
Persistent Storage

Persistent storage
just like memory, only different

Just like diamonds
last forever (?)

memory is volatile

very dense
1 TByte of storage fits here

...but much cheaper
1 TByte is about $100 on Amazon

way cheaper than

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Named data

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O

Named data

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units
Use caching

Named data

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units
Use caching

Named data
Large capacity
Survives crashes
Shared across programs

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units
Use caching

Named data
Large capacity
Survives crashes
Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units
Use caching

Named data
Large capacity
Survives crashes
Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Device may store data from
many users

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units
Use caching

Named data
Large capacity
Survives crashes
Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Device may store data from
many users Include with files metadata for access control

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units
Use caching

Named data
Large capacity
Survives crashes
Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Device may store data from
many users Include with files metadata for access control

Reliability
Crash can occur during updates

Storage devices can fail
Flash memory wears out

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units
Use caching

Named data
Large capacity
Survives crashes
Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Device may store data from
many users Include with files metadata for access control

Reliability
Crash can occur during updates

Storage devices can fail
Flash memory wears out

Use transactions
Use redundancy to detect and correct failures
Migrate data to even the wear

How persistent storage
affects applications

Example: Word processor with auto-save feature

If file is large and developer is naive
poor performance

may have to overwrite entire file to write a few bytes!
clever doc format may transform updates in appends

corrupt file
crash while overwriting file

lost file
crash while copying new file to old file location

The abstraction stack
I/O systems are
accessed through a
series of layered
abstractions

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,
DMA, Interrupts

Physical Device

}
}

File System
API &

Performance

Device
Access

The abstraction stack
I/O systems are
accessed through a
series of layered
abstractions

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,
DMA, Interrupts

Physical Device

}
}

File System
API &

Performance

Device
Access

Caches recently read blocks
Buffers recently written
blocks
Serves as synchronization
point

ensures a block is only fetched
once

Prefetching
+ Reduces latency
+ Makes one BIG request of many

small ones
+ Can leverage hardware parallelism

- Cache pressure
- I/O contention
- Wasted effort

The abstraction stack
I/O systems are
accessed through a
series of layered
abstractions

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,
DMA, Interrupts

Physical Device

}
}

File System
API &

Performance

Device
Access

Allows data to be read or
written in fixed-sized blocks
Uniform interface to
disparate devices

The abstraction stack
I/O systems are
accessed through a
series of layered
abstractions

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,
DMA, Interrupts

Physical Device

}
}

File System
API &

Performance

Device
AccessTranslate between OS

abstractions and hw-specific
details of I/O devices

The abstraction stack
I/O systems are
accessed through a
series of layered
abstractions

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,
DMA, Interrupts

Physical Device

}
}

File System
API &

Performance

Device
Access

How control registers are
read/written
Control registers mapped to
physical addresses on
memory bus

The abstraction stack
I/O systems are
accessed through a
series of layered
abstractions

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,
DMA, Interrupts

Physical Device

}
}

File System
API &

Performance

Device
Access

How control registers are
read/written
Control registers mapped to
physical addresses on
memory bus

Memory Bus

CPU CPU

Main
Memory

I/O
Controller

I/O Bus

Controllers

Disk Controller
Keyboard Controller

Audio Controller

DRAM

Physical
Address
Ranges

The abstraction stack
I/O systems are
accessed through a
series of layered
abstractions

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,
DMA, Interrupts

Physical Device

}
}

File System
API &

Performance

Device
Access

Bulk data transfer between
device memory and main
memory
Could be setup using memory
mapped I/O
Target frames pinned until
transfer completes

The abstraction stack
I/O systems are
accessed through a
series of layered
abstractions

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,
DMA, Interrupts

Physical Device

}
}

File System
API &

Performance

Device
Access

Notify OS of important events
Preferable to polling

Example:
reading from disk

Process issues read() system call

OS moves calling thread to wait queue

Through memory mapped I/O, OS
notifies disk to read requested data
sets up DMA to place data in kernel’s memory

Disk reads, performs DMA transfer, triggers interrupt

Handler:
copies data from kernel’s memory to user memory
moves thread from wait to ready queue

When thread runs, system call returns with desired data

Storage devices

We focus on two types of persistent storage
magnetic disks

servers, workstations, laptops

flash memory
smart phones, tablets, cameras, laptops (right Brian?)

