
Leader Election

The Idea

We study leader election in rings

Network

Why Rings?

Historical reasons
original motivation: regenerate lost token in token ring networks

Illustrates techniques and principles

Good for lower bounds and impossibility results

Outline

Specification of Leader Election

YAIR

Leader Election in Asynchronous Rings
An         algorithm
An               algorithm

The Revenge of the Lower Bound

Leader election is synchronous rings
Breaking the               barrier

O(n2)

O(n log(n))

Ω(n log(n))



The Problem

Processes can be in one of two final states

elected          non-elected

In every execution, exactly one process (the 
leader) is elected

All other processes are non-elected

Lots of variations...

Ring can be unidirectional or bidirectional

Processes can be identical or can somehow 
be distinguishable from each other

The number   of processes may or may not 
be known – if not, uniform algorithms

Communications may be synchronous or 
asynchronous

n

Anonymous Networks

Processes have no 
unique IDs (identical 
automata)

...but can distinguish 
between left and right

Call me Ishmael

Processes have unique IDs from some large 
totally ordered set (e.g.     ) 

Operations used to manipulate IDs can be 
unrestricted or limited (e.g. only comparisons)  

N
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Communication: 
Synchronous/Asynchronous

Synchronous

In rounds

In each round, a process
delivers all pending 
messages
takes an execution step 
(possibly sending one or 
more messages)!

Asynchronous

No upper bound on 
message delivery time

No centralized clock

No bound on relative 
sped of processes

An Impossibility Result
Theorem 
There is no nonuniform anonymous algorithm for 
leader election in synchronous rings

An Impossibility Result
Theorem 
There is no nonuniform anonymous algorithm for 
leader election in synchronous rings
Proof
Suppose there exists an anonymous nonuniform 
algorithm A for R s.t. |R| > 1

Lemma For every round   of A in R, the states of all the 
processes at the end of round   are the same 

Proof  By induction on 

If some process enters the leader state, they all do
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An O(   ) Algorithm
Le Lann (’77), Chang & Roberts (’79)

upon receiving no message
! send       to left (clockwise)
upon receiving    from right
case
!                :
! ! send    to left
!                :
! ! discard
!                :
! ! leader := 
! ! send <terminate,  > to left
! ! terminate
endcase
upon receiving <terminate,  > from right
! leader := 
! send <terminate,  > to left
! terminate

Asynchronous and Uniform

Process with highest uid is 
elected leader - all other 
uids are swallowed

Time complexity: 

Message complexity:

Bound is tight:

!
!
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uidi

m.uid > uidi
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m.uid < uidi

m.uid = uidi
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Bidirectional ring

In each phase  
sends       token left and right
token intended to travel distance   
!  and turn back
continues outbound only if greater 
than tokens on path
processes always forward inbound 
token

   leader if it receives own 
token while going outbound 

An O(       ) Algorithm
Hirschenberg & Sinclair (1980)

n log n
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An O(       ) Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase  , protocol 
elects one winner (process 
with highest uid) for each    
! -neighborhood

a   -neighborhood includes        
! ! processes

After           phases, 
there is only one winner!

n log n
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O(log n)

An O(       ) Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase  , protocol 
elects one winner (process 
with highest uid) for each    
! -neighborhood

a   -neighborhood includes        
! ! processes

After           phases, 
there is only one winner!

n log n
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An O(       ) Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase  , protocol 
elects one winner (process 
with highest uid) for each    
! -neighborhood

a   -neighborhood includes        
! ! processes

After           phases, 
there is only one winner!

n log n
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An O(       ) Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase  , protocol 
elects one winner (process 
with highest uid) for each    
! -neighborhood

a   -neighborhood includes        
! ! processes

After           phases, 
there is only one winner!

n log n
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An O(       ) Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase  , protocol 
elects one winner (process 
with highest uid) for each    
! -neighborhood

a   -neighborhood includes        
! ! processes

After           phases, 
there is only one winner!

n log n
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k

k

2k+1

Phase 3

O(log n)

Bounding 
message complexity

Lemma  For every        the number of processes 
that are phase   winners are at most 

Proof  Two winners cannot have fewer than    
processes between them

Message complexity: 

k ≥ 1
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Phase 0
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Bounding 
message complexity

Lemma  For every        the number of processes 
that are phase   winners are at most 

Proof  Two winners cannot have fewer than    
processes between them

Message complexity: 

k ≥ 1

k

2k

n

2k+1

Phase 0

# of phases 
before 1 winner

4n +

!log(n−1)#+1∑

k=1



Bounding 
message complexity

Lemma  For every        the number of processes 
that are phase   winners are at most 

