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What is a  distributed 
system?

“A distributed system is one in which the failure 
of a computer you didn’t even know existed 
can render your own computer unusable.”

Leslie Lamport

A few intriguing 
questions

How do we talk about a distributed execution?
Can we draw global conclusions from local information?
Can we coordinate  operations without relying on synchrony?
For the problems we know how to solve, how do we 
characterize the “goodness” of our solution?
Are there problems that simply cannot be solved?
What are useful notions of consistency, and how do we 
maintain them?
What if part of the system is down? Can we still do useful 
work? What if instead part of the system becomes 
“possessed” and starts behaving arbitrarily–all bets are off?

Saving the world
before bedtime



Two Generals’ Problem

Otherwise, 
         Barbarians win

Romans must 
coordinate 
their actions

S.P.Q.R. S.P.Q.R.

either both Generals 
attack or both retreat 
to fight another day

once they commit to 
an action, they cannot 
change their mind

S.P.Q.R. S.P.Q.R.
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Problem:
Save Western 
Civilization

(i.e. design a protocol that 
ensures Romans always 
attack simultaneously)

Only communication is by messenger
Messengers must sneak through the valley
They don’t always make it

Two General’s Problem

Claim: There is no non-trivial protocol that guarantees 
that the Romans will always attack simultaneously

Two General’s Problem

Claim: There is no non-trivial protocol that guarantees 
that the Romans will always attack simultaneously

Proof: By contradiction
Let    be the smallest number of messages needed by a solution

Consider the  -th message

The state of the sender of        cannot depend on the receipt of 

The state of the receiver of        cannot depend on the receipt of 
! ! because in some executions        could be lost

So both sender and receiver would come to the same conclusion even 
without sending 

We now have a solution requiring only       messages – but   was 
supposed to be the smallest number of messages!
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Two General’s Problem

Claim: There is no non-trivial protocol that guarantees 
that the Romans will always attack simultaneously

Proof: By contradiction
Let    be the smallest number of messages needed by a solution

Consider the  -th message

The state of the sender of        cannot depend on the receipt of 

The state of the receiver of        cannot depend on the receipt of 
! ! because in some executions        could be lost

So both sender and receiver would come to the same conclusion even 
without sending 

We now have a solution requiring only       messages – but   was 
supposed to be the smallest number of messages!  Contradiction
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If only I had known...

Solving the Two Generals Problem requires 
common knowledge

“everyone knows that everyone knows that 
everyone knows...” – you get the picture

Alas... 
Common knowledge cannot be achieved by 
communicating through unreliable channels

Do you trust 
traffic lights?

Suppose each driver is 
told: 

RED means “Stop”

GREEN means “Go”

Follow the rules!

Do you feel safe driving?

The Case of the 
Muddy Children



The Case of the 
Muddy Children

   children go playing 

Children are truthful, 
perceptive, intelligent 

Mom says: “Don’t get 
muddy!”

A bunch (say,  ) get mud 
on their forehead

Daddy comes, looks 
around, and says:

“Some of you got a 
muddy forehead!”

n

k

The Case of the 
Muddy Children

   children go playing 

Children are truthful, 
perceptive, intelligent 

Mom says: “Don’t get 
muddy!”

A bunch (say,  ) get mud 
on their forehead

Daddy comes, looks 
around, and says:

“Some of you got a 
muddy forehead!”

Dad then asks repeatedly:

 “Do you know whether 
you have mud on your 
own forehead?”

What happens?

n

k

Elementary...
Claim: The first    
times the father asks, 
all children will reply 
“No”, but the  -th 
time all dirty children 
with reply yes

Proof: By induction on

!  ! ! ! ! !      
The child with the muddy 
forehead sees no one else 
dirty. Dad says someone 
is, so he must be the one

 !  ! - Two muddy children,        
!  and   .

Each answers “No” the 
first time because it sees 
the other
When   sees   say No, she 
realizes she must be 
dirty, because    must 
have seen a dirty child, 
and   sees no one dirty 
but  . So   must be dirty!

       - Three muddy children, 
a, b, and c...
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Elementary?

Suppose 

Every one knows that someone has a dirty 
forehead before Dad announces it...

Does Daddy still need to speak up?

k > 1



Elementary?

Suppose 

Every one knows that someone has a dirty 
forehead before Dad announces it...

Does Daddy still need to speak up?

Claim: Unless he does, the muddy children 
will never be able to determine that their 
forehead are muddy!

k > 1

Common Knowledge: 
The Revenge

Let   = “Someone’s forehead is dirty”

Every one knows 

But, unless the father speak, if       not 
every one knows that everyone knows  !

Suppose   and   are dirty. Before the father 
speaks   does not know whether   knows 

If       , not every one knows that every one 
knows that every one knows   ...
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Would it work if...

... the father took every child aside and told 
them individually (without others noticing) 
that someone’s forehead is muddy?

Would it work if...

... the father took every child aside and told 
them individually (without others noticing) 
that someone’s forehead is muddy?

... every child had (unknown to the other 
children) put a miniature microphone on 
every other child so they can hear what the 
father says in private to them?



Parallel Worlds!

k = 3

Each node labeled with a tuple 
that represents a possible 
world: (1, 0, 1) is a world where 
only child 2 does not have a 
muddy forehead
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Parallel Worlds!

Each node labeled with a tuple 
that represents a possible 
world: (1, 0, 1) is a world where 
only child 2 does not have a 
muddy forehead

Each edge is labeled by the 
color of the child for which 
the two endpoints are both 
possible worlds

(1, 1, 1)

(0, 1, 1)

(0, 1, 0)(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

k = 3

After the father speaks

The state          becomes 
impossible

All the edges that depart from 
it are eliminated

(1, 1, 1)

(0, 1, 1)

(0, 1, 0)(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

k = 3

(0, 0, 0)

If everyone answers 
“No” to the 1st question..

All states with a single 1  
become impossible!

All the edges that depart from 
them are eliminated

(1, 1, 1)

(0, 1, 1)(1, 0, 1)

(0, 1, 0)(1, 0, 0)

(0, 0, 1)

(1, 1, 0)

Child 1

Child 2

Child 3

Much more...

There is an entire logic that formalizes what 
knowledge participants acquire while running 
a protocol

J. Halpern and Y. Moses
Knowledge and Common Knowledge in a Distributed Environment 
E.W. Dijkstra Prize 2009.



Global Predicate Detection 
and Event Ordering



Our Problem

To compute predicates
over the state of 

a distributed application



Model

Message passing

No failures

Two possible timing assumptions:
1. Synchronous System
2. Asynchronous System

No upper bound on message delivery 
time
No bound on relative process speeds



Asynchronous systems

Weakest possible assumptions

cfr. “finite progress axiom”

Weak assumptions    less vulnerabilities

Asynchronous ≠ slow

“Interesting” model w.r.t. failures (ah ah ah!) 

≡



Client-Server

Processes exchange messages using 
Remote Procedure Call (RPC)

A client requests a service by 
sending the server a message. 
The client blocks while waiting 

for a response

sc



Client-Server

Processes exchange messages using 
Remote Procedure Call (RPC)

The server computes the 
response (possibly asking other 
servers) and returns it to the 

client

A client requests a service by 
sending the server a message. 
The client blocks while waiting 

for a response

s
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Deadlock!

p2

p1

p3



Goal

Design a protocol by which a 
processor can determine whether a 
global predicate (say, deadlock) holds



Draw arrow from    to    if    has received a 
request but has not responded yet

Wait-For Graphs

pi pj pj



Draw arrow from    to    if    has received a 
request but has not responded yet

Cycle in WFG          deadlock

Deadlock               cycle in WFG

Wait-For Graphs

⇒ ♦

⇒ ·

pi pj pj



The protocol

    sends a message to 

On receipt of   ’s message,    replies with its 
state and wait-for info

p1 . . . p3p0

p0 pi



An execution

p1p1

p2 p2p3 p3



An execution

p1p1

p2 p2p3 p3



An execution

Ghost Deadlock!

p2 p2

p1p1

p3 p3



Houston,
we have a problem...
Asynchronous system

no centralized clock, etc. etc.

Synchrony useful to

coordinate actions

order events

Mmmmhhh...



Events and Histories
Processes execute sequences of events
Events can be of 3 types: local, send, and receive
   is the  -th event of process 

The local history    of process   is the sequence 
of events executed by process 

     : prefix that contains first k events
     : initial, empty sequence

The history H is the set 

hp

h
k
p

h
0

p

e
i
p

hp0
∪ hp1

∪ . . . hpn−1

NOTE: In H, local histories are interpreted as sets, rather than sequences, of events 
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Ordering events

Observation 1: 
Events in a local history are totally ordered

time
pi



Ordering events

Observation 1: 
Events in a local history are totally ordered

Observation 2: 
For every message   ,           precedes 

time
pi

time
pi

time

m receive(m)send(m)

m

pj



Happened-before
(Lamport[1978])

A binary relation    defined over events

1. if             and       , then

2. if                and                    , 
then

3. if         and           then 

→

ek
i , el

i ∈ hi k < l e
k
i → e

l
i

ei = send(m) ej = receive(m)
ei → ej

e → e
′

e
′
→ e

′′
e → e

′′



Space-Time diagrams

A graphic representation of a distributed execution
time
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Runs and
Consistent Runs

A run is a total ordering of the events in H 
that is consistent with the local histories of 
the processors

Ex:                 is a run

A run is consistent if the total order imposed 
in the run is an extension of the partial 
order induced by

A single distributed computation may 
correspond to several consistent runs!

h1, h2, . . . , hn

→


	week0-1
	week0-2
	week0-3
	week0-4