Other exist(ed)
tapes

drums

clay tablets

Magnetic disk
Store data magnetically on thin metallic film
bonded to rotating disk of glass, ceramic, or
aluminum

Disk Drive Schematic

24

0
1

2

s–1

...

Block/SectorTrack

Cylinder

PlatterSurface

Head

Spindle
thin cylinder that holds
magnetic material
each platter has two surfaces2011: 4200-15000 RPM

reads by sensing a magnetic field
writes by creating one
floats on air cushion created by
spinning disk

Arm
assembly

Typically 512 bytes
spare sectors added for fault tolerance

data on a track
can be read
without moving
arm

track skewing
staggers logical
address 0 on
adjacent one to
account for time
to move head

set of tracks on different
surfaces with same track index

NOT SHOWN:
buffer memory for
✓track buffer
✓write acceleration

Disk Read/Write
Present disk with a sector address

Old: DA = (drive, surface, track sector)
New: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track
seek
settle

Appropriate head is enabled

Wait for sector to appear under head
rotational latency

Read/Write sector
transfer time

Disk access time:

Disk Read/Write
Present disk with a sector address

Old: DA = (drive, surface, track sector)
New: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track
seek
settle

Appropriate head is enabled

Wait for sector to appear under head
rotational latency

Read/Write sector
transfer time

Disk access time:

seek time +

Disk Read/Write
Present disk with a sector address

Old: DA = (drive, surface, track sector)
New: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track
seek
settle

Appropriate head is enabled

Wait for sector to appear under head
rotational latency

Read/Write sector
transfer time

Disk access time:

seek time +
rotation time +

Disk Read/Write
Present disk with a sector address

Old: DA = (drive, surface, track sector)
New: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track
seek
settle

Appropriate head is enabled

Wait for sector to appear under head
rotational latency

Read/Write sector
transfer time

Disk access time:

seek time +
rotation time +
transfer time

A closer look:
seek time

minimum: time to go from one track to the next
0.3-1.5 ms

maximum: time to go from innermost to outermost track
more than 10ms; up to over 20ms

average: average across seeks between each possible pair of
tracks

approximately time to seek 1/3 of the way across disk
often pessimistic estimate of performance one observes on actual
workload

head switch time: time to move from track i on one surface to
the same track on a different surface

range similar to minimum seek time

A closer look:
rotation time

Today most disk rotate at 4200 to 15000 RPM
15ms to 4ms per rotation
good estimate for rotational latency is half that
amount

Head starts reading as soon as it settles
track buffering to avoid “shoulda coulda”

A closer look:
transfer time

surface transfer time
time to transfer one or more sequential sectors to/
from surface after head reads/writes first sector
much smaller that seek time or rotational latency

512 bytes at 100MB/s ≈ 5µs (0.005 ms)

higher for outer tracks than inner ones
same RPM, but more space

host transfer time
time to transfer data between host memory and disk
buffer

60MB/s (USB) to 2.5GB/s (Fibre Channel 20GFC)

Example:
Toshiba MK3254GSY

SizeSize
Platters/Heads 2/4

Capacity 320GB
PerformancePerformance

Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms

Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s

Buffer memory 16MB
PowerPower

Typical 16.35 W
Idle 11.68 W

500 random reads
Workload

500 read requests, randomly chosen sector
served in FIFO order

How long to service them?
seek time: 10.5 ms (avg)
rotation time:

7200 RPM = 1/120 RPS
rotation time 8.3 ms
on average, half of that: 4.15 ms

transfer time
at least 54 MB/s
512 bytes transferred in (.5/54000) seconds =
9.25µs

Total time:
500 x (10.5 + 4.15 + 0.009) ≈ 7.33 sec

SizeSize
Platters/Heads 2/4

Capacity 320GB
PerformancePerformance

Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms

Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s

Buffer memory 16MB
PowerPower

Typical 16.35 W
Idle 11.68 W

500 sequential reads
Workload

500 read requests for sequential sectors on
the same track
served in FIFO order

How long to service them?
seek time: 10.5 ms (avg, since don’t know
where we are starting from)
rotation time:

4.15 ms, as in previous example

transfer time
outer track: 500 x (.5/128000) ≈ 2ms
inner track: 500 x (.5/54000) seconds ≈ 4.6ms

Total time is between:
outer track: (2 + 4.15 + 10.5) ms ≈ 16.65 ms
inner track: (4.6 + 4.15 + 10.5) ms ≈ 19.25 ms

SizeSize
Platters/Heads 2/4

Capacity 320GB
PerformancePerformance

Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms

Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s

Buffer memory 16MB
PowerPower

Typical 16.35 W
Idle 11.68 W

500 sequential reads
 track buffering edition

Transfer time
outer track ≈ 1/4 of rotation time
inner track ≈ 1/2 of rotation time

Good chance that head, after settling, will be on portion
of track it should eventually read
How good?

outer track: 1/4
inner track 1/2

When head is on “good” portion of track, will on average
be able to buffer half of it

outer track: overlaps transfer time with 1/8 of rotation
time. Savings: 1/4 x (1/8 x 8.3 ms) ≈ 0.26 ms
inner track: overlaps transfer time with 1/4 of rotation
time. Savings: 1/2 x (1/4 x 8.3 ms) ≈ 1.04 ms

Total time is now between:
outer track: (2 + 4.15 + 10.5) ms - savings from overlap ≈
" " (16.65 - 0.26) ms = 16.39 ms
inner track: (4.6 + 4.15 + 10.5) ms - savings from overlap ≈
" " (19.25 - 1.04) ms = 18.21 ms

SizeSize
Platters/Heads 2/4

Capacity 320GB
PerformancePerformance

Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms

Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s

Buffer memory 16MB
PowerPower

Typical 16.35 W
Idle 11.68 W

500 sequential reads
 track buffering edition

What fraction of the disk surface
bandwidth is achieved?

Effective bandwidth:
(#blocks x size of block)/access time

ranges between
inner track: 500 x (0.5KB) / (18.21 x 10-3
s) = 250/18.21 MB/s ≈ 13.73 MB/s
outer track: 500 x (0.5KB) / (16.39 x
10-3 s) ≈ 15.25 MB/s

as a percentage:
inner track: (13.73 MB/s)/54 MB/s =
25.4%
outer track: (15.25 MB/s)/128 MB/s =
11.9%

SizeSize
Platters/Heads 2/4

Capacity 320GB
PerformancePerformance

Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms

Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s

Buffer memory 16MB
PowerPower

Typical 16.35 W
Idle 11.68 W

Example: Efficient access
How large must a read request that begins on a
random sector be to achieve at least 80% of max
surface transfer bandwidth?

To read a sequence of sequential blocks:
read entire track
do a 1 track seek
read next track

Track buffering: if we read a full track, starting
point does not matter
To get 80% of peak bandwidth after a random seek

must read enough rotations r to ensure that 80% of
time is spent reading
0.8 x total time = r x rotation time
0.8 x (10.5ms + r x (1 + 8.4)ms) = r x 8.4ms
r = (8.4ms/0.88ms) = 9.54 rotations

Transfer during each rotation: 128 MB/s x 8.4ms =
1.07 MB/s
Total transfer: 1.07 MB x 9.54 = 10.2 MB

SizeSize
Platters/Heads 2/4

Capacity 320GB
PerformancePerformance

Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms

Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s

Buffer memory 16MB
PowerPower

Typical 16.35 W
Idle 11.68 W

Other
I/O

Disk Head Scheduling

OS maximizes disk I/O throughput by minimizing
head movement through disk head scheduling

(surface, track, sector)

CPU
Disk

FCFS
Assume a queue of request exists to read/write
tracks

83 72 14 147 16 150 and the head is on track 65

0 150125100755025 65

FCFS scheduling results in the head moving 550 tracks

SSTF:
shortest seek time first

Greedy scheduling
Rearrange queue from:
" " " " " " " to:

83 72 14 147 16 150

83 7214 14716 150

0 150125100755025

SSTF scheduling results in the head moving 221 tracks

SCAN scheduling
Move the head in one direction until all requests
have been serviced, and then reverse

Rearrange queue from:
" " " " " " " to:"

83 72 14 147 16 150

83 72 14147 16150

0 150125100755025

Head moves 187 tracks.

