
Caching and consistency
File systems maintain many data structures

bitmap of free blocks
bitmap of inodes
directories
inodes
data blocks

Data structures cached for performance
works great for read operations...
...but what about writes?

modified cached data will be lost on a crash

Solutions:
write-back caches: delay writes for higher performance at the cost 
of potential inconsistencies
write through caches: write synchronously but poor performance

do we get consistency at least?

Example: a tiny ext2
6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

owner:! ! lorenzo
permissions:! read-only
size:!! ! 1
pointer:! ! 4
pointer:! ! null
pointer:! ! null
pointer:! ! null

Suppose we append a 
data block to the file 

add new data block D2

Example: a tiny ext2
6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:! ! lorenzo
permissions:! read-only
size:!! ! 1
pointer:! ! 4
pointer:! ! null
pointer:! ! null
pointer:! ! null

Suppose we append a 
data block to the file 

add new data block D2

update inode

Example: a tiny ext2
6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:! ! lorenzo
permissions:! read-only
size:!! ! 2
pointer:! ! 4
pointer:! ! 5
pointer:! ! null
pointer:! ! null

Suppose we append a 
data block to the file 

add new data block D2

update inode

update data bitmap 



Example: a tiny ext2
6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:! ! lorenzo
permissions:! read-only
size:!! ! 2
pointer:! ! 4
pointer:! ! 5
pointer:! ! null
pointer:! ! null

Suppose we append a 
data block to the file 

add new data block D2

update inode

update data bitmap 

1

What if a crash or power outage occurs between writes?

What if only a single 
write succeeds?

Just the data block (D2) is written to disk
data is written, but no way to get to it - in fact, D2 still 
appears as a free block
as if write never occurred

Just the updated inode (Iv2) is written to disk
if we follow the pointer, we read garbage
file system inconsistency: data bitmap says block is free, while 
inode says it is used. Must be fixed

Just the updated bitmap is written to disk
file system inconsistency: data bitmap says data block is used, 
but no inode points to it. 
No idea which file the data block was to belong to! 

What if two writes 
succeed?

Inode and data bitmap updates succeed
file system is consistent
but reading new block returns garbage

Inode and data block updates succeed
file system inconsistency. Must be fixed

Data bitmap and data block succeed
file system inconsistency
no idea which file data block was to belong to!

The Consistent Update 
problem

Several file systems operations update multiple 
data structures

Move a file between directories
delete file from old directory
add file to new directory

Create new file
update inode bitmap and data bitmap
write new inode
add new file to directory file

Even  with write through we have a problem!



Ad hoc solutions:
metadata consistency
Synchronous write through for metadata
Updates performed in a specific order

File create
write data block
update inode
update inode bitmap
update data bitmap
update directory
if directory grew: 1) update data bitmap; 2) update directory inode

On file crash
fsck

scans entire disk for inconsistencies
prior to update of inode bitmap: writes disappear
data block referenced in inode, but not in data bitmap: update bitmap
file created but not in any directory: delete file

Issues
need to get ad-hoc reasoning exactly right
synchronous writes lead to poor performance
recovery is sloooow: must scan entire disk

Ad hoc solutions:
user data consistency
Asynchronous write back

forced after a fixed interval (e.g. 30 sec)
can lose up to 30 sec of work

Rely on metadata consistency
updating a file in vi

delete old file
write new file

Ad hoc solutions:
user data consistency
Asynchronous write back

forced after a fixed interval (e.g. 30 sec)
can lose up to 30 sec of work

Rely on metadata consistency
updating a file in vi

write new version to temp
move old version to other temp
move new version to real file
unlink old version

if crash, look in temp area and send “there may be a problem” email to user

Ad hoc solutions:
implementation tricks
Block I/O Barriers

allow a block device user to enforce ordering among 
I/O issued to that block device
client need not block waiting for write to complete
instead, OS builds a dependency graph 

no write goes to disk unless all writes it depends on have



A principled apporach:
Transactions

Group together actions so that they are
Atomic: either all happen or none
Consistent: maintain invariants
Isolated: serializable (schedule in which transactions occur 
is equivalent to transactions executing sequentially
Durable: once completed, effects are persistent

