Cuts

A cut \(C \) is a subset of the global history of \(H \)
\[C = h^{c_1}_1 \cup h^{c_2}_2 \cup \ldots h^{c_n}_n \]

The frontier of \(C \) is the set of events
\[e^{c_1}_1, e^{c_2}_2, \ldots e^{c_n}_n \]

Global states and cuts

- The global state of a distributed computation is an \(n \)-tuple of local states
 \[\Sigma = (\sigma_1, \ldots, \sigma_n) \]
- To each cut \((c_1 \ldots c_n)\) corresponds a global state \((\sigma^{c_1}_1, \ldots, \sigma^{c_n}_n)\)

Consistent cuts and consistent global states

- A cut is consistent if
 \[\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C \]
- A consistent global state is one corresponding to a consistent cut
Our task

- Develop a protocol by which a processor can build a consistent global state
- Informally, we want to be able to take a snapshot of the computation
- Not obvious in an asynchronous system...

Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- Record:
 - processor states
 - channel states
- Assumptions:
 - FIFO channels
 - Each m timestamped with $T(\text{send}(m))$
Snapshot I

i. \(p_0\) selects \(t_{ss}\)

ii. \(p_0\) sends “take a snapshot at \(t_{ss}\)” to all processes

iii. when clock of \(p_i\) reads \(t_{ss}\) then \(p_i\)
 a. records its local state \(\sigma_i\)
 b. starts recording messages received on each of incoming channels
 c. stops recording a channel when it receives first message with timestamp greater than or equal to \(t_{ss}\)

Correctness

Theorem Snapshot I produces a consistent cut

Proof Need to prove \(e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C\)

< Definition >
0. \(e_j \in C \equiv T(e_j) < t_{ss}\)

< 0 and 1>
3. \(T(e_j) < t_{ss}\)

< 5 and 3>
6. \(T(e_i) < t_{ss}\)

< Assumption >
1. \(e_j \in C\)

< Property of real time>
4. \(e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)\)

< Definition >
7. \(e_i \in C\)

< Assumption >
2. \(e_i \rightarrow e_j\)

< 2 and 4>
5. \(T(e_i) < T(e_j)\)

Clock Condition

< Property of real time>
4. \(e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)\)

Can the Clock Condition be implemented some other way?
Lamport Clocks

Each process maintains a local variable LC

$LC(e) \equiv$ value of LC for event e

Increment Rules

$$
LC(e_p^{i+1}) = LC(e_p^i) + 1
$$

$$
LC(e_q^j) = \max(LC(e_q^{j-1}), LC(e_p^i)) + 1
$$

Timestamp m with $TS(m) = LC(send(m))$

Space-Time Diagrams and Logical Clocks

A subtle problem

when $LC = t$ do S

doesn’t make sense for Lamport clocks!

- there is no guarantee that LC will ever be t
- S is anyway executed after $LC = t$

Fixes:

- if e is internal/send and $LC = t - 2$
 \- execute e and then S
- if $e = receive(m) \land (TS(m) \geq t) \land (LC \leq t - 1)$
 \- put message back in channel
 \- re-enable e; set $LC = t - 1$; execute S
An obvious problem

No $t_{ss}!$

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

$mmmmmhhhh...$

An obvious problem

No $t_{ss}!$

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

$mmmmmhhhh...$

An obvious problem

No $t_{ss}!$

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

$mmmmmhhhh...$

An obvious problem

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

$mmmmmhhhh...$

We better relax it...

Snapshot II

processor p_0 selects Ω

p_0 sends “take a snapshot at Ω” to all processes; it waits for all of them to reply and then sets its logical clock to Ω

when clock of p_i reads Ω then p_i

- records its local state σ_i
- sends an empty message along its outgoing channels
- starts recording messages received on each incoming channel
- stops recording a channel when receives first message with timestamp greater than or equal to Ω
Relaxing synchrony

- Take a snapshot at Ω
- Process does nothing for the protocol during this time!

Use empty message to announce snapshot!

Snapshots: a perspective

- The global state Σ^* saved by the snapshot protocol is a consistent global state.

Snapshots: a perspective

- The global state Σ^* saved by the snapshot protocol is a consistent global state.
- But did it ever occur during the computation?
 - A distributed computation provides only a partial order of events.
 - Many total orders (runs) are compatible with that partial order.
 - All we know is that Σ^* could have occurred.

