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A cut C is a subset of the global history of H
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A cut C is a subset of the global history of H

The frontier of C is the set of events 
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Global states and cuts

The global state of a distributed computation 
is an  -tuple of local states

To each cut           corresponds a global 
state 

Σ = (σ1, . . .σn)

(σc1

1
, . . .σ

cn

n
)

(c1 . . . cn)

n

Consistent cuts and 
consistent global states

A cut is consistent if

A consistent global state is one corresponding 
to a consistent cut 

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C



What    seesp0

p1

p2

p3

What    sees

Not a consistent global state: the cut contains 
the event corresponding to the receipt of the 
last message by    but not the corresponding 
send event

p1

p2

p3

p3

p0

Our task

Develop a protocol by which a processor can build 
a consistent global state

Informally, we want to be able to take a snapshot 
of the computation

Not obvious in an asynchronous system...

Our approach

Develop a simple synchronous protocol

Refine protocol as we relax assumptions 

Record:
processor states
channel states 

Assumptions:
FIFO channels
Each    timestamped with with m T (send(m))



Snapshot I
i.      selects 

ii.     sends “take a snapshot at     ” to all processes

iii. when clock of     reads       then 
a. records its local state 
b. starts recording messages received on each of incoming 

channels 
c. stops recording a channel when it receives first message 

with timestamp greater than or equal to 

p0 tss

p0 tss

tss

tss

pi

σi

p

Snapshot I
i.      selects 

ii.     sends “take a snapshot at     ” to all processes

iii. when clock of     reads       then 
a. records its local state 
b. sends an empty message along its outgoing channels
c. starts recording messages received on each of incoming 

channels 
d. stops recording a channel when it receives first message 

with timestamp greater than or equal to 

p0 tss

p0 tss

tss

tss

pi

σi

p

Correctness
Theorem     Snapshot I produces a consistent cut

< Assumption >

< Assumption >

< 0 and 1>

Proof Need to prove  

< Definition >

< Property of real time>

< 2 and 4>

< 5 and 3>

< Definition >

ej ∈ C ∧ ei → ej ⇒ ei ∈ C

2. ei → ej

1. ej ∈ C

0. ej ∈ C ≡ T (ej) < tss 3. T (ej) < tss

4. ei → ej ⇒ T (ei) < T (ej)

6. T (ei) < tss

5. T (ei) < T (ej)

7. ei ∈ C

Clock Condition

< Property of real time>

Can the Clock Condition be 
implemented some other way?

4. ei → ej ⇒ T (ei) < T (ej)



Lamport Clocks

Each process maintains a local variable
                 value of     for event 

LC

LC(e) ≡ LC e

e
i
p e

i+1
p

e
i
p

LC(ei
p) < LC(ei+1

p )

LC(ei
p) < LC(ej

q)
e
j
q

p

q

p

Increment Rules
e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p ) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q ), LC(ei
p)) + 1

Timestamp    with m TS(m) = LC(send(m))

Space-Time Diagrams             
and Logical Clocks

2

1

3

4 5 6

6

7

7

8

8

9

p1

p2

p3

A subtle problem

when          do S   
doesn’t make sense for Lamport clocks! 

there is no guarantee that     will ever be 
S is anyway executed after 

Fixes: 
if   is internal/send and                   

execute    and then S

if
put message back in channel
re-enable   ; set              ; execute S

LC

e

LC = t

LC = t

t

LC = t − 2

LC = t − 1e

e

e = receive(m) ∧ (TS(m) ≥ t) ∧ (LC ≤ t − 1)



An obvious problem

No    ! 

Choose     large enough that it cannot be 
reached by applying the update rules of logical 
clocks

tss

Ω

An obvious problem

No    ! 

Choose     large enough that it cannot be 
reached by applying the update rules of logical 
clocks

mmmmhhhh...

tss

Ω

An obvious problem

No    ! 

Choose     large enough that it cannot be 
reached by applying the update rules of logical 
clocks

mmmmhhhh...

Doing so assumes 
upper bound on message delivery time
upper bound relative process speeds

We better relax it...

tss

Ω

Snapshot II

processor    selects 

    sends “take a snapshot at  ” to all processes; it waits for 
all of them to reply and then sets its logical clock to 

when clock of    reads    then 
records its local state 
sends an empty message along its outgoing channels
starts recording messages received on each incoming 
channel
stops recording a channel when receives first message 
with timestamp greater than or equal to 

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi



Relaxing synchrony

Process does nothing 
for the protocol 
during this time!

pi

 take a 
snapshot at   Ω

empty message: 
TS(m) ≥ Ω

monitors
channels records 

local state σi

sends empty message: 
TS(m) ≥ Ω

Use empty message to announce snapshot!

Snapshot III
processor    sends itself “take a snapshot “

when   receives “take a snapshot” for the first time from    :
records its local state 
sends “take a snapshot” along its outgoing channels
sets channel from    to empty

starts recording messages received over each of its other incoming 
channels

when   receives “take a snapshot” beyond the first time from    :
stops recording channel from  

when    has received “take a snapshot” on all channels, it sends 
! collected state to    and stops. 

p0

pi pj

σi

pkpi

pi

pj

pk

p0

Snapshots: a perspective
The global state    saved by the snapshot 
protocol is a consistent global state

Σ
s

Snapshots: a perspective
The global state    saved by the snapshot 
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a 
partial order of events
many total orders (runs) are compatible 
with that partial order
all we know is that    could have occurred

Σ
s

Σ
s



Snapshots: a perspective
The global state    saved by the snapshot 
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a 
partial order of events
many total orders (runs) are compatible 
with that partial order
all we know is that    could have occurred

We are evaluating predicates on states that 
may have never occurred!  

Σ
s

Σ
s
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    is reachable from     if 
there is a path from     to 
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So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then
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So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then

Deadlock in    implies deadlock in 
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So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then

Deadlock in    implies deadlock in 

No deadlock in    implies no deadlock in 

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f
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i
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f
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Same problem,   
different approach

Monitor process does not query explicitly

Instead, it passively collects information and 
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the 
distributed computation based on  the order in 
which the receiver is notified of the events.

Observations: 
a few observations

An observation puts no constraint on the order 
in which the monitor receives notifications

p1

e
1

1

p0



Observations: 
a few observations

An observation puts no constraint on the order 
in which the monitor receives notifications
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Observations: 
a few observations

An observation puts no constraint on the order 
in which the monitor receives notifications
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p0

Observations: 
a few observations

An observation puts no constraint on the order 
in which the monitor receives notifications

To obtain a run, messages must be delivered to 
the monitor in FIFO order
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Observations: 
a few observations

An observation puts no constraint on the order 
in which the monitor receives notifications

To obtain a run, messages must be delivered to 
the monitor in FIFO order
What about consistent runs?
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Causal delivery

FIFO delivery guarantees:
sendi(m) → sendi(m

′) ⇒ deliverj(m) → deliverj(m
′)

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:
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′)
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Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1 2

Causal Delivery
in Synchronous Systems

We use the upper bound    on 
message delivery time
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Causal Delivery
in Synchronous Systems

We use the upper bound    on 
message delivery time

DR1: At time   ,    delivers all messages 
it received with timestamp up to        
in increasing timestamp order

∆

t p0

t−∆

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.

1
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Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.
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Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection

1
p0

4
Should    deliver?p0

Given two events   and    and their clock
values        and          — where
determine whether some event   exists s.t.

e e
′

LC(e) LC(e′) LC(e) < LC(e′)

LC(e) < LC(e′′) < LC(e′)

e
′′

Stability

DR2: !Deliver all received stable messages in 
increasing (logical clock) timestamp order.

A message    received by   is stable at   if   
will never receive a future message    s.t.

m

m
′

pp p

TS(m′) < TS(m)

Implementing Stability

Real-time clocks
wait for   time units∆

Implementing Stability

Real-time clocks
wait for   time units

Lamport clocks
wait on each channel for    s.t.

Design better clocks!

∆

m TS(m) > LC(e)



Clocks and STRONG Clocks

Lamport clocks implement the clock condition:

We want new clocks that implement the 
strong clock condition:

e → e
′
⇒ LC(e) < LC(e′)

e → e
′
≡ SC(e) < SC(e′)

Causal Histories

The causal history of an event   in         is the sete (H,→)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

Causal Histories

The causal history of an event   in         is the sete (H,→)
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Causal Histories

The causal history of an event   in         is the sete (H,→)
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≡ θ(e) ⊂ θ(e′)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}



How to build   

Each process   :

initializes

if    is an internal or send event, then 

if    is a receive event for message   , then    

θ(e)

θ : θ := ∅

e
k
i

pi

e
k
i m

θ(ek
i ) :={ek

i } ∪ θ(ek−1

i
) ∪ θ(send(m))

θ(ek
i ) :={ek

i } ∪ θ(ek−1

i
)

Pruning causal histories

Prune segments of history that are known to  
all processes (Peterson, Bucholz and 
Schlichting)

Use a more clever way to encode θ(e)

Vector Clocks

Consider      , the projection of      on   

      is a prefix of   :             – it can be 
encoded using 

                                      can be 
encoded using 

θi(e) θ(e) pi

θi(e) h
i θi(e) = h

ki

i

ki

θ(e) = θ1(e) ∪ θ2(e) ∪ . . . ∪ θn(e)
k1, k2, . . . , kn

Represent   using an  -vector     such thatθ n V C

V C(e)[i] = k ⇔ θi(e) = h
ki

i

Update rules

pi

pi

ei

m

ei

Message    is 
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1



Example
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=

=  
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V C(ei)[i]

V C(ei)[j]

Operational 
interpretation

= no. of events executed by      up to and including

=  

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

Operational 
interpretation

= no. of events executed by      up to and including

= no. of events executed by    that happen before    of  

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei


