Cuts

A cut C is a subset of the global history of H

$$C = h_1^{c_1} \cup h_2^{c_2} \cup \dots h_n^{c_n}$$

Cuts

A cut C is a subset of the global history of H

$$C = h_1^{c_1} \cup h_2^{c_2} \cup \dots h_n^{c_n}$$

The frontier of C is the set of events

$$e_1^{c_1}, e_2^{c_2}, \dots e_n^{c_n}$$

Global states and cuts

The global state of a distributed computation is an n-tuple of local states

$$\Sigma = (\sigma_1, \dots \sigma_n)$$

To each cut $(c_1 \dots c_n)$ corresponds a global state $(\sigma_1^{c_1}, \dots \sigma_n^{c_n})$

Consistent cuts and consistent global states

A cut is consistent if

$$\forall e_i, e_j : e_j \in C \land e_i \to e_j \Rightarrow e_i \in C$$

A consistent global state is one corresponding to a consistent cut

What p_0 sees p_1 p_2 p_3

Our task

- Develop a protocol by which a processor can build a consistent global state
- Informally, we want to be able to take a snapshot of the computation
- Not obvious in an asynchronous system...

Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- Record:
 - > processor states
 - > channel states
- Assumptions:
 - > FIFO channels
 - > Each m timestamped with with T(send(m))

Snapshot I

- i. p_0 selects t_{ss}
- ii. p_0 sends "take a snapshot at t_{ss} " to all processes
- iii. when clock of p_i reads t_{ss} then p
 - a. records its local state σ_i
 - b. starts recording messages received on each of incoming channels
 - c. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Snapshot I

- i. p_0 selects t_{ss}
- ii. p_0 sends "take a snapshot at t_{ss} " to all processes
- iii. when clock of p_i reads t_{ss} then p
 - a. records its local state σ_i
 - b. sends an empty message along its outgoing channels
 - c. starts recording messages received on each of incoming
 - d. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Correctness

Snapshot I produces a consistent cut Theorem

Proof Need to prove $e_i \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$

- < Definition >
- < 0 and 1>

< 5 and 3>

- 0. $e_i \in C \equiv T(e_i) < t_{ss}$ 3. $T(e_i) < t_{ss}$
- 6. $T(e_i) < t_{ss}$

- < Assumption >
- < Property of real time>
- < Definition >

1. $e_i \in C$

- $4. e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$ $7. e_i \in C$

- < Assumption >
- < 2 and 4>
- $2. e_i \rightarrow e_j$
- 5. $T(e_i) < T(e_i)$

Clock Condition

< Property of real time>

Can the Clock Condition be implemented some other way?

Lamport Clocks

Each process maintains a local variable LC $LC(e) \equiv$ value of LC for event e

$$p \quad \xrightarrow{e_p^i} \qquad e_p^{i+1} \qquad \qquad LC(e_p^i) < LC(e_p^{i+1})$$

 $LC(e_p^i) < LC(e_q^j)$

Increment Rules

$$p \xrightarrow{e_p^i \qquad e_p^{i+1}}$$

$$LC(e_p^{i+1}) = LC(e_p^i) + 1$$

Timestamp m with TS(m) = LC(send(m))

Space-Time Diagrams and Logical Clocks

A subtle problem

when LC = t do S

doesn't make sense for Lamport clocks!

- \odot there is no guarantee that LC will ever be t
- \odot S is anyway executed <u>after</u> LC = t

Fixes:

- \odot if e is internal/send and LC=t-2
 - \square execute e and then S
- \bullet if $e = receive(m) \land (TS(m) \ge t) \land (LC \le t 1)$
 - □ put message back in channel
 - \Box re-enable e; set LC = t 1; execute S

An obvious problem

- \odot No $t_{ss}!$
- © Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

An obvious problem

- lacktriangle No $t_{ss}!$
- © Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

An obvious problem

- lacktriangledown No $t_{ss}!$
- \odot Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

- Doing so assumes
 - upper bound on message delivery time
 - upper bound relative process speeds

We better relax it...

Snapshot II

- $oldsymbol{\circ}$ processor p_0 selects Ω
- $m{\varnothing}$ when clock of p_i reads Ω then p_i
 - \square records its local state σ_i
 - $\hfill\Box$ sends an empty message along its outgoing channels
 - □ starts recording messages received on each incoming channel
 - \square stops recording a channel when receives first message with timestamp greater than or equal to Ω

Snapshot III

- \odot processor p_0 sends itself "take a snapshot"
- \bullet when p_i receives "take a snapshot" for the first time from p_i :
 - \square records its local state σ_i
 - □ sends "take a snapshot" along its outgoing channels
 - \square sets channel from p_j to empty
 - $\hfill \square$ starts recording messages received over each of its other incoming channels
- **3** when p_i receives "take a snapshot" beyond the first time from p_k :
 - \square stops recording channel from p_k
- $\$ when p_i has received "take a snapshot" on all channels, it sends collected state to p_0 and stops.

Snapshots: a perspective

 \odot The global state Σ^s saved by the snapshot protocol is a consistent global state

Snapshots: a perspective

- $\ensuremath{\mathfrak{O}}$ The global state $\Sigma^s \text{saved}$ by the snapshot protocol is a consistent global state
- 6 But did it ever occur during the computation?
 - □ a distributed computation provides only a partial order of events
 - □ many total orders (runs) are compatible with that partial order
 - \square all we know is that Σ^s could have occurred

Snapshots: a perspective

- $\ensuremath{\mathfrak{O}}$ The global state $\Sigma^s \text{saved}$ by the snapshot protocol is a consistent global state
- But did it ever occur during the computation?
 - □ a distributed computation provides only a partial order of events
 - \square many total orders (runs) are compatible with that partial order
 - \square all we know is that Σ^s could have occurred
- We are evaluating predicates on states that may have never occurred!

So, why do we care about Σ^s again?

Deadlock is a stable property

 $Deadlock \Rightarrow \Box Deadlock$

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$
- ${\mathfrak G}$ Deadlock in Σ^s implies deadlock in Σ^f

So, why do we care about Σ^s again?

Deadlock is a stable property

 $Deadlock \Rightarrow \Box Deadlock$

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$
- $oldsymbol{\circ}$ Deadlock in Σ^s implies deadlock in Σ^f
- $oldsymbol{\circ}$ No deadlock in Σ^s implies no deadlock in Σ^i

Same problem, different approach

- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

*p*₀

 $p_1 \stackrel{e_1^1}{\smile}$

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order What about consistent runs?

Causal delivery

FIFO delivery guarantees:

$$send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$$

Causal delivery

FIFO delivery guarantees:

$$send_i(m) \rightarrow send_i(m') \Rightarrow deliver_i(m) \rightarrow deliver_i(m')$$

Causal delivery generalizes FIFO:

$$send_i(m) \rightarrow send_k(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$$

Causal delivery

FIFO delivery guarantees:

$$send_i(m) \rightarrow send_i(m') \Rightarrow deliver_i(m) \rightarrow deliver_i(m')$$

Causal delivery generalizes FIFO:

$$send_i(m) \rightarrow send_k(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$$

- send event
- receive event
- deliver event
- 93 -----

Causal delivery

FIFO delivery guarantees:

$$send_i(m) \rightarrow send_i(m') \Rightarrow deliver_i(m) \rightarrow deliver_i(m')$$

Causal delivery generalizes FIFO:

$$send_i(m) \rightarrow send_k(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$$

- send event
- receive
- deliver even
- San Property

FIFO delivery guarantees: $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$ Causal delivery generalizes FIFO: $send_i(m) \rightarrow send_k(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$ P1 P1 P2 • send event • receive event • deliver event • deliver event

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_0 delivers all messages it received with timestamp up to $t-\Delta$ in increasing timestamp order

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

 $p_0 \xrightarrow{1}$

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

 $p_0 \xrightarrow{\frac{1}{4}}$ Should p_0 deliver?

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

 $p_0 \xrightarrow{\frac{1}{4}}$ Should p_0 deliver?

Problem: Lamport Clocks don't provide gap detection

Given two events e and e' and their clock values LC(e) and LC(e') — where $LC(e) < \overline{LC(e')}$ determine whether some event e'' exists s.t. LC(e) < LC(e'') < LC(e')

Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message m received by p is stable at p if pwill never receive a future message m's.t.

Implementing Stability

- Real-time clocks
 - \square wait for \triangle time units

Implementing Stability

- @ Real-time clocks
 - \square wait for \triangle time units
- Lamport clocks
 - \square wait on each channel for m s.t. TS(m) > LC(e)
- Design better clocks!

Clocks and STRONG Clocks

- We want new clocks that implement the strong clock condition:

$$e \to e' \equiv SC(e) < SC(e')$$

Causal Histories

The causal history of an event e in (H, \to) is the set $\theta(e)=\{e'\in H\mid e'\to e\}\cup\{e\}$

Causal Histories

The causal history of an event e in (H, \to) is the set $\theta(e) = \{e' \in H \mid e' \to e\} \cup \{e\}$

Causal Histories

The causal history of an event e in (H, \to) is the set $\theta(e) = \{e' \in H \mid e' \to e\} \cup \{e\}$

$$e \to e' \equiv \theta(e) \subset \theta(e')$$

How to build $\theta(e)$

Each process p_i :

- \square initializes θ : $\theta := \emptyset$
- \square if e_i^k is an internal or send event, then $heta(e_i^k)\!:=\!\{e_i^k\}\cup heta(e_i^{k-1})$
- \Box if e_i^k is a receive event for message m, then $\theta(e_i^k)\!:=\!\{e_i^k\}\cup\theta(e_i^{k-1})\cup\theta(send(m))$

Pruning causal histories

- Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)
- ${\mathfrak G}$ Use a more clever way to encode $\theta(e)$

Vector Clocks

- © Consider $\theta_i(e)$, the projection of $\theta(e)$ on p_i
- $\ensuremath{\mathfrak{G}}\xspace \theta_i(e)$ is a prefix of $h^i \!\!: \theta_i(e) = h_i^{k_i} \!\!-\!\!$ it can be encoded using k_i
- $\theta(e) = \theta_1(e) \cup \theta_2(e) \cup \ldots \cup \theta_n(e)$ can be encoded using k_1, k_2, \ldots, k_n

Represent θ using an n -vector VC such that $VC(e)[i] = k \Leftrightarrow \theta_i(e) = h_i^{k_i}$