Critical sections are ACI, but not Durable

Transaction can have two outcomes:
Commit: transaction becomes durable
Abort: transaction never happened

may require appropriate rollback

Journaling 
(write ahead logging)
Turns multiple disk updates into a single disk write

“write ahead” a short note to a “log”, specifying 
changes about to be made to the FS data structures
if a crash occurs while updating the FS data structure, 
consult log to determine what to do

no need to scan entire disk!

Data Jounaling: an 
example

We start with

We want to add a new block to the file
Three easy steps

Write to the log 5 blocks:
write each record to a block, so it is atomic

Write the blocks for Iv2, B2, D2 to the FS proper
Mark the transaction free in the journal

What happens if we crash before the log is updated?
no commit, nothing to disk - ignore changes!

What happens if we crash after the log is updated?
replay changes in log back to disk

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

TxBegin | Iv2 | B2 | D2 | TxEnd

Journaling and 
Write Order

Issuing the 5 writes to the log !! !         
sequentially is slow 

Issue at once, and transform in a single sequential 
write

Problem: disk can schedule writes out of order
first write TxBegin, Iv2, B2, TxEnd
then write D2

TxBegin | Iv2 | B2 | D2 | TxEnd

Disk loses power

Log contains:

syntactically, transaction log looks fine, even with nonsense in 
place of D2!

TxBegin | Iv2 | B2 | ?? | TxEnd

Set a Barrier before TxEnd

TxEnd must block until data on disk (or “Rethink the sync”!)



What about 
performance?

All data is written twice... surely it is horrible?

100 1KB random writes vs. log + write-back
Direct write: 100 x Trw ≈ 100 x 10ms ≈ 1s
Pessimistic log

100 x Tsw + 100 x Trw ≈ 100/(50x103) + 1s = 2ms + 1s

Realistic (write-back performed in the background)
more opportunities for disk scheduling
100 random writes may take less time than in direct write 
case

COW file systems
(copy-on-write)

Data and metadata not updated in place, but written to new 
location

transforms random writes to sequential writes

Several motivations
small writes are expensive
small writes are expensive on RAID

expensive to update a single block (4 disk I/O) but efficient for entire 
stripes

caches filter reads
widespread adoption of flash storage

wear leveling, which spreads writes across all cells, important to maximize 
flash life
COW techniques used to virtualize block addresses and redirect writes to 
cleared erasure blocks 

large capacities enable versioning

The early 90s
Growing memory sizes

file systems can afford large block caches
most reads can be satisfied from block cache
performance dominated by write performance

Growing gap in random vs sequential I/O performance
transfer bandwidth increases 50%-100% per year
seek and rotational delay decrease by 5%-10% per year
using disks sequentially is a big win

Existing file system perform poorly on many workloads
6 writes to create a new file of 1 block

new inode | inode bitmap | directory data block that includes file | 
directory inode (if necessary) | new data block storing content of new file 
| data bitmap

lots of short seeks

Log structured 
file systems

Use disk as a log 
buffer all updates (including metadata!) into a segment
when segment is full, write to disk in a long sequential 
transfer to unused part of disk

Virtually no seeks
much improved disk throughput

But how does it work?
suppose we want to add a new block to a 0-sized file
LFS paces both data block and inode in its in-memory 
segment

D I|
Fine.

But how do we find the inode?



Finding inodes
in UFS, just index into inode array

Super Block | Inodes | Data blocks
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Super Block                     Inodes                       Data blocks

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 ...

512 bytes/block
128 bytes/inode

To find address inode 11:
 1) 11/3 = 3
 2) 11 mod 4 = 3

Same in FFS (but Inodes are at divided (at 
known locations) between block groups 

Finding inodes in LFS
inode map: a table indicating where each inode is 
on disk

inode map blocks written as part of the segment
... so need not seek to write to imap

but how do we find the inode map?
table in a fixed checkpoint region

updated periodically (every 30 seconds)

The disk then looks like

CR freeseg1 seg2 seg3 free

LFS vs UFS
inode

directory

data

inode map

Log

Unix File System

Log-structured File System

Blocks written to 
create two 1-block 
files: dir1/file1 and 
dir2/file2 in UFS and 
LFS

dir1

dir1 dir2

dir2

file1 file2

file1 file2

Reading from disk in LFS
Suppose nothing in memory...

read checkpoint region
from it, read and cache entire inode map
from now one, everything as usual

read inode
use inode’s pointers to get to data blocks

When the imap is cached, LFS reads involve 
virtually the same work as reads in traditional file 
systemsmodulo an 

imap lookup



Garbage collection
As old blocks of files are replaced by new, segment in log 
become fragmented

Cleaning used to produce contiguous space on which to write
compact M fragmented segments into N new segments, newly 
written to the log
free old M segments

Cleaning mechanism:
How can LFS tell which segment blocks are live and which dead?

Cleaning policy
How often should the cleaner run?
How should the cleaner pick segments?

Segment summary block
For each data block, stores

the file it belongs (inode#)
the offset (block#) within file

During cleaning 
allows to determine whether data block D is live

use inode# to find in imap where inode is currently on disk
read inode (if not already in memory)
check whether pointer for block block# refers to D’s 
address

allows to update file’s inode with correct pointer if D is 
live and compacted to new segment

Which segments to 
clean, and when?

When?
periodically
when you have nothing better to do
when disk is full

Which segments?
utilization: how much it is gained by cleaning 

segment usage table tracks how much live data in segment

age: how likely is the segment to change soon
better to wait on cleaning a hot block

Crash recovery
The journal is the file system!

On recovery
read checkpoint region

may be out of date (written periodically)

roll forward
start from where checkpoint says log ends
read through next segments to find valid updates not recorded in 
checkpoint

when a new inode is found, update imap
when a data block is found that belongs to no inode, ignore

consistency between directory entries and inodes is tricky
one of inode or directory block could have made it to disk without 
the other

create in log a special record for each directory change (journaling!)
use Barrier to ensure that record is written in log before inode or directory block



Error detection 
and correction

A layered approach
At the hardware level, checksums and device-level 
checks

error correcting codes

At the system level, redundancy, as in RAID
End-to-end checks

Safestore, Depot
no need for trust

Storage device failures 
and mitigation - I

sector/page failure
data lost, rest of device operates correctly

can be permanent (e.g. due to scratches) or transient (e.g due to “high fly 
writes”)
non recoverable read error: one bad sector/page per 1014 to 1018 bits read

mitigations
data encoded with additional redundancy (error correcting codes)
remapping (device includes spare sectors/pages)

pitfalls
non-recoverable error rates are negligible 

not on a 2TB disk!

non-recoverable error rates are constant
the vary depending on load, age, or workload

failures are independent
errors often correlated in time or space

error rates are uniform
different causes can contribute differently to nonrecoverable read errors

Example: unrecoverable 
read errors

Your 500GB laptop disk just crashed BUT you have 
just made a full backup on a 500GB USB

non recoverable read error rate: 1 sector/1014 bits read

What is the probability of reading successfully the 
entire USB drive during restore?

Expected number of failures 
while reading the data:

500 GB x
GB

8 x 109 bits
x

1 error

1014 bits
= 0.04

Probability of at least one failure is a little lower 
(there is a small chance of multiple failures)

Assume each bit has a 10-14 chance of being 
wrong and that failures are independent

Probability to read all bits successfully:

(1 - 10-14)(500 x 8 x 10 )9 = 0.9608

Storage device failures 
and mitigations - II

Device failures
device stops to be able to serve reads and writes to all sectors/pages (e.g. 
due to capacitor failure, damaged disk head, wear-out)
annual failure rate

fraction of disks expected to fail/year
2011: 0.5% to 0.9%

mean time to failure (MTTF)
inverse of annual failure rate

2011: 106 hours to 1.7 x 106 hours

pitfalls
MTTF measures a device’s useful life (MTTF applies to device’’s intended service life)
advertised failure rates are trustworthy
failures are independent
failure rates are constant 
devices behave identically
devices fail with no warning

Time
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Mortality



Example: disk failures in 
a large system

File server with 100 disks

MTTF for each disk: 1.5 x 106 hours

What is the expected time before one disk fails?