Proof  Two winners cannot have fewer than    
processes between them

Message complexity: 

k ≥ 1

k

2k

n

2k+1

Phase 0

# of phases 
before 1 winner

# of messages 
per winner

{4n +

!log(n−1)#+1∑

k=1

4 · 2
k

Bounding 
message complexity

Lemma  For every        the number of processes 
that are phase   winners are at most 

Proof  Two winners cannot have fewer than    
processes between them

Message complexity: 

k ≥ 1

k

2k

n

2k+1

Phase 0

# of phases 
before 1 winner

# of messages 
per winner

{

# of winners 
per phase

4n +

!log(n−1)#+1∑

k=1

4 · 2
k
·
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Bounding 
message complexity

Lemma  For every        the number of processes 
that are phase   winners are at most 

Proof  Two winners cannot have fewer than    
processes between them

Message complexity: 

k ≥ 1

k

2k

n

2k+1

Phase 0

termination # of phases 
before 1 winner

# of messages 
per winner

{

# of winners 
per phase

n + 4n +

!log(n−1)#+1∑

k=1

4 · 2
k
·

n

2k−1 + 1

Message complexity
Lemma  For every        the number of processes 
that are phase   winners are at most 

Proof  Two winners cannot have fewer than    
processes between them

Message complexity: 

k ≥ 1

k

2k

n + 4n +

!log(n−1)#+1∑

k=1

4 · 2k
·

n

2k−1 + 1
< 8n(log n + 2) + 5n

Phase 0

termination # of phases 
before 1 winner

# of messages 
per winner

{
# of winners 
per phase

n
2k−1+1



The Revenge
of the Lower Bound

We have seen:
a simple        algorithm
a more clever             algorithm

Facts
            lower bound in asynchronous 
networks
            lower bounds in synchronous 
networks when using only comparisons

O(n2)

O(n log n)

Ω(n log n)

Ω(n log n)

Synchronous rings

UID are positive integers, manipulated using 
arbitrary operations

Non Uniform

    is known to all 
 !unidirectional  

! communication
!O( ) messages!

n

n

Uniform

!  is not known
!unidirectional 

! communication 
!O( ) messages!n

Breaking through
Ω(n log n)

What about time complexity?

n

And now, for something 
completely different…

RANDOMIZATION

What is it good for?

In general does not affect
impossibility results

leader election in anonymous networks
worst case bounds

consensus in fewer than       rounds

But it makes a difference when combined with 
weakening the problem statement 

f+1



Randomized 
leader election

Transition function takes as input 
a random number
from a bounded range
under some fixed distribution

Weaker problem definition for LE:

Safety: In every global state of every execution, 
at most one process is in the elected state

Liveness: At least one process is elected with 
some non-zero probability

A second look at 
anonymous rings

Theorem 
There is a randomized algorithm that, with 
probability          elects a leader in a 
synchronous ring sending         messages 

c > 1/e
O(n2)

The “one-shot” algorithm 
Initially
! ! ! with probability 
! ! ! with probability
! send       to left

upon receiving     from right 
! if           then
! ! if     is unique maximum of   then
! ! ! elected := true
! ! else
! ! ! elected := false
! else
! ! send          to left

One execution for each element of

Algorithm terminates when exactly 
one process has 

Probability of termination   :

 

Message complexity: 

idi :=

{

1

2

1 − 1/n
1/n

〈idi〉

〈S〉

|S| = n

Sidi

〈S · idi〉

R = {1, 2}n

id = 2

(

n

1

)

1

n
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1
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)
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(
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)
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c >

(

1 −

1

n

)

n

→

1

e

c

O(n2)

The iterated algorithm
If one execution does not terminate with a leader, try again!

How many times?
In the worst case, infinitely many!
But in the expected case?



The iterated algorithm
If one execution does not terminate with a leader, try again!

How many times?
In the worst case, infinitely many!
But in the expected case?

Expected value of T:

Probability of success in iteration  : 

Expected number of iterations:  

E[T ] =
∑

x∈T

x · Pr[T = x]

i c · (1 − c)i−1

∞∑

i=0

i · c · (1 − c)i−1 = −c ·
d

dc

∞∑

i=0

(1 − c)i = −c ·
d

dc

1

1 − (1 − c)
= 1/c < e

Summary

No deterministic solution for anonymous rings

No solution for uniform anonymous rings (even when 
using randomization)

Protocols with        and             messages for 
uniform rings

            lower bound on message complexity for 
practical protocols

       message complexity for uniform synchronous 
rings

Ω(n log n)

O(n2) O(n log n)

O(n)



Clock synchronization

What is the time?