C-SCAN scheduling
Circular SCAN

move the head in one direction until an edge of the
disk is reached and then reset to the opposite edge

0 150125100755025

Example: Effects
on disk scheduling/CSCAN

500 read requests, to a randomly chosen sector;
disk head on outside track; CSCAN
Seek time

average seek for one request ≈ 0.2% across disk
estimate as 1-track seek + interpolation with avg
seek time

1 + (.2/33.3) X 10.5 ≈ 1.06 ms

Rotation time
We don’t know head position when seek ends; random
reads

4.15 ms (half rotation)

Transfer time
just as before, at least 9.5 µs

Total time:
5.22 ms per block
For 500 blocks:

500 x 5.22 ms = 2.61 s

SizeSize
Platters/Heads 2/4

Capacity 320GB
PerformancePerformance

Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms

Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s

Buffer memory 16MB
PowerPower

Typical 16.35 W
Idle 11.68 W

Flash storage
No moving parts

better random access performance
less power
more resistant to physical damage

N
source

N
drain

Control gate

P-Type substrate

Floating gate

Bit stored here
no charge = 1
charge = 0

Fowler-Nordheim tunneling

To write 0
apply positive voltage to drain
apply even stronger positive
voltage to control gate
electrons are tunneled into
floating gate

To write 1
apply negative voltage to source
apply positive voltage to control
gate
electrons are forced out of
floating gate into source

To read
apply positive (lower than
write)voltage to control gate
apply positive (lower than
write)voltage to drain
measure current between
source and drain to determine
whether electrons in gate

measured current can encode
more than a single bit

Oxide
sidewall

Oxide
tunnel

Oxide/Nitride/Oxide
ONO inter-poly
dielectric

NAND flash units

Operations
Erase erasure block

before it can be written, needs to be set to logical “1”
operation takes several ms
Flash translation layer maps logical page to several physical pages; logical page is written to already
erased physical page and mapping is adjusted

Write page
tens of µs

Read page
tens of µs

Flash devices can have multiple independent data paths
OS can issue multiple concurrent requests to maximize bandwidth

1 Block = 128 pages = 512KB
4KB
Page

512KB
Block

1 Plane = 1024 blocks = 512MB

Example: Remapping
flash drives

Flash drive specs
4 KB page
3ms flash
512kB erasure block
50µs read/page/write page

How long to naively read/erase/and write each page?
128 x (50 x 10-3 + 50 x 10-3) + 3 = 15.8ms

Suppose we use remapping, and we always have a
free erasure block available. How long now?

3/128 + 50 x 10-3 = 73.4µs

read block;
erase;
write entire block

Flash durability
Flash memory stops reliably storing a bit

after many erasures (in the order of 103 to 106)
after a few years without power
after nearby cell is read many times (read disturb)

To improve durability
error correcting codes

extra bytes in every page

management of defective pages/erasure blocks
firmware marks them as bad

wear leveling
spreads updates to hot logical pages to many physical pages

spares (pages and erasure blocks)
for both wear leveling and managing bad pages and blocks

Example: Intel 710
series Solid State Drive

Consider 500 read requests to randomly
chosen pages. How long will servicing them
take?

500 x 26µs = 13ms
spinning disk: 7.8s

How do random and sequential read
performance compare?

effective bw random
(500 x 4)KB / 13ms ≈ 154MB/s

ratio: 154/270 = 57%

500 random writes
500s/2000 = 250ms

How do random and sequential write
compare?

effective bw random
(500 x 4)KB / 13ms = 8MB/s

ratio: 8/210 = 3.8%

SizeSize
Capacity 300GB
Page size 4KB

PerformancePerformance
Bandwidth (seq reads) 270 MB/s
Bandwidth (seq writes) 210 MB/s
Read/Write Latency 75µs
Random Reads/sec 38,500 (one every 26 µs)

Random Writes/sec 2,000 (2400 with 20% space reserve)

Interface SATA 3Gb/s
EnduranceEndurance

Endurance 1.1 PB (1.5 PB with 20% space reserve)

