
Memory Management

The Virtual Memory 
Abstraction

Physical Memory

Unprotected address space

Limited size

Shared physical frames

Easy to share data

Virtual Memory

Programs are isolated

Arbitrary size

All programs loaded at “0”

Sharing is possible

Address spaces: 
Physical and Virtual

Physical address space consists of the 
collection of memory addresses supported by 
the hardware

Virtual address space consists of the 
collection of addresses that the process can 
“touch”

Note: CPU generates virtual addresses

Address Translation

A function that maps                          
into  

a486d9

5e3a07

Virtual Physical

Advantages:

protection
relocation
data sharing
multiplexing

〈pid, virtual address〉
physical address

pi
function implemented through 
a combination of hw and sw



Protection

At all times, the functions used by different 
processes map to disjoint ranges

pi

pj

Relocation

The range of the function used by a process 
can change over time

pi

Relocation

The range of the function used by a process 
can change over time

pi

Data Sharing

Map different virtual addresses of different 
processes to the same physical address

pi

pj

5e3a07

04d26a

119af3



Contiguity

Contiguous addresses in the domain need not 
map to contiguous addresses in the codomain

pi

Contiguity

Contiguous addresses in the domain need not 
map to contiguous addresses in the codomain

pi

Multiplexing

The domain (set of virtual addresses) that 
map to a given range of physical addresses 
can change over time

pi

Multiplexing

The domain (set of virtual addresses) that 
map to a given range of physical addresses 
can change over time

pi



Multiplexing

The domain (set of virtual addresses) that 
map to a given range of physical addresses 
can change over time

pi

Multiplexing

The domain (set of virtual addresses) that 
map to a given range of physical addresses 
can change over time

pi

Multiplexing

The domain (set of virtual addresses) that 
map to a given range of physical addresses 
can change over time

pi

One idea, 
many implementations

Base and limit
Segment table

maps variable-sized ranges of 
contiguous VAs to a range of 
contiguous PAs

Page table
map fixed-size ranges of 
contiguous VAs to fixed sized 
ranges of contiguous PAs

Paged segmentation
Multilevel page tables
Inverted page table

It’s all just a lookup...

Virtual Address Physical Address

0 a30940
1 56bb03
10 240421

unmapped
unmapped
unmapped

ffffff d82a04



Base & Limit

CPU ≤ +
p’s physical 
address 
space

500 1000

yes

no

Memory
Exception

Logical
addresses

Physical
addresses

Limit
Register

Base
Register

1500

1000

0

MAXsys

Implementation
HW

Add base and bound 
registers to CPU

SW
Add base and bound 
registers to PCB
On context switch, 
change B&B 
(privileged)

On Base & Limit

Contiguous Allocation: contiguous virtual 
addresses are mapped to contiguous physical 
addresses
Protection is easy, but sharing is hard

Two copies of emacs: want to share code, but have 
data and stack distinct...

Managing heap and stack dynamically is hard
We want them as far as as possible in virtual 
address space, but...

Contiguous allocation:
multiple variable partitions
OS keeps track of empty 
blocks (“holes”)

Initially, one big hole!

Over time, a queue of 
processes (with their 
memory requirements) and 
a list of holes

OS decides which process 
to load in memory next

Once process is done, it 
releases memory

p1

OS

p2

p6

p4

p9

p10

p11

OS queue

Strategies for Contiguous 
Memory Allocation

First Fit

Allocate first big-enough hole

Next Fit

As first fit, but start to search where you 
previously left off 

Best Fit

Allocate smallest big-enough hole



Fragmentation
External fragmentation

Unusable memory between 
units of allocation

p1

OS

p2

p6

p4

p9

p11

OS queue

Fragmentation
External fragmentation

Unusable memory between 
units of allocation

Internal fragmentation
Unusable memory within a 
unit of allocation

p1

OS

p2

p4

p11

p6

Fragmentation
External fragmentation

Unusable memory between 
units of allocation

Internal fragmentation
Unusable memory within a 
unit of allocation

Internal Fragmentation

p1

OS

p2

p4

p11

p6

Eliminating External 
Fragmentation: Compaction

Relocate programs to 
coalesce holes

Problem with I/O
Pin job in memory 
while it is performing 
I/O
Do I/O in OS buffers

p1

OS

p2

p6

p11



Eliminating External 
Fragmentation: Swapping
Preempt processes and 
reclaim their memory

