
CS 371D
Distributed Computing

Lorenzo Alvisi
Fangkai Yang

What is a distributed
system?

“A distributed system is one in which the failure
of a computer you didn’t even know existed
can render your own computer unusable.”

Leslie Lamport

A few intriguing
questions

How do we talk about a distributed execution?
Can we draw global conclusions from local information?
Can we coordinate operations without relying on synchrony?
For the problems we know how to solve, how do we
characterize the “goodness” of our solution?
Are there problems that simply cannot be solved?
What are useful notions of consistency, and how do we
maintain them?
What if part of the system is down? Can we still do useful
work? What if instead part of the system becomes
“possessed” and starts behaving arbitrarily–all bets are off?

Saving the world
before bedtime

Two Generals’ Problem

Otherwise,
 Barbarians win

Romans must
coordinate
their actions

S.P.Q.R. S.P.Q.R.

either both Generals
attack or both retreat
to fight another day

once they commit to
an action, they cannot
change their mind

S.P.Q.R. S.P.Q.R.

Two Generals’ Problem

Only communication is by messenger

Two Generals’ Problem
S.P.Q.R. S.P.Q.R.

Only communication is by messenger
Messengers must sneak through the valley

Two Generals’ Problem
S.P.Q.R. S.P.Q.R.

Only communication is by messenger
Messengers must sneak through the valley

Two Generals’ Problem
S.P.Q.R. S.P.Q.R.

Only communication is by messenger
Messengers must sneak through the valley
They don’t always make it

Two Generals’ Problem
S.P.Q.R. S.P.Q.R.

Problem:
Save Western
Civilization

(i.e. design a protocol that
ensures Romans always
attack simultaneously)

Only communication is by messenger
Messengers must sneak through the valley
They don’t always make it

Two General’s Problem

Claim: There is no non-trivial protocol that guarantees
that the Romans will always attack simultaneously

Two General’s Problem

Claim: There is no non-trivial protocol that guarantees
that the Romans will always attack simultaneously

Proof: By contradiction
Let be the smallest number of messages needed by a solution

Consider the -th message

The state of the sender of cannot depend on the receipt of

The state of the receiver of cannot depend on the receipt of
! ! because in some executions could be lost

So both sender and receiver would come to the same conclusion even
without sending

We now have a solution requiring only messages – but was
supposed to be the smallest number of messages!

n

n mlast

mlast mlast

mlast

mlast mlast

mlast

n−1 n

Two General’s Problem

Claim: There is no non-trivial protocol that guarantees
that the Romans will always attack simultaneously

Proof: By contradiction
Let be the smallest number of messages needed by a solution

Consider the -th message

The state of the sender of cannot depend on the receipt of

The state of the receiver of cannot depend on the receipt of
! ! because in some executions could be lost

So both sender and receiver would come to the same conclusion even
without sending

We now have a solution requiring only messages – but was
supposed to be the smallest number of messages! Contradiction

n

n mlast

mlast mlast

mlast

mlast mlast

mlast

n−1 n

If only I had known...

Solving the Two Generals Problem requires
common knowledge

“everyone knows that everyone knows that
everyone knows...” – you get the picture

Alas...
Common knowledge cannot be achieved by
communicating through unreliable channels

Do you trust
traffic lights?

Suppose each driver is
told:

RED means “Stop”

GREEN means “Go”

Follow the rules!

Do you feel safe driving?

The Case of the
Muddy Children

The Case of the
Muddy Children

 children go playing

Children are truthful,
perceptive, intelligent

Mom says: “Don’t get
muddy!”

A bunch (say,) get mud
on their forehead

Daddy comes, looks
around, and says:

“Some of you got a
muddy forehead!”

n

k

The Case of the
Muddy Children

 children go playing

Children are truthful,
perceptive, intelligent

Mom says: “Don’t get
muddy!”

A bunch (say,) get mud
on their forehead

Daddy comes, looks
around, and says:

“Some of you got a
muddy forehead!”

Dad then asks repeatedly:

 “Do you know whether
you have mud on your
own forehead?”

What happens?

n

k

Elementary...
Claim: The first
times the father asks,
all children will reply
“No”, but the -th
time all dirty children
with reply yes

Proof: By induction on

! ! ! ! ! !
The child with the muddy
forehead sees no one else
dirty. Dad says someone
is, so he must be the one

 ! ! - Two muddy children,
! and .

Each answers “No” the
first time because it sees
the other
When sees say No, she
realizes she must be
dirty, because must
have seen a dirty child,
and sees no one dirty
but . So must be dirty!

 - Three muddy children,
a, b, and c...

k

k−1

k

k=1

k=2

k=3

a b

a b

b

b

a
a

Elementary?

Suppose

Every one knows that someone has a dirty
forehead before Dad announces it...

Does Daddy still need to speak up?

k > 1

Elementary?

Suppose

Every one knows that someone has a dirty
forehead before Dad announces it...

Does Daddy still need to speak up?

Claim: Unless he does, the muddy children
will never be able to determine that their
forehead are muddy!

k > 1

Common Knowledge:
The Revenge

Let = “Someone’s forehead is dirty”

Every one knows

But, unless the father speak, if not
every one knows that everyone knows !

Suppose and are dirty. Before the father
speaks does not know whether knows

If , not every one knows that every one
knows that every one knows ...

p

p

p
k=2

k=3
p

p
a

a b
b

Would it work if...

... the father took every child aside and told
them individually (without others noticing)
that someone’s forehead is muddy?

Would it work if...

... the father took every child aside and told
them individually (without others noticing)
that someone’s forehead is muddy?

... every child had (unknown to the other
children) put a miniature microphone on
every other child so they can hear what the
father says in private to them?

Parallel Worlds!

k = 3

Each node labeled with a tuple
that represents a possible
world: (1, 0, 1) is a world where
only child 2 does not have a
muddy forehead

(1, 1, 1)

(0, 1, 1)

(0, 1, 0)(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 1)

(1, 1, 0)

Parallel Worlds!

k = 3

Each node labeled with a tuple
that represents a possible
world: (1, 0, 1) is a world where
only child 2 does not have a
muddy forehead

Each edge is labeled by the
color of the child for which
the two endpoints are both
possible worlds

(1, 1, 1)

(0, 1, 1)

(0, 1, 0)(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

Parallel Worlds!

k = 3

Each node labeled with a tuple
that represents a possible
world: (1, 0, 1) is a world where
only child 2 does not have a
muddy forehead

Each edge is labeled by the
color of the child for which
the two endpoints are both
possible worlds

(1, 1, 1)

(0, 1, 1)

(0, 1, 0)(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

Parallel Worlds!

k = 3

Each node labeled with a tuple
that represents a possible
world: (1, 0, 1) is a world where
only child 2 does not have a
muddy forehead

Each edge is labeled by the
color of the child for which
the two endpoints are both
possible worlds

(1, 1, 1)

(0, 1, 1)

(0, 1, 0)(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

Parallel Worlds!

Each node labeled with a tuple
that represents a possible
world: (1, 0, 1) is a world where
only child 2 does not have a
muddy forehead

Each edge is labeled by the
color of the child for which
the two endpoints are both
possible worlds

(1, 1, 1)

(0, 1, 1)

(0, 1, 0)(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

k = 3

After the father speaks

The state becomes
impossible

All the edges that depart from
it are eliminated

(1, 1, 1)

(0, 1, 1)

(0, 1, 0)(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

k = 3

(0, 0, 0)

If everyone answers
“No” to the 1st question..

All states with a single 1
become impossible!

All the edges that depart from
them are eliminated

(1, 1, 1)

(0, 1, 1)(1, 0, 1)

(0, 1, 0)(1, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

Much more...

There is an entire logic that formalizes what
knowledge participants acquire while running
a protocol

J. Halpern and Y. Moses
Knowledge and Common Knowledge in a Distributed Environment
E.W. Dijkstra Prize 2009.

Global Predicate Detection
and Event Ordering

Our Problem

To compute predicates
over the state of

a distributed application

Model

Message passing

No failures

Two possible timing assumptions:
1. Synchronous System
2. Asynchronous System

No upper bound on message delivery
time
No bound on relative process speeds

Asynchronous systems

Weakest possible assumptions

cfr. “finite progress axiom”

Weak assumptions less vulnerabilities

Asynchronous ≠ slow

“Interesting” model w.r.t. failures (ah ah ah!)

≡

Client-Server

Processes exchange messages using
Remote Procedure Call (RPC)

A client requests a service by
sending the server a message.
The client blocks while waiting

for a response

sc

Client-Server

Processes exchange messages using
Remote Procedure Call (RPC)

The server computes the
response (possibly asking other
servers) and returns it to the

client

A client requests a service by
sending the server a message.
The client blocks while waiting

for a response

s
#!?%!

c

Deadlock!

p2

p1

p3

Goal

Design a protocol by which a
processor can determine whether a
global predicate (say, deadlock) holds

Draw arrow from to if has received a
request but has not responded yet

Wait-For Graphs

pi pj pj

Draw arrow from to if has received a
request but has not responded yet

Cycle in WFG deadlock

Deadlock cycle in WFG

Wait-For Graphs

⇒ ♦

⇒ ·

pi pj pj

The protocol

 sends a message to

On receipt of ’s message, replies with its
state and wait-for info

p1 . . . p3p0

p0 pi

An execution

p1p1

p2 p2p3 p3

An execution

p1p1

p2 p2p3 p3

An execution

Ghost Deadlock!

p2 p2

p1p1

p3 p3

Houston,
we have a problem...
Asynchronous system

no centralized clock, etc. etc.

Synchrony useful to

coordinate actions

order events

Mmmmhhh...

Events and Histories
Processes execute sequences of events
Events can be of 3 types: local, send, and receive
 is the -th event of process

The local history of process is the sequence
of events executed by process

 : prefix that contains first k events
 : initial, empty sequence

The history H is the set

hp

h
k
p

h
0

p

e
i
p

hp0
∪ hp1

∪ . . . hpn−1

NOTE: In H, local histories are interpreted as sets, rather than sequences, of events

p

p

p

i

Ordering events

Observation 1:
Events in a local history are totally ordered

time
pi

Ordering events

Observation 1:
Events in a local history are totally ordered

Observation 2:
For every message , precedes

time
pi

time
pi

time

m receive(m)send(m)

m

pj

Happened-before
(Lamport[1978])

A binary relation defined over events

1. if and , then

2. if and ,
then

3. if and then

→

ek
i , el

i ∈ hi k < l e
k
i → e

l
i

ei = send(m) ej = receive(m)
ei → ej

e → e
′

e
′
→ e

′′
e → e

′′

Space-Time diagrams

A graphic representation of a distributed execution
time

p1

p2
p3

p1

p2

p3

Space-Time diagrams
A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

Space-Time diagrams
A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

Space-Time diagrams
A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

Space-Time diagrams
A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Space-Time diagrams
A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Space-Time diagrams
A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Space-Time diagrams
A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Runs and
Consistent Runs

A run is a total ordering of the events in H
that is consistent with the local histories of
the processors

Ex: is a run

A run is consistent if the total order imposed
in the run is an extension of the partial
order induced by

A single distributed computation may
correspond to several consistent runs!

h1, h2, . . . , hn

→

	week0-1
	week0-2
	week0-3
	week0-4