Clock synchronization

Give me all 
files that have 
changed since 

12:00pm

There you go...

13:00 12:01
Wait... what???

13:00

???

Hard truth: clocks drift apart

Clock drift
Bound on drift:

(real time)

(clock 
time)

   is typically small (10-6)

 

 

 

H(t)

t

(1 + ρ)t

(1− ρ)t

ρ

(1− ρ)(t− t
�) ≤ H(t)−H(t�) ≤ (1 + ρ)(t− t

�)

ρ

ρ2 ≈ 0

1

1− ρ
= 1 + ρ

1

1 + ρ
= 1− ρ

External vs internal
synchronization

External Clock Synchronization:
keeps clock within some maximum deviation 

from an external time source.

• exchange of info about timing events of 
different systems
• can take actions at real-time deadlines

Internal Clock Synchronization:
keeps clocks within some maximum deviation 
from each other.

• can measure duration of distributed 
activities that start on one process and 
terminate on another
• can totally order events that occur in a 
distributed system



Probabilistic Clock 
Synchronization (Cristian)

Master-Slave architecture
Master can be connected to 
external time source
Slaves read master’s clock and   
! adjust their own

How accurately can a slave 
read the master’s clock?

The Idea
Clock accuracy depends on message roundtrip 
time

if roundtrip is small, master and slave cannot 
have drifted by much!

No upper bound on message delivery, so no 
certainty of accurate enough reading...

… but very accurate reading can be achieved by 
repeated attempts

Assume that clock drifts are known (  for both)

Setup and assumptions

slave

master

Goal: Synchronize the slave’s clock with the master

Assume that minimum delay is known

(real time)t

P (t)

Q(t)

ρ

min

The protocol

“time=?” “time=   ”

Question: what is     ?

P (t)

Q(t)

(real time)t

T

T

Q(x)

t = x

Q(x)



Ideal scenario

Assume no clock drift

P (t)

Q(t)

(real time)t
t = x

T T +min

Perfect synchronization!Q(x) = T +min

minmin

Problem #1: message delay

P (t)

Q(t)

t

T

2d
min+ α min+ β

P (t)

Q(t)

t

Q(x) = T + 2d−minT

β = 2d− 2minmin 2d−min

P (t)

Q(t)

t

Q(x) = T +minT

β = 02d−min min

Problem #2: slave drift

2D

2d
min+ α min+ β

2d(1− ρ) ≤ 2D ≤ 2d(1 + ρ)

P (t)

Q(t)

t

T

Problem #3: master drift

During         the master’s clock drifts
Even if you know  , there is still some uncertainty!

P (t)

Q(t)

t
2d

min+ α min+ β

2D

t = x

β

T



Cristian’s algorithm

“time=?” “time=   ”

min+ α
2d

min+ β

2D

T

T

Q(x) =?

α,β ≥ 0

P (t)

Q(t)

t t = x

Cristian’s algorithm
Naive estimation:

(take master’s drift into account)

Q(x) = T + (min+ β)

Q(x) ∈ [T + (min+ β)(1− ρ) (1 + ρ), T + (min+ β) ]

(take delay into account)≤ β ≤0 2d− 2min

Q(x) ∈ [T + (min+0)(1− ρ), T + (min+2d− 2min)(1 + ρ)]

= [T + (min)(1− ρ), T + (2d−min)(1 + ρ)]

(take slaveʼs drift into account)2d ≤2D(1 + ρ)

Q(x) ∈ [T + (min)(1− ρ), T + (2D(1 + ρ)−min)(1 + ρ)]

= [T + (min)(1− ρ), T + 2D(1 + 2ρ)−min(1 + ρ)]

Slave’s estimation and 
precision

Slave’s best guess: 
Maximum error: 

You can keep trying, until you
achieve the required precision

Q(x) = T +D(1 + 2ρ)−min· ρ

e = D(1 + 2ρ)−min

Adjusting the clock

If slave simply sets             , it could 
create time discontinuities.

After synchronizing:

(clock 
time)

(clock 
time)

H(t) H(t)

t (real time) t (real time)

P (x) = Q(x)



Adjusting the clock
Logical clock 

Hardware clock Adjustment function

Use linear adjustment function

(clock 
time)

H(t)

t (real time)

(clock 
time)

H(t)

t (real time)

C(t) = H(t) +A(t)

A(t) = mH(t) +N

Adjusting the clock

(logical time) (logical time)

          : need to adjust so that C(x) = L C(x+ α) = M + α

m =
M − L

α
, N = L− (1 +m)H

C(t) C(t)α

αM

M

LL

x x(real time)t (real time)t

Network Time Protocol

The oldest distributed protocol still running 
on the Internet

Hierarchical architecture

Latency-tolerant, jitter-tolerant, fault-
tolerant.. very tolerant!

Hierarchical structure
Each level is called a “stratum”

Stratum 0: atomic clocks
Stratum 1: time servers with direct 
connections to stratum 0
Stratum 2: Use stratum 1 as time 
sources and work as server to stratum 3
etc....

Accuracy is loosely coupled with stratum 
level

1

2

3



Very tolerant. How?
Tolerance to jitter, latency, faults: 
redundancy

Each machine sends NTP requests to 
many other servers on the same or the 
previous stratum

The synchronization protocol between 
two machines is similar to Cristian’s 
algorithm

For each response, we generate a tuple 
<T,δ> which defines an interval [T-δ,T+δ]

How to combine those intervals?

1

2

3

Marzullo’s algorithm
Given M source intervals, find the largest 
interval that is contained in the largest number 
of source intervals

8 9 10 11 12 13 14 15

[8,12]

[11,13]

[10,12]

[11,12]

∩

∩

10±2

12±1

11±1

11.5±0.5

Marzullo’s algorithm
Given M source intervals, find the largest 
interval that is contained in the largest number 
of source intervals

8 9 10 11 12 13 14 15

[8,12]

[11,13]

[14,15]

∅

∩

∩

10±2

12±1

14.5±0.5

11.5±0.5

The intuition
Visit the endpoints left-to-right

Count how many source intervals are active at each time

Increase count at starting points, decrease at ending points

8 9 10 11 12 13 14 15

10±2

12±1

14.5±0.5

11.5±0.5



Preprocessing
For each source interval [T1,T2], create 2 tuples of the 
form <time, type>:

<T1,-1> (start of interval)

<T2,+1> (end of interval)

Sort all tuples according to time
Example:
Source intervals: [8,12], [11,13], [14,15]
Tuples:  <8,-1> <12,+1> <11,-1> <13,+1> <14, -1> <15, +1>
Sorted: <8,-1> <11,-1> <12,+1> <13,+1> <14, -1> <15, +1>

8 9 10 11 12 13 14 15

10±2

12±1

14.5±0.5

11.5±0.5

The algorithm
best=0, count=0
for all tuples<time[i],type[i]> {

count = count - type[i]

if(count>best) {
best=count
beststart=time[i]
bestend=time[i+1]

}
}
return [beststart, bestend]

Notes:
count: numbers of “active” intervals
best: best numbers of “active” intervals we have seen

count=count-type[i] : if it’s a startpoint (type=-1), 
increase count, else decrease it
if(count>best) : if this is the highest number of active 
intervals we have seen, let the best interval be [ time[i], 
time[i+1] ]

If the next point is a startpoint, it will replace 
this best interval
If the next point is an endpoint, it will end this 
best interval

The algorithm at work
Sorted: <8,-1> <11,-1> <12,+1> <13,+1> <14, -1> <15, +1>

Init: best=0, count=0
<8,-1> : count = count - (-1) = 1 
         Is count>best? Yes

 best=1, beststart=8, bestend=11
<11,-1> : count = count - (-1) = 2
         Is count>best? Yes

 best=2, beststart=11, bestend=12
<12,+1> : count = count - (+1) = 1 
         Is count>best? No
<13,+1> : count = count - (+1) = 0
         Is count>best? No
<14, -1> : count = count - (-1) = 1
         Is count>best? No
<15, +1 : count = count - (+1) = 0
         Is count>best? No

return [11,12]

8 9 10 11 12 13 14 15

10±2

12±1

14.5±0.5

NTP timestamps
How to represent time?
“Tuesday April 19th 2011, 17:55:00” ?
“20110419175500CDT” ?

NTP: 64-bit UTC timestamp

offset in seconds sub-second precision

32 bits 32 bits

offset = #seconds since January 1, 1900

Wraps around every 232 seconds = 136 years
First wrap-around: 2036
Solution: 128-bit timestamp. “Enough to provide unambiguous time
representation until the universe goes dim”
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