Snapshot III

- Processor p_0 sends itself "take a snapshot".
- When p_i receives "take a snapshot" for the first time from p_j:
 - Records its local state σ_i.
 - Sends "take a snapshot" along its outgoing channels.
 - Sets channel from p_j to empty.
 - Starts recording messages received over each of its other incoming channels.
- When p_i receives "take a snapshot" beyond the first time from p_k:
 - Stops recording channel from p_k.
- When p_i has received "take a snapshot" on all channels, it sends collected state to p_0 and stops.
Snapshots: a perspective

- The global state Σ^* saved by the snapshot protocol is a consistent global state.
- But did it ever occur during the computation?
 - A distributed computation provides only a partial order of events.
 - Many total orders (runs) are compatible with that partial order.
 - All we know is that Σ^* could have occurred.
- We are evaluating predicates on states that may have never occurred!
An Execution and its Lattice
An Execution and its Lattice

Reachability

\[\Sigma^{kl} \text{ is reachable from } \Sigma^{ij} \text{ if there is a path from } \Sigma^{ij} \text{ to } \Sigma^{kl} \text{ in the lattice} \]
Reachability

Σ_{ij}^k is reachable from Σ_{ij} if there is a path from Σ_{ij} to Σ_{ij}^k in the lattice

So, why do we care about Σ^S again?

- Deadlock is a stable property
 - Deadlock $\Rightarrow \Box \text{Deadlock}$

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f, then $\Sigma^i \sim_R \Sigma^f$
So, why do we care about Σ^s again?

- Deadlock is a stable property
 - Deadlock $\Rightarrow \square$ Deadlock
- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f, then $\Sigma^i \leadsto_R \Sigma^f$
- Deadlock in Σ^s implies deadlock in Σ^f

- No deadlock in Σ^s implies no deadlock in Σ^i

Same problem, different approach

- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation. (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.

Observations: a few observations

- An observation puts no constraint on the order in which the monitor receives notifications

```
p_0  
\downarrow
p_1  
```

```
v_1  
\downarrow
p_1  
```
Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order

What about consistent runs?
Causal delivery

FIFO delivery guarantees:
\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:
\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
FIFO delivery guarantees:
\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:
\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_0 delivers all messages it received with timestamp up to $t - \Delta$ in increasing timestamp order

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Should p_0 deliver?
Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection

Given two events e and e' and their clock values $LC(e)$ and $LC(e')$ where $LC(e) < LC(e')$ determine whether some event e'' exists s.t. $LC(e) < LC(e'') < LC(e')$

Implementing Stability

- Real-time clocks
 - wait for Δ time units

Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message m received by p is stable at p if p will never receive a future message m' s.t. $TS(m') < TS(m)$

Implementing Stability

- Real-time clocks
 - wait for Δ time units
- Lamport clocks
 - wait on each channel for m s.t. $TS(m) > LC(e)$
- Design better clocks!
Clocks and STRONG Clocks

- Lamport clocks implement the clock condition:
 \[e \rightarrow e' \Rightarrow LC(e) < LC(e') \]

- We want new clocks that implement the strong clock condition:
 \[e \rightarrow e' \equiv SC(e) < SC(e') \]

Causal Histories

- The causal history of an event \(e \) in \((H, \rightarrow)\) is the set
 \[\theta(e) = \{ e' \in H | e' \rightarrow e \} \cup \{ e \} \]
How to build $\theta(e)$

Each process p_i:

- initializes $\theta : \theta := \emptyset$
- if e_i^k is an internal or send event, then
 $\theta(e_i^k) := \{e_i^k\} \cup \theta(e_i^{k-1})$
- if e_i^k is a receive event for message m, then
 $\theta(e_i^k) := \{e_i^k\} \cup \theta(e_i^{k-1}) \cup \theta(\text{send}(m))$

Pruning causal histories

- Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)
- Use a more clever way to encode $\theta(e)$

Vector Clocks

- Consider $\theta_i(e)$, the projection of $\theta(e)$ on p_i
- $\theta_i(e)$ is a prefix of h_i: $\theta_i(e) = h_i^k$—it can be encoded using k_i
- $\theta(e) = \theta_1(e) \cup \theta_2(e) \cup \ldots \cup \theta_n(e)$ can be encoded using k_1, k_2, \ldots, k_n

Represent θ using an n-vector VC such that

$VC(e)[i] = k \iff \theta_i(e) = h_i^k$

Update rules

- $VC(e_i) := \max(VC, TS(m))$
- $VC(e_i)[i] := VC[i] + 1$

Message m is timestamped with $TS(m) = VC(\text{send}(m))$
Example

Operational interpretation

Operational interpretation

\[VC(e_i)[i] = \text{no. of events executed by } p_i \text{ up to and including } e_i \]
\[VC(e_i)[j] = \text{no. of events executed by } p_j \text{ that happen before } e_i \text{ of } p_i \]