



# Why Rings?

- Historical reasons
  - 13 original motivation: regenerate lost token in token ring networks
- Illustrates techniques and principles
- Good for lower bounds and impossibility results

# Outline

- Specification of Leader Election
- **OYAIR**
- Leader Election in Asynchronous Rings
  - $\ \ \square$  An  $O(n^2)$  algorithm
  - $\Box \ \ \mathsf{An} \ O(n\log(n)) \ \mathsf{algorithm}$
- The Revenge of the Lower Bound
- Leader election is synchronous rings
  - $\square$  Breaking the  $\Omega(n\log(n))$  barrier

## The Problem

Processes can be in one of two final states

elected

non-elected

- In every execution, exactly one process (the leader) is elected
- All other processes are non-elected

## Lots of variations...

- Ring can be unidirectional or bidirectional
- Processes can be <u>identical</u> or can somehow be <u>distinguishable</u> from each other
- The number n of processes <u>may</u> or <u>may not</u> <u>be known</u> if not, <u>uniform</u> algorithms
- Communications may be <u>synchronous</u> or asynchronous

# Anonymous Networks



- Processes have no unique IDs (identical automata)
- ...but can distinguish between left and right

# Call me Ishmael

- ${\color{red} @}$  Processes have unique IDs from some large totally ordered set (e.g.  $\mathbb{N}^+)$
- Operations used to manipulate IDs can be unrestricted or limited (e.g. only comparisons)

# Communication: Synchronous/Asynchronous

### Synchronous

- In rounds
- In each round, a process
  - delivers all pending messages
  - takes an execution step (possibly sending one or more messages)

### Asynchronous

- No upper bound on message delivery time
- No centralized clock
- No bound on relative sped of processes

# An Impossibility Result

### Theorem

There is no nonuniform anonymous algorithm for leader election in synchronous rings

# An Impossibility Result

### Theorem

There is no nonuniform anonymous algorithm for leader election in synchronous rings

### Proof

Suppose there exists an anonymous nonuniform algorithm A for R s.t. |R| > 1

Lemma For every round k of A in R, the states of all the processes at the end of round k are the same

Proof By induction on k

If some process enters the leader state, they all do

# An $O(n^2)$ Algorithm Le Lann ('77), Chang & Roberts ('79)

upon receiving no message send  $uid_i$  to left (clockwise) send m to left

leader := isend  $\langle terminate, i \rangle$  to left terminate

upon receiving <terminate, i> from right leader := i

send <terminate, i > to left terminate

- Asynchronous and Uniform
- Process with highest uid is elected leader - all other uids are swallowed
- $\bullet$  Time complexity: O(n)
- Message complexity:  $O(n^2)$
- Bound is tight:



# An $O(n \log n)$ Algorithm Hirschenberg & Sinclair (1980) Bidirectional ring In each phase $k, p_i$ : sends $uid_i$ token left and right token intended to travel distance $2^k$ and turn back continues outbound only if greater than tokens on path processes always forward inbound token $p_i$ leader if it receives own



# An O(n log n) Algorithm Hirschenberg & Sinclair (1980) Bidirectional ring In each phase k, protocol elects one winner (process with highest uid) for each k-neighborhood a k-neighborhood includes 2k+1 processes After O(log n) phases, there is only one winner!

token while going outbound



# An $O(n \log n)$ Algorithm Hirschenberg & Sinclair (1980) Bidirectional ring In each phase k, protocol elects one winner (process with highest uid) for each k-neighborhood a k-neighborhood includes 2k+1 processes After $O(\log n)$ phases, there is only one winner!



# Bounding message complexity

Lemma For every  $k \ge 1$  the number of processes that are phase k winners are at most  $\frac{n}{2^k+1}$ 

Proof Two winners cannot have fewer than  $2^k$  processes between them

Message complexity:

4n  $\uparrow$ Phase 0

# Bounding message complexity

Lemma For every  $k \ge 1$  the number of processes that are phase k winners are at most  $\frac{n}{2^k+1}$ 

Proof Two winners cannot have fewer than  $2^k$  processes between them

Message complexity:



# Bounding message complexity

Lemma For every  $k \geq 1$  the number of processes that are phase k winners are at most  $\frac{n}{2^k+1}$ 

Proof Two winners cannot have fewer than  $2^k$  processes between them

Message complexity:



# Bounding message complexity

Lemma For every  $k \ge 1$  the number of processes that are phase k winners are at most  $\frac{n}{2^k+1}$ 

Proof Two winners cannot have fewer than  $2^k$  processes between them

Message complexity:



# Bounding message complexity

Lemma For every  $k \ge 1$  the number of processes that are phase k winners are at most  $\frac{n}{2^k+1}$ 

Proof Two winners cannot have fewer than  $2^k$  processes between them

Message complexity:



# Message complexity

Lemma For every  $k \ge 1$  the number of processes that are phase k winners are at most  $\frac{n}{2^{k-1}+1}$ 

Proof Two winners cannot have fewer than  $2^k$  processes between them

Message complexity:



# The Revenge of the Lower Bound

- We have seen:
  - $\square$  a simple  $O(n^2)$  algorithm
  - $\square$  a more clever  $O(n \log n)$  algorithm
- Facts
  - $\begin{tabular}{ll} $\square$ $\Omega(n\log n)$ lower bound in asynchronous networks \\ \end{tabular}$
  - $\square$   $\Omega(n\log n)$  lower bounds in synchronous networks when using only comparisons

# Breaking through $\Omega(n \log n)$

- Synchronous rings
- UID are positive integers, manipulated using arbitrary operations

### Non Uniform

- n is known to all
- unidirectional communication
- $\circ$  O(n) messages!

### Uniform

- $m{\circ}$  n is not known
- unidirectional
- $\circ$  O(n) messages!

What about time complexity?

# And now, for something completely different...

RANDOMIZATION

# What is it good for?

- In general does not affect
  - □ impossibility results
    - □ leader election in anonymous networks
  - □ worst case bounds
    - $\ \square$  consensus in fewer than f+1 rounds
- But it makes a difference when combined with weakening the problem statement

# Randomized leader election

- Transition function takes as input
  - a random number
  - n from a bounded range
  - under some fixed distribution
- Weaker problem definition for LE:
  - □ Safety: In every global state of every execution, at most one process is in the elected state
  - □ Liveness: At least one process is elected with some non-zero probability

# A second look at anonymous rings

### Theorem

There is a randomized algorithm that, with probability c>1/e elects a leader in a synchronous ring sending  ${\cal O}(n^2)$  messages

# The "one-shot" algorithm

```
id_i := \left\{ \begin{array}{l} 1 \text{ with probability } 1-1/n \\ 2 \text{ with probability } 1/n \end{array} \right. send \langle id_i \rangle to left  \text{upon receiving } \langle S \rangle \text{ from right}  if |S| = n then  \text{if } id_i \text{ is unique maximum of } S \text{ then }   \text{elected := true}   \text{else}   \text{else}   \text{send } \langle S \cdot id_i \rangle \text{ to left}
```

- ${\bf \circ}$  One execution for each element of  ${\cal R}=\{1,2\}^n$
- $\ensuremath{\mathfrak{o}}$  Algorithm terminates when exactly one process has id=2
- $oldsymbol{\circ}$  Probability of termination c :

$$\left(\begin{array}{c} n\\1\end{array}\right)\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}=\left(1-\frac{1}{n}\right)^{n-1}$$

- $c > \left(1 \frac{1}{n}\right)^n \to \frac{1}{e}$
- $\odot$  Message complexity:  $O(n^2)$

# The iterated algorithm

- If one execution does not terminate with a leader, try again!
- How many times?
  - ☐ In the worst case, infinitely many!
  - $\square$  But in the expected case?

# The iterated algorithm

- How many times?
  - ☐ In the worst case, infinitely many!
  - □ But in the expected case?
    - $\Box$  Expected value of T:  $E[T] = \sum_{x \in T} \overline{x \cdot Pr[T = x]}$
    - $\square$  Probability of success in iteration  $i\colon c\cdot (1-c)^{i-1}$
    - ☐ Expected number of iterations:

$$\sum_{i=0}^{\infty} i \cdot c \cdot (1-c)^{i-1} = -c \cdot \frac{d}{dc} \sum_{i=0}^{\infty} (1-c)^i = -c \cdot \frac{d}{dc} \frac{1}{1-(1-c)} = 1/c < e$$

## Summary

- No deterministic solution for anonymous rings
- No solution for uniform anonymous rings (even when using randomization)
- $\ensuremath{\mathfrak{G}}$  Protocols with  $O(n^2)$  and  $O(n\log n)$  messages for uniform rings
- $\ensuremath{\mathfrak{G}}\xspace \Omega(n\log n)$  lower bound on message complexity for practical protocols
- $\ensuremath{\mathfrak{G}}\xspace O(n)$  message complexity for uniform synchronous rings







### External vs internal synchronization External Clock Synchronization: Internal Clock Synchronization: keeps clocks within some maximum deviation keeps clock within some maximum deviation from each other. from an external time source. • can measure duration of distributed • exchange of info about timing events of activities that start on one process and different systems terminate on another • can take actions at real-time deadlines • can totally order events that occur in a distributed system

















# Cristian's algorithm



# Cristian's algorithm

Naive estimation: 
$$Q(x) = T + (min + \beta)$$
 (take master's drift into account) 
$$Q(x) \in [T + (min + \beta)(1 - \rho), T + (min + \beta)(1 + \rho)]$$
 
$$Q(x) \in [T + (min + 0)(1 - \rho), T + (min + 2d - 2min)(1 + \rho)]$$
 
$$= [T + (min)(1 - \rho), T + (2d - min)(1 + \rho)]$$
 
$$Q(x) \in [T + (min)(1 - \rho), T + (2D(1 + \rho) - min)(1 + \rho)]$$
 
$$Q(x) \in [T + (min)(1 - \rho), T + (2D(1 + \rho) - min)(1 + \rho)]$$
 
$$= [T + (min)(1 - \rho), T + 2D(1 + 2\rho) - min(1 + \rho)]$$

# Slave's estimation and precision

Slave's best guess:  $Q(x) = T + D(1 + 2\rho) - min \cdot \rho$ 

Maximum error:  $e = D(1 + 2\rho) - min$ 

You can keep trying, until you achieve the required precision

# Adjusting the clock

### After synchronizing:



# Adjusting the clock



# Adjusting the clock

C(x) = L: need to adjust so that  $C(x + \alpha) = M + \alpha$ 

$$m = \frac{M - L}{\alpha}, N = L - (1 + m)H$$



# Network Time Protocol

- The oldest distributed protocol still running on the Internet
- Hierarchical architecture
- Latency-tolerant, jitter-tolerant, faulttolerant.. very tolerant!

# Hierarchical structure

Each level is called a "stratum"

- Stratum 0: atomic clocks
- Stratum 1: time servers with direct connections to stratum 0
- Stratum 2: Use stratum 1 as time sources and work as server to stratum 3
- ø etc....

Accuracy is loosely coupled with stratum level



# Very tolerant. How?

- Tolerance to jitter, latency, faults: redundancy
- Each machine sends NTP requests to many other servers on the same or the previous stratum
- The synchronization protocol between two machines is similar to Cristian's algorithm
- For each response, we generate a tuple  $\langle T, \delta \rangle$  which defines an interval  $[T-\delta, T+\delta]$
- How to combine those intervals?



# Marzullo's algorithm Given M source intervals, find the largest interval that is contained in the largest number of source intervals [8,12] [11,13] [10,12] [11,13] [10,12] [11,12] [11,12] [11,13] [10,12] [11,13] [10,12] [11,13] [10,12] [11,13] [11,14] [11,15±0.5]

# Marzullo's algorithm

Given M source intervals, find the largest interval that is contained in the largest number of source intervals





- Visit the endpoints left-to-right
- Count how many source intervals are active at each time
  - Increase count at starting points, decrease at ending points



# 



### The algorithm at work Sorted: <8,-1> <11,-1> <12,+1> <13,+1> <14, -1> <15, +1> Init: best=0, count=0 $\langle 8, -1 \rangle$ : count = count - (-1) = 1 Is count>best? Yes best=1, beststart=8, bestend=11 <11,-1> : count = count - (-1) = 2 Is count>best? Yes best=2, beststart=11, bestend=12 <12,+1> : count = count - (+1) = 1 Is count>best? No $\langle 13,+1 \rangle$ : count = count - (+1) = 0 Is count>best? No <14, -1> : count = count - (-1) = 1 Is count>best? No return [11,12] <15, +1 : count = count - (+1) = 0 Is count>best? No

