A house of cards?

@ Locks + CV/signal a great way to regulate access

. . to a single shared object..
Advanced Synchronization T

@ ..but general multi-threaded programs touch
and Dead IOCk mu.U:LIgte. shared objects

@ How can we atomically modify multiple objects to
maintain

n Safety: prevent applications from seeing inconsistent
states

o Liveness: avoid deadlock

» a cycle of threads forever stuck waiting for one another

Contra Threads: Events

Contra Threads: Events

@ John Ousterhout: *Why Threads Are a Bad Idea @ John Ousterhout: *Why Threads Are a Bad Idea
(for most purposes)” (for most purposes)”

casual All programmers wizards
[
e Visual {basiciprogramme RS fe——r e

casual All programmers wizards
[

e Visual {basiciprogramme RS fe e e
<«——— C programmers
e i i

<«——— C programmers
<— C++ programmers ———————>

T e e

& Ct+ programmers ———=—xr—"
Thread programmers <—>

Thread programmers <—>

Event-driven Programming
@ No concurrency: one execution stream
@ Register interest in events (callbacks)
@ Wait for events; invoke (short-lived)

handlers
® Complicated only for unusual cases
@ Easier fo debug

Multi-object
synchronization

@ Transfer $100 from account A to account B
o A->subtract(100); Individual operations are atomic
n B->add(100); Sequence is not
@ Fine-grain locking
o Hash table:
» put(key, value) value = get(key) value = remove(key)
» one lock for whole table? one lock per bucket?
@ Complexity vs Performance

o Beware of premature optimizations!

Solutions:
Serialization

@ Divide work into logically separate tasks

@ Ensure serializable execution of tasks

o tasks may execute concurrently...

o ..but result of each task equivalent to what would be
obtained if tasks executed one at a time in some
serial order

@ A few ways to get there

o one big lock

o lock-all/release-all

o two phase locking

Solutions:
Careful class design

@ You design the API!

o Too Much Milk with 2 objects
» Fridge Fridge::checkForMilk(); Fridge::addMilk()
» Note Note::readNote(); noteWriteNote()

o back to square one...

o Instead
» Fridge::checkForMilkAndSetNoteIfNeeded()
» Fridge::addMilk()

@ No panacea

o still need to think carefully how objects interact

Solutions:
Serialization

@ Divide work into logically separate tasks

@ Ensure serializable execution of tasks
n fasks may execute concurrently...

o ..but result of each task equivalent to what would be
obtained if tasks executed one at a time in some
serial order

o A few ways to get there

o one blg IOCK Lock(A,B) A=A+l B=B+2 Unlock(A,B)

Lock(CD) C=C+3 D=D+4 Unlock(C,D)

o lock—all/release—all Lock(AB) A=A+5 B=B+6 Unlock(Ab)

need to know: alltlocks Equivalent sequential execution

Lock(A,B) A=A+l B=B+2 Unlock(A,B)

o two Phase locking Lock(CD) C=C+3 D=D+4 Unlock(C,D)

Lock(A,B) A=A+5 B=B+6 Unlock(A,b)

Solutions:
Serialization

@ Divide work into logically separate tasks

@ Ensure serializable execution of tasks
n fasks may execute concurrently...

o ..but result of each task equivalent to what would be
obtained if tasks executed one at a time in some
serial order

o A few ways to get there
n one big lock
o lock-all/release-all

Phase 1 Phase 2
o 1'WO Phase lOCking o acquire locks o release locks

» upgrade reader to writer » downgrade writer to reader
S ot lock if necessary lock if necessary
» serializable

Solution:
staged architecture

@ Each stage has local state and some thread that
operate on it

@ No state shared across stages

Solutions:
ownership pattern

® Shared container

o put things in; take them out; access them without a
lock (own them)

b4 L
%D %D%D %D%D S

Network Stage

O

Parse Stage Render Stage

One thread/network connection One thread/object One thread/object

Deadlock

@ A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Mutually l'”ecurswe Nested waiting
locking

A4
" waiting lock.Acquire()
for unlock '
Sz LIS
lock.Acquire() waiting for signal

A

£,

Dining Philosophers

@ N philosophers; N plates; N chopsticks

@ If all philosophers grab right chopstick
o deadlock!

Preventing deadlock

@ Remove one of the necessary conditions
o Provide sufficient resources

» Removes “"Bounded resources”
Preempt resources
» Removes "No preemption”
Abort requests
» Removes "Wait while holding”
Atomically acquire all resources
» Removes "Wait while holding”
Lock ordering
» Removes “Circular waiting”

» Nested waiting?

Necessary conditions
for deadlock

@ Deadlock only if the all hold

o Bounded resources

Not sufficient in general

» A finite number of threads can use a
resource; resources are finite

E iting
No preemption e

» the resource is mine, MINE! (until I
release it)

Wiait while holding

» holds one resource while waiting for
another

Circular waiting

» T waits for Ti+l and holds a resource
requested by Ti

sufficient if one instance of each
resource

Avoiding Deadlock:
The Bankers Algorithm

E.W. Dijkstra & N. Habermann

@ Sum of maximum resources
needs can exceed the total
available resources
o if there exists a schedule of

loan fulfillments such that

all clients receive their
maximal loan

build their house

pay back all the loan

efficient than acquiring
atomically all resources

Living dangerously:
Safe, Unsafe, Deadlocked

Unsafe

: Deadloyc_ﬁl:si A

A system’s trajectory
through its state space

@ Safe: For any possible set of resource

requests, there exists one safe schedule of
processing requests that succeeds in granting
all pending and future requests

o no deadlock as long as system can
enforce safe schedule

Unsafe: There exists a set of (pending and
future) resource requests that leads to a
deadlock, for any schedule in which requests
are processed

o unlucky set of requests can force
deadlock

Deadlocked: The system has at least one
deadlock

An Example

The Bankers books

Maxi; = max amgun’r of units of resource Rj needed by P;
o MaxClaim; = Z Maxi;

—
Alloc; = current allocation of R; held by P;
o HasNow; = Z AllOCij

=k

Avail;j = numb]e:r of units of R; available

A request by Py is safe if there is schedule P;, P,...Ps such
that, for all P;, assuming the request is granted,

1—1

MaxClaimi-HasNow; < Avail + Z HasNowi

Jj=1

An Example

@ 5 processes, 4 resources @ 5 processes, 4 resources

Max Alloc i i MaxRequest
R Rs Ri Rz Rs R Ri Rz Rs R
0 : r [0 St ‘ 2l Ersee P ololo ol
P, BIFOF0 ‘ | SO0 p. 01715
Ps Bl iaT 35 6 1 fsfsts P, RIG
P, fofiets : 2 fofefst P lo 0
Ps ' : ‘ Ps [0 6

@ Is this a safe s’ra’re?-ﬁ{Pl' Pa, P2, Ps, ps)

o While safe sequence does not include all processes:

@ Is this a safe state?

» Is there a Pj such that MaxRequest; < Avail?
- if no, exit with unsafe
- if yes, add P; fo the sequence and set Avail = Avail + HasNow;

o Exit with safe

An Example

@ 5 processes, 4 resources

Max Alloc Avail MaxRequest

Ri Rz Rs R Ri Rz Rs R RiR Ry RY Ri Rz Rs R
P00 1 2 P fofofidez b pololoo
p.[1 00 0 p.[o 7
P, af3isis P; 1 0
3 0

6

P, EOds6sE3H P, 0
Ps [0 114 Ps 0

@ P2 want to change its allocation to [giaRaio]

@ Safe?

Detecting Deadlock

@ 5 processes, 3 resources

Avail Pending
Ri Rz R; Ri R:
SR P

P2
Ps
Py

Ps

@ Given the set of pending requests, is there a safe
sequence?

o If no, deadlock

An Example

@ 5 processes, 4 resources

Max Alloc Avail MaxRequest

Ri Rz R3 Ry Ri R2 R3 Ry Ri Rz R3; Ry Ri Rz R3s R4
P00 1 2 p fofofite o= pololoo
P, [ofateto P [1

p; [N 57'|3 Ps 1

P, EOMRETaTe P, 0

Ps |0 114 Ps 0

@ P2 want to change its allocation to [giaizio]

@ Safe?

Detecting Deadlock

@ 5 processes, 3 resources

Avail Pending
RZ R3 Rl RZ R3

P 5035.035.60
P, 25880082

P; RGN ll
P, B0 SR2
Ps BEHEG6.2

@ Given the set of pending requests, is there a safe
sequence?

o If no, deadlock

@ Deadlock triggered when request is formulated,
not granted