Move images of 
suspended processes 
to backing store

Ready Running

WaitingSuspended

Semaphores/condition queues

Ready 
queue

Suspended 
queue

OS

p1

p2

swap out

swap in

E Pluribus Unum

From a user’s perspective, a process is a 
collection of distinct logical address spaces

Code

Global vars

Stack

Heap

Librares

E Pluribus Unum

From a user’s perspective, a process is a 
collection of distinct logical address spaces

Code

Global vars

Stack

Heap

Librares

Contiguous mapping of 
addresses within segment

Holes in Virtual address 
space: a problem?

Think of address as    

  is the segment number

  is the offset within the 
segment

We call these 
logical address 
spaces segments

s

o

(s, o)

Implementing Segmentation

CPU

≤ + p’s segment

500 1000

yes

no

Memory
Exception

Logical
addresses

Physical
addresses

Limit Base

1500

1000

0

MAXsys

base limit

STBR

s o

s

Segment table 
generalizes base & limit

Segment Table Base Register



On Segmentation
Sharing a segment is easy!

Protection bits control access 
to shared segments

External fragmentation...

Each process maintains a 
segment table, which is saved 
to PCB on a context switch

Fast?

How do we enlarge a segment?

400

1000

1300

2300

2500

2700

2900

3100
3200

3700

base limit

400 600

2900 200

2500 200

3200 500

1300 1000

Paging
Allocate VA & PA memory in fixed-sized 
chunks (pages and frames, respectively)

memory allocation can use a bitmap
typical size of page/frame: 4KB to 16KB

Gives illusion of contiguity...
...but adjacent pages in VA need not map to 
contiguous frames in PA

Of course, now internal fragmentation...

Virtual address

Two components
page number
offset within page

}32 bits

Virtual address

Two components
page number - how many pages in the VA
offset within page - how large is a page?

}12 bits}20 bits

To access a piece of data
extract page number
extract offset
translate page number to frame number
access data at offset in frame



Virtual address

Two components
page number - how many pages in the VA
offset within page - how large is a page?

To access a piece of data
extract page number
extract offset
translate page number to frame number
access data at offset in frame

}12 bits}20 bits

8

4
0
6
1
2

Page table

0
1
2
3
4

220 -1

.

.

.

.

.

.

.

.

.

.

.

Basic Paging Implementation

CPU

≤ yes

no

Memory
Exception

Logical
addresses

Physical
addresses

f

PTBR

o

Page Table Base Register

p

p

Frame
size

f

f 
o

Page Table

Speeding things up

CPU ≤
yes

Memory
Exception

Physical
addresses

f

PTBR

o

Segment Table Base Register

p

f

f 

p o

TLB miss

TLB hit

page # frame #

TLB

no

EAT: (1+ε)α+(2+ε)(1−α)
= 2+ε−α (  : hit ratio)α

Sharing

Processes share pages by 
mapping virtual pages tot 
he same memory frame

code segments of 
processes running same 
program can share pages 
with executables

Fine tuning using 
protection bits (rwx)

Page Table
Process 1Page Table

Process 0

Physical
Memory



Memory Protection

Used valid/invalid bit to indicate which 
mappings are active

4 i
7 i
2 i
0 i
7 v
6 i
5 v
4 i
2 i
0 i
3 v
4 v
0 v
6 v
1 v
2 v

Page table

11
2
9
4
5
0
1
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
frames}

Protection
bits

Caching
disabled

Referenced

Modified

Valid/
invalid

What happens 
on a TLB miss?

Can be handled in software or hardware

 Software
TLB generates trap

Switch to kernel mode

OS does translation

OS loads new TLB entry 
and returns from trap

     On Context Switch
Flush TLB   or  add PID tag to TLB

add a CPU register

change PID register 
on context switch

 Hardware
HW includes PTB register 

HW follows pointer and does 
look up in page table

Exception handler invoked only 
if no/bad mapping/permission

     On Context Switch
change value stored in PTB register

flush TLB

Space overhead

Two sources 
data structure overhead (the page table!)
fragmentation

How large should a page be?

