
Cuts

A cut C is a subset of the global history of H

p1

p2

p3

C = h
c1

1
∪ h

c2

2
∪ . . . h

cn

n

A cut C is a subset of the global history of H

The frontier of C is the set of events

Cuts

p1

p2

p3

C = h
c1

1
∪ h

c2

2
∪ . . . h

cn

n

e
c1

1
, e

c2

2
, . . . e

cn

n

Global states and cuts

The global state of a distributed computation
is an -tuple of local states

To each cut corresponds a global
state

Σ = (σ1, . . .σn)

(σc1

1
, . . .σ

cn

n
)

(c1 . . . cn)

n

Consistent cuts and
consistent global states

A cut is consistent if

A consistent global state is one corresponding
to a consistent cut

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C

What seesp0

p1

p2

p3

What sees

Not a consistent global state: the cut contains
the event corresponding to the receipt of the
last message by but not the corresponding
send event

p1

p2

p3

p3

p0

Our task

Develop a protocol by which a processor can build
a consistent global state

Informally, we want to be able to take a snapshot
of the computation

Not obvious in an asynchronous system...

Our approach

Develop a simple synchronous protocol

Refine protocol as we relax assumptions

Record:
processor states
channel states

Assumptions:
FIFO channels
Each timestamped with with m T (send(m))

Snapshot I
i. selects

ii. sends “take a snapshot at ” to all processes

iii. when clock of reads then
a. records its local state
b. starts recording messages received on each of incoming

channels
c. stops recording a channel when it receives first message

with timestamp greater than or equal to

p0 tss

p0 tss

tss

tss

pi

σi

p

Snapshot I
i. selects

ii. sends “take a snapshot at ” to all processes

iii. when clock of reads then
a. records its local state
b. sends an empty message along its outgoing channels
c. starts recording messages received on each of incoming

channels
d. stops recording a channel when it receives first message

with timestamp greater than or equal to

p0 tss

p0 tss

tss

tss

pi

σi

p

Correctness
Theorem Snapshot I produces a consistent cut

< Assumption >

< Assumption >

< 0 and 1>

Proof Need to prove

< Definition >

< Property of real time>

< 2 and 4>

< 5 and 3>

< Definition >

ej ∈ C ∧ ei → ej ⇒ ei ∈ C

2. ei → ej

1. ej ∈ C

0. ej ∈ C ≡ T (ej) < tss 3. T (ej) < tss

4. ei → ej ⇒ T (ei) < T (ej)

6. T (ei) < tss

5. T (ei) < T (ej)

7. ei ∈ C

Clock Condition

< Property of real time>

Can the Clock Condition be
implemented some other way?

4. ei → ej ⇒ T (ei) < T (ej)

Lamport Clocks

Each process maintains a local variable
 value of for event

LC

LC(e) ≡ LC e

e
i
p e

i+1
p

e
i
p

LC(ei
p) < LC(ei+1

p)

LC(ei
p) < LC(ej

q)
e
j
q

p

q

p

Increment Rules
e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q), LC(ei
p)) + 1

Timestamp with m TS(m) = LC(send(m))

Space-Time Diagrams
and Logical Clocks

2

1

3

4 5 6

6

7

7

8

8

9

p1

p2

p3

A subtle problem

when do S
doesn’t make sense for Lamport clocks!

there is no guarantee that will ever be
S is anyway executed after

Fixes:
if is internal/send and

execute and then S

if
put message back in channel
re-enable ; set ; execute S

LC

e

LC = t

LC = t

t

LC = t − 2

LC = t − 1e

e

e = receive(m) ∧ (TS(m) ≥ t) ∧ (LC ≤ t − 1)

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

tss

Ω

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

mmmmhhhh...

tss

Ω

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

mmmmhhhh...

Doing so assumes
upper bound on message delivery time
upper bound relative process speeds

We better relax it...

tss

Ω

Snapshot II

processor selects

 sends “take a snapshot at ” to all processes; it waits for
all of them to reply and then sets its logical clock to

when clock of reads then
records its local state
sends an empty message along its outgoing channels
starts recording messages received on each incoming
channel
stops recording a channel when receives first message
with timestamp greater than or equal to

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi

Relaxing synchrony

Process does nothing
for the protocol
during this time!

pi

 take a
snapshot at Ω

empty message:
TS(m) ≥ Ω

monitors
channels records

local state σi

sends empty message:
TS(m) ≥ Ω

Use empty message to announce snapshot!

