The Triumph of Randomization

The Big Picture

Does randomization make for more powerful algorithms?
- Does randomization expand the class of problems solvable in polynomial time?
- Does randomization help compute problems fast in parallel in the PRAM model?

You tell me!

The Triumph of Randomization?

Well, at least for distributed computations!
- no deterministic 1-crash-resilient solution to Consensus
- \(f \)-resilient randomized solution to consensus (\(f < \frac{n}{2} \)) for crash failures
- randomized solution for Consensus exists even for Byzantine failures!

A simple randomized algorithm

M. Ben Or. “Another advantage of free choice: completely asynchronous agreement protocols” (PODC 1983, pp. 27-30)
- exponential number of operations per process
- BUT more practical protocols exist
 - down to \(O(n \log^2 n) \) expected operations/process
 - \(n - 1 \) resilient
The protocol's structure

An infinite repetition of asynchronous rounds

in round \(r \), each \(p \) only handles messages with timestamp \(r \).

each round has two phases

in the first, each \(p \) broadcasts an a-value which is a function of the b-values collected in the previous round (the first a-value is the input bit)

in the second, each \(p \) broadcasts a b-value which is a function of the collected a-values

 decide stutters

Ben Or's Algorithm

1: \(a_p := \text{input bit}; r := 1; \)
2: repeat forever
3: (phase 1)
4: send \((a_p, r)\) to all
5: Let \(A \) be the multiset of the first \(n-f \) a-values with timestamp \(r \) received
6: if \((\exists v \in (0, 1)) : \forall a \in A \cdot a = v\) then \(b_p := v \)
7: else \(b_p := 1 \)
8: (phase 2)
9: send \((b_p, r)\) to all
10: Let \(B \) be the multiset of the first \(n-f \) b-values with timestamp \(r \) received
11: if \((\exists v \in (0, 1)) : \forall b \in B \cdot b = v\) then decide\((v) \); \(a_p := v \)
12: else if \((\exists b \in B : b \neq 1)\) then \(a_p := b \)
13: else \(a_p := \$ \) \{ \$ is chosen uniformly at random to be 0 or 1 \}
14: \(r := r + 1 \)

Validity

1: \(a_p := \text{input bit}; r := 1; \)
2: repeat forever
3: (phase 1)
4: send \((a_p, r)\) to all
5: Let \(A \) be the multiset of the first \(n-f \) a-values with timestamp \(r \) received
6: if \((\exists v \in (0, 1)) : \forall a \in A \cdot a = v\) then \(b_p := v \)
7: else \(b_p := 1 \)
8: (phase 2)
9: send \((b_p, r)\) to all
10: Let \(B \) be the multiset of the first \(n-f \) b-values with timestamp \(r \) received
11: if \((\exists v \in (0, 1)) : \forall b \in B \cdot b = v\) then decide\((v) \); \(a_p := v \)
12: else if \((\exists b \in B : b \neq 1)\) then \(a_p := b \)
13: else \(a_p := \$ \) \{ \$ is chosen uniformly at random to be 0 or 1 \}
14: \(r := r + 1 \)

Validity

All identical inputs \((i) \)

Each process sets a-value := \(i \) and broadcasts it to all

Since at most \(f \) faulty, every correct process receives at least \(n-f \) identical a-values in round 1

Every correct process sets b-value := \(i \) and broadcasts it to all

Again, every correct process receives at least \(n-f \) identical i b-values in round 1 and decides
A useful observation

For all r, either

- $b_{p,r} \in \{1, \perp\}$ for all p or
- $b_{p,r} \in \{0, \perp\}$ for all p

A useful observation

For all r, either

- $b_{p,r} \in \{1, \perp\}$ for all p or
- $b_{p,r} \in \{0, \perp\}$ for all p

Lemma

Let B be the multiset of the first $n-\alpha$-values with timestamp r received:

- $\exists (b,v) \in B; v \neq \perp$

Lemma

Let A be the multiset of the first $n-\alpha$-values with timestamp r received:

- $\exists (a,v) \in A; v \neq \perp$

Proof

By contradiction.

Suppose p and q at round r such that $b_{p,r} = 0$ and $b_{q,r} = 1$

From lines 6,7 p received $n-\beta$ distinct Os, q received $n-\beta$ distinct Is. Then, $2(n-\beta) \leq n$, implying $n \leq 2\beta$.

Corollary

It is impossible that two processes p and q decide on different values at round r.

Agreement

Let r be the first round in which a decision is made.

Let p be a process that decides in r.

Let r be the first round in which a decision is made.

Let p be a process that decides in r.

By the Corollary, no other process can decide on a different value in r.

To decide, p must have received $n-\beta$ from distinct processes.

Every other correct process has received γ from at least $n-2\beta \geq 1$

By lines 11 and 12, every correct process sets its new a-value to for round $r+1$ to γ.

By the same argument used to prove Validity, every correct process that has not decided γ in round r will do so by the end of round $r+1$.
Termination I

> Remember that by Validity, if all (correct) processes propose the same value \(i\) in phase 1 of round \(r\), then every correct process decides \(i\) in round \(r\).

> The probability of all processes proposing the same input value (a landslide) in round 1 is:

\[
\text{Pr}[\text{landslide in round 1}] = \frac{1}{2^n}
\]

> What can we say about the following rounds?

1: \(a_p\) := input bit; \(n := 1\)
2: repeat forever
3: {phase 1}
4: send \(a_p\) to all
5: Let \(A\) be the multiset of the first \(n - f\) values with timestamp \(r\) received
6: if \(\exists v \in \{0, 1\} : \forall a \in A : a = v\) then \(a_p := v\)
7: else \(a_p := 1\)
8: {phase 2}
9: send \(a_p\) to all
10: Let \(B\) be the multiset of the first \(n - f\) values with timestamp \(r\) received
11: if \(\exists v \in \{0, 1\} : \forall b \in B : b = v\) then \(b_p := v\)
12: else if \(\exists b \in B : b \neq \perp\) then \(b_p := 6\)
13: else \(b_p := \perp\) \(\{ b \) is chosen uniformly at random to be 0 or 1\}
14: \(r := r + 1\)

Termination II

> In round \(r > 1\), the \(a\)-values are not necessarily chosen at random!

> By line 12, some process may set its \(a\)-value to a non-random value \(v\)

> By the Lemma, however, all non-random values are identical!

> Therefore, in every \(r\) there is a positive probability (at least \(\frac{1}{2^n}\)) for a landslide

> Hence, for any round \(c\)

\[
\text{Pr}[\text{no landslide at round } r] \leq 1 - \frac{1}{2^n}
\]

Since coin flips are independent:

\[
\text{Pr}[\text{no landslide for first } k \text{ rounds}] \leq (1 - \frac{1}{2^n})^k
\]

When \(k = 2^n\) this value is about \(\frac{1}{e}\); then, if \(k = c2^n\)

\[
\text{Pr}[\text{landslide within } k \text{ rounds}] \geq 1 - (1 - \frac{1}{2^n})^k \approx 1 - \frac{1}{e^c}
\]

which converges quickly to 1 as \(c\) grows.