Overhead for paging: 
(#entries x sizeofEntry) + (#“segments” x pageSize/2)
((VA_Size/pagesize) x sizeofEntry) + (#“segments” x pageSize/2)

=
=

Size of entry
enough bits to identify physical page (log2 (PA_Size / page size))
should include control bits (valid, modified, referenced, etc)
usually word or byte aligned

Computing paging 
overhead

1 MB maximum VA, 1 KB page, 3 segments (program, 
stack, heap)

((220 / 210) x sizeofEntry) + (3 x 29)
If I know PA is 64 KB then  sizeofEntry = 6 bits (26 
frames) + control bits

if 3 control bits, byte aligned size of entry: 16 bits



Oops...

What is the size of the 
page table for a machine 
with 64-bit addresses 
and a page size of 4KB? 

Good news
much of the space is 
unused

Use a smarter data 
structure to capture 
page table

tree!

PTE 0
PTE 1

PTE 2 (null)
PTE 3 (null)
PTE 4 (null)
PTE 5 (null)
PTE 6 (null)
PTE 7 (null)

PTE 8

(1K - 9)
null PTEs

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023

PTE 1023

1023 null
PTEs

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023
unallocated

pages
VP 9215

unallocated 
pages

32 bit address space
4Kb pages
4 bytes PTE

} 2K pages
code/data

}6K pages
unallocated

1023 pages
unallocated}
1 page 

for stack

Multi-level Paging

Structure virtual 
address space as a tree

Virtual address of a SPARC
p1 p2 op3

8 6 6 12

0

255

1

0

63 v

0

63

0

4K

8K

16K

p1

p2

p3

PTBR

Examples

Two level paging }12 bits}20 bits

Examples

Two level paging

Outer page table fits in a page
Rest of page table allocated in page-size chunks

}12 bits}20 bits



Examples

Two level paging

Outer page table fits in a page
Rest of page table allocated in page-size chunks
internal fragmentation (where?)
increased TLB miss time

}12 bits}10 bits }10 bits

Examples

64-bit VA; 2K page; 4 byte/entry

How many levels?
each page table includes 512 entries (29)
number of pages = 264/211

number of levels - 53/9 = 6 (rounded up)

The Challenge of Large 
Address Spaces 

With large address spaces (64-bits) page 
tables become cumbersome

5/6 levels of tables

A new approach---make tables proportional 
to the size of the physical, not the virtual, 
address space

virtual address space is growing faster 
than physical

Page Registers
(a.k.a. Inverted Page Tables)

For each frame, a 
register containing

Residence bit
 is the frame 
occupied?

Page # of the 
occupying page
Protection bits 

An example
16 MB of memory
Page size: 4k 
# of frames: 4096
Used by page 
registers (8 bytes/
register): 32 KB
Overhead: 0.2%
Insensitive to size 
of virtual memoryCatch?



Basic Inverted 
Page Table Architecture

CPU pid p offset

pid p

} fsearch

f offset

Inverted Page Table

Physical 
Memory

Where have all the 
pages gone?

Searching 32KB of registers on every 
memory reference is not fun

If the number of frames is small, the page 
registers can be placed in an associative 
memory---but...

Large associative memories are expensive
hard to access in a single cycle.
consume lots of power 

The BIG picture

CPU

Physical
memory

Translator
Box

vaddr paddr

The BIG picture

CPU
vaddr

Virtually 
addressed cache

Vaddr data

if no 
match

if 
match

Paddr data

Physically 
addressed cache

if no 
match

Main
memory

TLB

vpage ppage

Segment and 
page table lookup

if no 
match

ppage
vpage

PTBR 
(per process) dictionary

if match

if match



Time Overhead

Average Memory Access Time (AMAT)

AMAT = TL1 + (PL1miss x TL1miss)

TL1miss = TTLB + (PTLBmiss x TTLBmiss) + TL2 + 
! ! ! ! (PL2miss x Tmem)

TTLBmiss = #references x (TL2 + PL2miss x Tmem)

To fill TLB

Demand Paging

Code pages are stored in a file on disk
some are currently residing in memory–most are 
not

Data and stack pages are also stored in a file
OS determines what portion of VAS is 
mapped in memory

this file is typically invisible to users
file only exists while a program is executing