PowerPower
Active 3.7 W
Idle 0.7 W

Spinning disk vs flash

Metric Spinning disk Flash

Capacity/Cost Excellent Good

Sequential BW/Cost Good Good

Random I/O per sec/ Cost Poor Good

Power Consumption Fair Good

Physical Size Good Excellent

The File System
abstraction

File system
presents applications with persistent, named data
a file is a named collection of data. Has two parts

data – what a user or application puts in it
array of untyped bytes (in MacOS EFS, multiple streams per file)

metadata – information added and managed by the os
size, owner, security info, modification time

a directory provides names for files
a list of human readable names
a mapping from each name to a specific underlying file or directory (hard link). [A
soft link is a mapping from a file name to another file name]

path: string that identifies a file or directory
absolute (if it stats with “/”, the root directory)
relative (w.r.t. the current working directory)

mount: allows multiple file systems to form a single logical hierarchy
a mapping from some path in existing file system to the root directory of the
mounted file system

File system API
Creating and deleting files

create() creates a new file with some metadata and a name for the file in a
directory
link() creates a hard link–a new name for the same underlying file
unlink() removes a name for a file from its directory. If last link, file itself
and resources it held are deleted

Open and close
open() provides caller with a file descriptor to refer to file

permissions checked at open() time
creates per file data structure, referred to by file descriptor

file ID, R/W permission, pointer to process position in file

close() releases data structure

File access
read(), write(), seek()

but can use mmap() to create a mapping between region of file and region of
memory

fsync() does not return until data is written to persistent storage

Block vs Sector
OS may choose block size larger than a sector on
disk.

each block consists of consecutive sectors (why?)
larger block size increases transfer efficiency (why?)
can be handy to have block size equal page size (why?)

most systems allow for multi-sector transfer before
issuing an interrupt

File system: Functionality
and Implementation

Functionality:
File system translates from file name and offset to data block

find the blocks that constitute the file
must balance locality with expandability

must manage free space

provide file naming organization
e.g. a hierarchical name space

Implementation:
file header (descriptor, inode): owner id, size, last modified time, and location of
all data blocks

OS should find block number N without accessing disk
math, or cached data structure

data blocks
directory data blocks

human readable names, permissions

file data blocks
data

superblocks, group descriptors
how large is the file system, how many iNodes, where to find free space, etc.

File system properties
Most files are small

need strong support for small files
block size can;t be too big

Some files are very large
must allow large files (64bit file offsets)
large file access should be reasonably efficient

Directory
A file that contains a collection of mapping from file
name to file number

To look up a file, find the directory that contains the
mapping to the file number

To find that directory, find the parent directory that
contains the mapping to that directory’s file number...

Good news: root directory has well-known number (2)

Documents
Music

Project1
griso.jpg

45920022
63092178
57294492
36271008

/Users/lorenzo

Find file /Users/lorenzo/griso.jpg

Looking up a file

file 2
“/” bin 1490254

usr
Users 40112318

7230581

chiara 873092
maria
lorenzo 5620147

6639112file 40112318
“/Users”

file 5620147
“/Users/lorenzo”

Documents

Project1
griso.jpg

45920022
63092178
57294492
36271008

Music

file 36271008
“/Users/lorenzo/griso.jpg”

Finding data
Index structure provides a way to locate each of
the file’s blocks

usually implemented as a tree for scalability

Free space map provides a way to allocate free
blocks

often implemented as a bitmap

Locality heuristics group data to maximize access
performance

FAT File system
 Microsoft, late 70s

File Allocation Table (FAT)
started with MSDOS
in FAT-32, supports 228 blocks and files of 232-1 bytes

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

MFT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Index Structures
Master File Table (MFT)

array of 32-bit entries
file represented as a linked
list of FAT entries
file # = index of first FAT
entry

Free space map
If data block i is free, then
MFT[i] = 0
find free blocks by scanning
MFT

Locality heuristics
As simple as next fit:

scan sequentially from
last allocated entry
and return next free
entry

Can be improved
through defragmentation

FAT File system
 Microsoft, late 70s

File Allocation Table (FAT)
started with MSDOS
in FAT-32, supports 228 blocks and files of 232-1 bytes

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

MFT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Advantages
simple!

used in many
USB flash keys
used even within
MS Word!

Disadvantages
Poor locality

next fit? seriously?
Poor random access

needs sequential traversal
Limited access control

no file owner or group ID metadata
any user can read/write any file

No support for hard links
metadata stored in directory entry

Volume and file size are limited
FAT entry is 32 bits, but top 4 are
reserved
no more than 228 blocks
with 4kB blocks, at most 1TB volume
file no bigger than 4GB

No support for transactional updates

FFS: Fast File System
Unix, 80s

Smart index structure
multilevel index allows to locate all blocks of a file

efficient for both large and small files

Smart locality heuristics
block group placement

optimizes placement for when a file data and metadata, and
other files within same directory, are accessed together

reserved space
gives up about 10% of storage to allow flexibility needed to
achieve locality

File structure
Each file is a fixed, asymmetric tree, with fixed size data
blocks (e.g. 4KB) as its leaves

The root of the tree is the file’s inode
contains file’s metadata

owner, permissions (rwx for owner, group other), directory?, etc
setuid: file is always executed with owner’s permission

add flexibility but can be dangerous

setgid: like setuid for groups

contains a set of pointers
typically 15
first 12 point to data block
last three point to intermediate blocks, themselves containing pointers

13: indirect pointer

14: double indirect pointer

15: triple indirect pointer

Multilevel index
Inode Array

Inode

File
metadata

Data
blocks

} 12 x
4KB =
48KB

indirect block
 contains pointers to data blocks

 4 Bytes entries
}1K x 4KB

= 4MB

double indirect block
 contains pointers to indirect blocks

} 1K x 1k x
4KB =
4GB

triple indirect block
 contains pointers to double indirect blocks } 1K x

1k x
1k x
4KB =
4TB

at known
location on disk

file number =
inode number =
index in the
array

Multilevel index:
key ideas

Tree structure
efficient in finding blocks

High degree
efficient in sequential reads

once an indirect block is read,
can read 100s of data block

Fixed structure
simple to implement

Asymmetric
supports efficiently files big
and small

File
metadata

Inode
array

Data
blocks

Example: variations
on the FFS theme

In BigFS an inode stores
4kb blocks, 8 byte pointers

12 direct pointers
1 indirect pointer
1 double indirect
1 triple indirect
1 quadruple indirect

What is the maximum size of a file?

File
metadata

Inode
array

Data
blocks

Through direct pointers

12 x 4kb = 48KB

Indirect pointer

512 x 4kb = 2MB

Double indirect pointer

5122 x 4kb = 1GB

Triple indirect pointer

5123 x 4kb = 512GB
Quadruple indirect pointer

5124 x 4kb = 256TB
Total = (256 + .5 + 10-6 + 2 x 10-9 + 4.8 x 10-11) ≈ 256.5 TB

Free space management
Easy

a bitmap with one bit per storage block
bitmap location fixed at formatting time
i-th bit indicates whether i-th block is used or free

Locality heuristics:
block group placement

Divide disk in block groups
sets of nearby tracks

Distribute metadata
old design: free space bitmap and inode map
in a single contiguous region

lots of seeks when going from reading metadata
to reading data

FFS: distribute free space bitmap and inode
array among block groups

Place file in block group
when a new file is created, FFS looks for
inodes in the same block as the file’s directory
when a new directory is created, FFS palces it
in a different block from the parent’s directory

Place data blocks
first free heuristics
trade short term for long term locality

Fre
e spa

ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in
/a

/d
/b/c

Data
blocks

in
/b

/a/g
/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

Locality heuristics:
block group placement

Divide disk in block groups
sets of nearby tracks

Distribute metadata
old design: free space bitmap and inode map
in a single contiguous region

lots of seeks when going from reading metadata
to reading data

FFS: distribute free space bitmap and inode
array among block groups

Place file in block group
when a new file is created, FFS looks for
inodes in the same block as the file’s directory
when a new directory is created, FFS palces it
in a different block from the parent’s directory

Place data blocks
first free heuristics
trade short term for long term locality

Fre
e spa

ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in
/a

/d
/b/c

Data
blocks

in
/b

/a/g
/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

Start of
block group

In use Free

Locality heuristics:
block group placement

Divide disk in block groups
sets of nearby tracks

Distribute metadata
old design: free space bitmap and inode map
in a single contiguous region

lots of seeks when going from reading metadata
to reading data

FFS: distribute free space bitmap and inode
array among block groups

Place file in block group
when a new file is created, FFS looks for
inodes in the same block as the file’s directory
when a new directory is created, FFS palces it
in a different block from the parent’s directory

Place data blocks
first free heuristics
trade short term for long term locality

Fre
e spa

ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in
/a

/d
/b/c

Data
blocks

in
/b

/a/g
/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

Start of
block group

Small file

Locality heuristics:
block group placement

Divide disk in block groups
sets of nearby tracks

Distribute metadata
old design: free space bitmap and inode map
in a single contiguous region

lots of seeks when going from reading metadata
to reading data

FFS: distribute free space bitmap and inode
array among block groups

Place file in block group
when a new file is created, FFS looks for
inodes in the same block as the file’s directory
when a new directory is created, FFS palces it
in a different block from the parent’s directory

Place data blocks
first free heuristics
trade short term for long term locality

Fre
e spa

ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in
/a

/d
/b/c

Data
blocks

in
/b

/a/g
/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

Start of
block group

Large file

Locality heuristics:
reserved space

When a disk is full, hard to
optimize locality

file may end up scattered
through disk

FFS presents applications with
a smaller disk

about 10% smaller
user write that encroaches on
reserved space fails
super user still able to
allocate inodesFre

e spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in
/a

/d
/b/c

Data
blocks

in
/b

/a/g
/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

NTFS: flexible tree with
extents Microsoft, 93s

Index structure: extents and flexible tree
extents

track ranges of contiguous blocks rather than single blocks

flexible tree
file represented by variable depth tree

large file with few extents can be stored in a shallow tree

MFT (Master File Table)
array of 1 KB records holding the trees’ roots
similar to inode table
each record stores sequence of variable-sized attribute records

both data and metadata are treated as attributes

attributes can be resident or nonresident

Example of NTFS
index structure

Master
File Table

MFT Record

Std. Info File Name Data (nonresident) free

Da
ta

 E
xt

en
t

+

+

Da
ta

 E
xt

en
t

Start

Length

Start + Length

Start

Length

Start + Length

 file creation time
access time
owner ID
security specifier
read-only? hidden? system?

file name and number of
parent directory
one file name attribute per
hard link

Basic file with two data extents

Example of NTFS
index structure

Master
File Table

MFT Record

Std. Info File Name Data (resident) free

 file creation time
access time
owner ID
security specifier
read-only? hidden? system?

file name and number of
parent directory
one file name attribute per
hard link

Small file where data is resident

Example of NTFS
index structure

Master
File Table MFT Record

(part 1)

Std. Info Attr. list File name free
name
name
data

Std. Info Data (nonresident) free

File name

+

Da
ta

 E
xt

en
t

+

Da
ta

 E
xt

en
t

+

Da
ta

 E
xt

en
t

MFT Record
(part 2)

A file’s attributes can span multiple records

Small, normal, and big files
Master File Table

Std. Info ... Data (resident)

Std. Info ... Data (nonresident)

Std. Info Attr. list ... Data (nonresident)

Std. Info Data (nonresident)

Std. Info Data (nonresident)

Std. Info Data (nonresident)

...and for really huge (or
badly fragmented) files,
even the attribute list can
become nonresident

Metadata files
NTFS stores most metadata in ordinary files with well-known numbers

5 (root directory); 6 (free space bitmap); 8 (list of bad blocks)

$Secure (file no. 9)
stores access control list for every file
indexed by fixed-length key
file store appropriate key in their MFT record

$MFT (file no. 0)
stores Master File Table
to read MFT, need to know fist entry of MFT

a pointer to it stored in first sector of NTFS

MFT can start small and grow dynamically
To avoid fragmentation, NTFS reserves part of start of volume to MFT
expansion

when full, halves reserved MFT area

Locality heuristics
Best fit

finds smallest region large enough to fit file
NTFS caches allocation status for a small area of disk

writes that occur together in time get clustered together

SetEnfOfFile() lets specify expected length of file at
creation

File access in FFS
What it takes to read /Users/lorenzo/wisdom.txt

Read Inode for “/” (root) from a fixed location
Read first data block for root
Read Inode for /Users
Read first data block of /Users
Read Inode for /Users/lorenzo
Read first data block for /Users/lorenzo
Read Inode for /Users/lorenzo/wisdom.txt
Read data blocks for /Users/lorenzo/wisdom.txt

“A cache is a man’s best friend”

