such that MaxRequesti ≤ Avail?

if no, exit with unsafe

if yes, add Pi to the sequence and set Avail = Avail + HasNowi

Exit with safe

P1, P4, P2, P3, P5

An Example
5 processes, 4 resources

P2 want to change its allocation to

Safe?

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Alloc

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Avail
R1 R2 R3 R4

0 0 0 0
0 7 5 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

MaxRequest

0 4 2 0

An Example
5 processes, 4 resources

P2 want to change its allocation to

Safe?

0 0 1 2
0 4 2 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Alloc

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

2 1 0 0

Avail
R1 R2 R3 R4

0 0 0 0
1 3 3 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

MaxRequest

0 4 2 0

Detecting Deadlock
5 processes, 3 resources

Given the set of pending requests, is there a safe
sequence?

If no, deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Alloc

0 0 0

Avail
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

Detecting Deadlock
5 processes, 3 resources

Given the set of pending requests, is there a safe
sequence?

If no, deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Alloc

0 0 0

Avail
R1 R2 R3

0 0 0
2 0 2
0 0 1
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

Deadlock triggered when request is formulated,
not granted