Creates mapping on demand 

Page-Fault Handling
References to a non-mapped 
page (i in page table) generate   
a page fault

Handling a page fault:
Processor runs interrupt handler
OS blocks running process
OS finds a free frame
OS schedules read of unmapped page
When read completes, OS changes 
page table
OS restarts faulting process from 
instruction that caused page fault

free frame

CPU

i

Physical Memory

Page Table

OS

1

2

61 4

5

3

Secondary 
Storage

Page-Fault Handling
References to a non-mapped 
page (i in page table) generate   
a page fault

Handling a page fault:
Processor runs interrupt handler
OS blocks running process
OS finds a free frame
OS schedules read of unmapped page
When read completes, OS changes 
page table
OS restarts faulting process from 
instruction that caused page fault

free frame

CPU

Physical Memory

61 v

Page Table

OS

1

2

3

61 4

5

6 Secondary 
Storage



Taking a Step Back

Physical and virtual memory partitioned into 
equal-sized units (respectively, frames and 
pages)

Size of VAS decoupled to size of physical 
memory

No external fragmentation

Minimizing page faults is key to good 
performance

Page replacement

Local vs Global replacement
Local: victim chosen from frames of faulty process

fixed allocation per process

Global: victim chosen from frames allocated to any 
process

variable allocation per process

Many replacement policies
Random, FIFO, LRU, Clock, Working set, etc.

Goal is minimizing number of page faults

FIFO Replacement

First block loaded is first replaced

Low overhead 

Commonly used

a b a d g a f d g a f c b g

F0

F1

F2

F3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a

M

a

b

M

a

b

H

a

b

d

M

a

b

d

g

M

a

b

d

g

H

b

d

g

f

M

FIFO Replacement

First block loaded is first replaced

Low overhead 

Commonly used

a b a d g a f d g a f c b g

F0 a a a a a a b b b d d g f a

F1 b b b b b d d d g g f a c

F2 d d d g g g f f a c b

F3 g g f f f a a c b g

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M M H M M H M H H M H M M M



LRU Replacement
Replace block referenced least recently

Reference stack
referenced block moved to top of stack
on page fault, block on bottom of stack is replacedand new 
block is placed on top of stack

Difficult to implement

a b a d g a f d g a f c b g

F0 a b a d g a f d g a f c b g

F1 a b a d g a f d g a f c b

F2 b a d g a f d g a f c

F3 b b d g a f d g a f

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M M H M M H M H H H H M M M

Clock Replacement
First-In-Not-Used -First-Out replacement

Like FIFO, but add a “used” bit (*) for each queue 
entry and make queue circular 

Clock hand points to orange frame

a b a d g a f d g a f c b g

F0 a a a* a* a* a* a a a a* a* a a g

F1 b b b b b f f f f f* f f f

F2 d d d d d* d* d* d* c c c

F3 g g g g g* g* g* g b b

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M M H M M H M H H H H M M M

Optimal Replacement
Replace block referenced furthest in future

Minimum number of faults

Impossible to implement

a b a d g a f d g a f c b g

F0 a a a a a a a a a a a c b b

F1 b b b b b f f f f f f f f

F2 d d d d d d d d d d d d

F3 g g g g g g g g g g

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M M H M M H M H H H H M M H

Working Set 
Replacement

Global replacement policy

WSt = set of pages referenced in (t-T+1, t)

A page is replaced at t  if it does not belong to WSt

pages not necessarily replaced at page fault time!
adapts allocation to changes in locality

a b a d g a f d g a f c b g

F0 a a a a a a a a a a a a a g

F1 b b b b d d d d d d c c c

F2 d d g g g g g g g b b

F3 g f f f f f f f f

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M M H M M H M H H H H M M M

T = 4



Thrashing
If too much multiprogramming, pages tossed out while needed

one program touches 50 pages
with enough pages, 100ns/ref
if too few and faults every 5th reference

10ms for disk IO

one reference now costs 2ms: 20,000 times slowdown

CP
U 

Ut
ili
za

ti
on

Degree of Multiprogramming

Thrashing

a b a d g a f d g a f c b g

F0 a a a a a a a a g g g c c c

F1 b b b g g g d d d f f f g

F2 d d d f f f a a a b b

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M M H M M H M M M M M M M M

T = 3