Assuming independent failures and constant failure rates:

MTTF for some disk = MTTF for single disk / 100 = 1.5 x 104 hours

Probability that some disk will fail in a year:

(365 x 24) hours x 1
1.5 x 104 hours

errors = 58.5%

Pitfalls:
actual failure rate may be higher than advertised
failure rate may not be constant

RAID
Redundant Array of Inexpensive Disks

disks are cheap, so put many (10s to 100s) of them in 
one box to increase storage, performance, and 
availability
data plus some redundant information is striped across 
disks 
performance and reliability depend on how precisely it 
is striped

RAID-0:
increasing throughput
Disk striping (RAID-0)

blocks broken in sub-blocks stored on separate disks
similar to memory interleaving

higher disk bandwidth through larger effective block size
poor reliability

any disk failure causes data loss

15141312
8 9 10 11

0 1 2 3

OS 
disk block 8 9 10 11 12 13 14 15 0 1 2 3

Physical disk blocks

RAID-1
mirrored disks

Data written in two places
on failure, use surviving disk

On read, choose fastest to read

Expensive

0111
0 1 1 0

0 1 0 1
0111

0 1 1 0

0 1 0 1



RAID-3
Bit striped, with parity

given G disks, 
parity = data0 ⊕ data1 ⊕ ... ⊕ dataG-1

data0 = parity ⊕ data1 ⊕ ... ⊕ dataG-1

Reads access all data disks

Writes accesses all data disks plus parity disk
Data disks Parity disk

Disk controller can identify faulty disk
single parity disk can detect and correct errors

RAID-4
Block striped, with parity

Combines RAID-0 and RAID-3
reading a block accesses a single disk
writing always accesses parity disk

Heavy load on parity disk

Data disks Parity disk

Disk controller can identify faulty disk
single parity disk can detect and correct errors

RAID-5
Block Interleaved Distributed Parity

no single disk dedicated to parity
parity and data distributed across all disks

Stripe 
0

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Stripe 
1

Stripe 
2

Data Block 16
Data Block 17
Data Block 18
Data Block 19

Data Block 32
Data Block 33
Data Block 34
Data Block 35

Strip (0,0)
Data Block 0
Data Block 1
Data Block 2
Data Block 3

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Data Block 4
Data Block 5
Data Block 6
Data Block 7

Data Block 8
Data Block 9
Data Block 10
Data Block 11

Data Block 12
Data Block 13
Data Block 14
Data Block 15

Data Block 20
Data Block 21
Data Block 22
Data Block 23

Data Block 24
Data Block 25
Data Block 26
Data Block 27

Data Block 40
Data Block 41
Data Block 42
Data Block 43

Data Block 28
Data Block 29
Data Block 30
Data Block 31

Data Block 44
Data Block 45
Data Block 46
Data Block 47

Data Block 36
Data Block 37
Data Block 38
Data Block 39

Strip (0,1)

Strip (0,2)

4 blocks

Strip (1,1)

Strip (1,2)

Strip (1,x)

Strip (2,1)

Strip (2,2)

Strip (2,0)

Strip (3,1)

Strip (3,2)

Strip (3,0)

Strip (4,1)

Strip (4,2)

Strip (4,0)

RAID 10 and RAID 50
RAID 10

stripes (RAID 0) across reliable logical disks, 
implemented as mirrored disk paier (RAID 1)

RAID 50
stripes (RAID 0)  across groups of diskswth block 
intelraved distributed parity

RAID 5 RAID 5

RAID 0



Example: Updating a 
RAID with rotating parity

Stripe 
0

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Stripe 
1

Stripe 
2

Data Block 16
Data Block 17
Data Block 18
Data Block 19

Data Block 32
Data Block 33
Data Block 34
Data Block 35

Strip (0,0)
Data Block 0
Data Block 1
Data Block 2
Data Block 3

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Data Block 4
Data Block 5
Data Block 6
Data Block 7

Data Block 8
Data Block 9
Data Block 10
Data Block 11

Data Block 12
Data Block 13
Data Block 14
Data Block 15

Data Block 20
Data Block 21
Data Block 22
Data Block 23

Data Block 24
Data Block 25
Data Block 26
Data Block 27

Data Block 40
Data Block 41
Data Block 42
Data Block 43

Data Block 28
Data Block 29
Data Block 30
Data Block 31

Data Block 44
Data Block 45
Data Block 46
Data Block 47

Data Block 36
Data Block 37
Data Block 38
Data Block 39

Strip (0,1)

Strip (0,2)

4 blocks

Strip (1,1)

Strip (1,2)

Strip (1,x)

Strip (2,1)

Strip (2,2)

Strip (2,0)

Strip (3,1)

Strip (3,2)

Strip (3,0)

Strip (4,1)

Strip (4,2)

Strip (4,0)

What I/O ops to update block 21?
read data block 21
read parity block (1,1,1)
compute Ptmp = P1,1,1 ⊕ D21 to remove old data block
compute P’1,1,1 = Ptmp ⊕ D’21
write D’21 to disk 2
write P’1,1,1 to disk 1

RAID Reliability: 
Double Disk Failure

Two full-disk failures

N disks, 1 Pblock/G disks

disk fail independently

MTTDL, MTTF, MTTR

MTTR << MTTF
Example

100 disks, G = 10 (9+1 for parity)

disk fail independently

MTTF = 106 hours

MTTR = 10 hours

Expected time to first failure: MTTF/N

Probability of 2nd fault before repair:

MTTF/(G-1)
MTTR

MTTDL = 
MTTF2

N x (G-1) x MTTR

Number of “coin flips” to get 2nd fault:
MTTF/(G-1)

MTTR
MTTDL = 

MTTF2

N x (G-1) x MTTR
= 

1012

102 x 9 x 10

≈  108 hours

MTTDL: mean time to data loss

inverse of Failure Rate

RAID Reliability:
sector failures

One disk full failure + sector failure

MTTDL = x
1

Pfail_recovery_read

MTTF
N

Example

Latent sector errors: 1 every 115 bits read

Disk fail independently

100 1TB disks; G = 10

MTTF = 106 hours

Psuccess_recovery_read = (1 - 10-15)(9 x 8 x 10  ) ≈12

≈ (1 - 72 x 10-3) = 0.928

MTTDL = 

106

102
x

1 - 0.928
1 ≈ 1.39 x 105 hours

Failure of two sectors sharing a 
redundant sector:

Negligible risk

Pfail_recovery_read

MTTF
N

x
1 =

Overall data loss rate
Assuming independent failures and constant failure 
rate:

FailureRateindep+const = FailureRate2Disks + FailureRatedisk+sector  =

MTTDL2Disks MTTDLdisk+sector

1 + 1
= =

MTTF MTTF
N

x
MTTR   (G-1)

+ Pfail_recovery_read= ( (x



Increase redundancy
RAID 6: Reed-Solomon to tolerate 2 failures per stripe

Reduce non recoverable read error rates
Scrubbing

periodically read entire content of disk and reconstruct lost data

Use more reliable disks
entrerprise disks 100 smaller error rate than PCs

Reduce MTTR
hot spares (but bottleneck is often writing reconstructed data
declustering

in HDFS, each block written to 3 randomly chosen disks

Improving RAID 
Reliability

MTTF MTTF
N x MTTR x (G-2)

+ Pfail_recovery_read( (MTTF
MTTR x (G-1) xFailureRatedual+independent+const =