Snapshot III
processor sends itself “take a snapshot “

when receives “take a snapshot” for the first time from :
records its local state
sends “take a snapshot” along its outgoing channels
sets channel from to empty

starts recording messages received over each of its other incoming
channels

when receives “take a snapshot” beyond the first time from :
stops recording channel from

when has received “take a snapshot” on all channels, it sends
! collected state to and stops.

p0

pi pj

σi

pkpi

pi

pj

pk

p0

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state

Σ
s

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a
partial order of events
many total orders (runs) are compatible
with that partial order
all we know is that could have occurred

Σ
s

Σ
s

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a
partial order of events
many total orders (runs) are compatible
with that partial order
all we know is that could have occurred

We are evaluating predicates on states that
may have never occurred!

Σ
s

Σ
s

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

Σ
42

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

Σ
42

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Σ
ij

Σ
kl

Σ
kl

Σ
ij

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
ij

Σ
kl

Σ
55

Σ
21

Σ
kl

Σ
ij

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
55

Σ
21

Σ
ij

Σ
kl

Σ
kl

Σ
ij

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
55

Σ
21

Σ
ij

! Σ
kl

Σ
ij

Σ
kl

Σ
kl

Σ
ij

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Deadlock in implies deadlock in

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

Σ
f

Σ
s

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Deadlock in implies deadlock in

No deadlock in implies no deadlock in

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

Σ
i

Σ
f

Σ
s

Σ
s

Same problem,
different approach

Monitor process does not query explicitly

Instead, it passively collects information and
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the
distributed computation based on the order in
which the receiver is notified of the events.

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1

p0

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1
e
2

1

p0

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1
e
2

1

p0

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

To obtain a run, messages must be delivered to
the monitor in FIFO order

p1

e
1

1
e
2

1

p0

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

To obtain a run, messages must be delivered to
the monitor in FIFO order
What about consistent runs?

p1

e
1

1
e
2

1

p0

Causal delivery

FIFO delivery guarantees:
sendi(m) → sendi(m

′) ⇒ deliverj(m) → deliverj(m
′)

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1 2

Causal Delivery
in Synchronous Systems

We use the upper bound on
message delivery time

∆

Causal Delivery
in Synchronous Systems

We use the upper bound on
message delivery time

DR1: At time , delivers all messages
it received with timestamp up to
in increasing timestamp order

∆

t p0

t−∆

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

1
p0

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

1
p0

4
Should deliver?p0

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection

1
p0

4
Should deliver?p0

Given two events and and their clock
values and — where
determine whether some event exists s.t.

e e
′

LC(e) LC(e′) LC(e) < LC(e′)

LC(e) < LC(e′′) < LC(e′)

e
′′

Stability

DR2: !Deliver all received stable messages in
increasing (logical clock) timestamp order.

A message received by is stable at if
will never receive a future message s.t.

m

m
′

pp p

TS(m′) < TS(m)

Implementing Stability

Real-time clocks
wait for time units∆

Implementing Stability

Real-time clocks
wait for time units

Lamport clocks
wait on each channel for s.t.

Design better clocks!

∆

m TS(m) > LC(e)

Clocks and STRONG Clocks

Lamport clocks implement the clock condition:

We want new clocks that implement the
strong clock condition:

e → e
′
⇒ LC(e) < LC(e′)

e → e
′
≡ SC(e) < SC(e′)

Causal Histories

The causal history of an event in is the sete (H,→)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

Causal Histories

The causal history of an event in is the sete (H,→)

p2

p1

p3

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
3

3e
1

3 e
2

3 e
4
3

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

Causal Histories

The causal history of an event in is the sete (H,→)

p2

p1

p3

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
3

3e
1

3 e
2

3 e
4
3

e → e
′
≡ θ(e) ⊂ θ(e′)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

How to build

Each process :

initializes

if is an internal or send event, then

if is a receive event for message , then

θ(e)

θ : θ := ∅

e
k
i

pi

e
k
i m

θ(ek
i) :={ek

i } ∪ θ(ek−1

i
) ∪ θ(send(m))

θ(ek
i) :={ek

i } ∪ θ(ek−1

i
)

Pruning causal histories

Prune segments of history that are known to
all processes (Peterson, Bucholz and
Schlichting)

Use a more clever way to encode θ(e)

Vector Clocks

Consider , the projection of on

 is a prefix of : – it can be
encoded using

 can be
encoded using

θi(e) θ(e) pi

θi(e) h
i θi(e) = h

ki

i

ki

θ(e) = θ1(e) ∪ θ2(e) ∪ . . . ∪ θn(e)
k1, k2, . . . , kn

Represent using an -vector such thatθ n V C

V C(e)[i] = k ⇔ θi(e) = h
ki

i

Update rules

pi

pi

ei

m

ei

Message is
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1

Example

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

Operational
interpretation

=

=

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

V C(ei)[i]

V C(ei)[j]

Operational
interpretation

= no. of events executed by up to and including

=

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

Operational
interpretation

= no. of events executed by up to and including

= no. of events executed by that happen before of

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei

