
Leader Election

The Idea

We study leader election in rings

Network

Why Rings?

Historical reasons
original motivation: regenerate lost token in token ring networks

Illustrates techniques and principles

Good for lower bounds and impossibility results

Outline

Specification of Leader Election

YAIR

Leader Election in Asynchronous Rings
An algorithm
An algorithm

The Revenge of the Lower Bound

Leader election is synchronous rings
Breaking the barrier

O(n2)

O(n log(n))

Ω(n log(n))

The Problem

Processes can be in one of two final states

elected non-elected

In every execution, exactly one process (the
leader) is elected

All other processes are non-elected

Lots of variations...

Ring can be unidirectional or bidirectional

Processes can be identical or can somehow
be distinguishable from each other

The number of processes may or may not
be known – if not, uniform algorithms

Communications may be synchronous or
asynchronous

n

Anonymous Networks

Processes have no
unique IDs (identical
automata)

...but can distinguish
between left and right

Call me Ishmael

Processes have unique IDs from some large
totally ordered set (e.g.)

Operations used to manipulate IDs can be
unrestricted or limited (e.g. only comparisons)

N
+

Communication:
Synchronous/Asynchronous

Synchronous

In rounds

In each round, a process
delivers all pending
messages
takes an execution step
(possibly sending one or
more messages)!

Asynchronous

No upper bound on
message delivery time

No centralized clock

No bound on relative
sped of processes

An Impossibility Result
Theorem
There is no nonuniform anonymous algorithm for
leader election in synchronous rings

An Impossibility Result
Theorem
There is no nonuniform anonymous algorithm for
leader election in synchronous rings
Proof
Suppose there exists an anonymous nonuniform
algorithm A for R s.t. |R| > 1

Lemma For every round of A in R, the states of all the
processes at the end of round are the same

Proof By induction on

If some process enters the leader state, they all do

k

k

k

An O() Algorithm
Le Lann (’77), Chang & Roberts (’79)

upon receiving no message
! send to left (clockwise)
upon receiving from right
case
! :
! ! send to left
! :
! ! discard
! :
! ! leader :=
! ! send <terminate, > to left
! ! terminate
endcase
upon receiving <terminate, > from right
! leader :=
! send <terminate, > to left
! terminate

Asynchronous and Uniform

Process with highest uid is
elected leader - all other
uids are swallowed

Time complexity:

Message complexity:

Bound is tight:

!
!

m

uidi

m.uid > uidi

n
2

m.uid < uidi

m.uid = uidi

m

m

O(n2)

O(n)

0

1

2

n − 2

n − 1

i

i

i

i

i

Bidirectional ring

In each phase
sends token left and right
token intended to travel distance
! and turn back
continues outbound only if greater
than tokens on path
processes always forward inbound
token

 leader if it receives own
token while going outbound

An O() Algorithm
Hirschenberg & Sinclair (1980)

n log n

pi

k, pi :

uidi

2k

An O() Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase , protocol
elects one winner (process
with highest uid) for each
! -neighborhood

a -neighborhood includes
! ! processes

After phases,
there is only one winner!

n log n

k

k

k

2k+1

O(log n)

An O() Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase , protocol
elects one winner (process
with highest uid) for each
! -neighborhood

a -neighborhood includes
! ! processes

After phases,
there is only one winner!

n log n

k

k

k

2k+1

Phase 0

O(log n)

An O() Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase , protocol
elects one winner (process
with highest uid) for each
! -neighborhood

a -neighborhood includes
! ! processes

After phases,
there is only one winner!

n log n

k

k

k

2k+1

Phase 1

O(log n)

An O() Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase , protocol
elects one winner (process
with highest uid) for each
! -neighborhood

a -neighborhood includes
! ! processes

After phases,
there is only one winner!

n log n

k

k

k

2k+1

Phase 2

O(log n)

An O() Algorithm
Hirschenberg & Sinclair (1980)

Bidirectional ring

In each phase , protocol
elects one winner (process
with highest uid) for each
! -neighborhood

a -neighborhood includes
! ! processes

After phases,
there is only one winner!

n log n

k

k

k

2k+1

Phase 3

O(log n)

Bounding
message complexity

Lemma For every the number of processes
that are phase winners are at most

Proof Two winners cannot have fewer than
processes between them

Message complexity:

k ≥ 1

k

2k

n

2k+1

Phase 0

4n

Bounding
message complexity

Lemma For every the number of processes
that are phase winners are at most

Proof Two winners cannot have fewer than
processes between them

Message complexity:

k ≥ 1

k

2k

n

2k+1

Phase 0

of phases
before 1 winner

4n +

!log(n−1)#+1∑

k=1

Bounding
message complexity

Lemma For every the number of processes
that are phase winners are at most

Proof Two winners cannot have fewer than
processes between them

Message complexity:

k ≥ 1

k

2k

n

2k+1

Phase 0

of phases
before 1 winner

of messages
per winner

{4n +

!log(n−1)#+1∑

k=1

4 · 2
k

Bounding
message complexity

Lemma For every the number of processes
that are phase winners are at most

Proof Two winners cannot have fewer than
processes between them

Message complexity:

k ≥ 1

k

2k

n

2k+1

Phase 0

of phases
before 1 winner

of messages
per winner

{

of winners
per phase

4n +

!log(n−1)#+1∑

k=1

4 · 2
k
·

n

2k−1 + 1

Bounding
message complexity

Lemma For every the number of processes
that are phase winners are at most

Proof Two winners cannot have fewer than
processes between them

Message complexity:

k ≥ 1

k

2k

n

2k+1

Phase 0

termination # of phases
before 1 winner

of messages
per winner

{

of winners
per phase

n + 4n +

!log(n−1)#+1∑

k=1

4 · 2
k
·

n

2k−1 + 1

Message complexity
Lemma For every the number of processes
that are phase winners are at most

Proof Two winners cannot have fewer than
processes between them

Message complexity:

k ≥ 1

k

2k

n + 4n +

!log(n−1)#+1∑

k=1

4 · 2k
·

n

2k−1 + 1
< 8n(log n + 2) + 5n

Phase 0

termination # of phases
before 1 winner

of messages
per winner

{
of winners
per phase

n
2k−1+1

The Revenge
of the Lower Bound

We have seen:
a simple algorithm
a more clever algorithm

Facts
 lower bound in asynchronous
networks
 lower bounds in synchronous
networks when using only comparisons

O(n2)

O(n log n)

Ω(n log n)

Ω(n log n)

Synchronous rings

UID are positive integers, manipulated using
arbitrary operations

Non Uniform

 is known to all
 !unidirectional

! communication
!O() messages!

n

n

Uniform

! is not known
!unidirectional

! communication
!O() messages!n

Breaking through
Ω(n log n)

What about time complexity?

n

And now, for something
completely different…

RANDOMIZATION

What is it good for?

In general does not affect
impossibility results

leader election in anonymous networks
worst case bounds

consensus in fewer than rounds

But it makes a difference when combined with
weakening the problem statement

f+1

Randomized
leader election

Transition function takes as input
a random number
from a bounded range
under some fixed distribution

Weaker problem definition for LE:

Safety: In every global state of every execution,
at most one process is in the elected state

Liveness: At least one process is elected with
some non-zero probability

A second look at
anonymous rings

Theorem
There is a randomized algorithm that, with
probability elects a leader in a
synchronous ring sending messages

c > 1/e
O(n2)

The “one-shot” algorithm
Initially
! ! ! with probability
! ! ! with probability
! send to left

upon receiving from right
! if then
! ! if is unique maximum of then
! ! ! elected := true
! ! else
! ! ! elected := false
! else
! ! send to left

One execution for each element of

Algorithm terminates when exactly
one process has

Probability of termination :

Message complexity:

idi :=

{

1

2

1 − 1/n
1/n

〈idi〉

〈S〉

|S| = n

Sidi

〈S · idi〉

R = {1, 2}n

id = 2

(

n

1

)

1

n

(

1 −

1

n

)

n−1

=

(

1 −

1

n

)

n−1

c >

(

1 −

1

n

)

n

→

1

e

c

O(n2)

The iterated algorithm
If one execution does not terminate with a leader, try again!

How many times?
In the worst case, infinitely many!
But in the expected case?

The iterated algorithm
If one execution does not terminate with a leader, try again!

How many times?
In the worst case, infinitely many!
But in the expected case?

Expected value of T:

Probability of success in iteration :

Expected number of iterations:

E[T] =
∑

x∈T

x · Pr[T = x]

i c · (1 − c)i−1

∞∑

i=0

i · c · (1 − c)i−1 = −c ·
d

dc

∞∑

i=0

(1 − c)i = −c ·
d

dc

1

1 − (1 − c)
= 1/c < e

Summary

No deterministic solution for anonymous rings

No solution for uniform anonymous rings (even when
using randomization)

Protocols with and messages for
uniform rings

 lower bound on message complexity for
practical protocols

 message complexity for uniform synchronous
rings

Ω(n log n)

O(n2) O(n log n)

O(n)

Clock synchronization

What is the time?

Clock synchronization

Give me all
files that have
changed since

12:00pm

There you go...

13:00 12:01
Wait... what???

13:00

???

Hard truth: clocks drift apart

Clock drift
Bound on drift:

(real time)

(clock
time)

 is typically small (10-6)

H(t)

t

(1 + ρ)t

(1− ρ)t

ρ

(1− ρ)(t− t
�) ≤ H(t)−H(t�) ≤ (1 + ρ)(t− t

�)

ρ

ρ2 ≈ 0

1

1− ρ
= 1 + ρ

1

1 + ρ
= 1− ρ

External vs internal
synchronization

External Clock Synchronization:
keeps clock within some maximum deviation

from an external time source.

• exchange of info about timing events of
different systems
• can take actions at real-time deadlines

Internal Clock Synchronization:
keeps clocks within some maximum deviation
from each other.

• can measure duration of distributed
activities that start on one process and
terminate on another
• can totally order events that occur in a
distributed system

Probabilistic Clock
Synchronization (Cristian)

Master-Slave architecture
Master can be connected to
external time source
Slaves read master’s clock and
! adjust their own

How accurately can a slave
read the master’s clock?

The Idea
Clock accuracy depends on message roundtrip
time

if roundtrip is small, master and slave cannot
have drifted by much!

No upper bound on message delivery, so no
certainty of accurate enough reading...

… but very accurate reading can be achieved by
repeated attempts

Assume that clock drifts are known (for both)

Setup and assumptions

slave

master

Goal: Synchronize the slave’s clock with the master

Assume that minimum delay is known

(real time)t

P (t)

Q(t)

ρ

min

The protocol

“time=?” “time= ”

Question: what is ?

P (t)

Q(t)

(real time)t

T

T

Q(x)

t = x

Q(x)

Ideal scenario

Assume no clock drift

P (t)

Q(t)

(real time)t
t = x

T T +min

Perfect synchronization!Q(x) = T +min

minmin

Problem #1: message delay

P (t)

Q(t)

t

T

2d
min+ α min+ β

P (t)

Q(t)

t

Q(x) = T + 2d−minT

β = 2d− 2minmin 2d−min

P (t)

Q(t)

t

Q(x) = T +minT

β = 02d−min min

Problem #2: slave drift

2D

2d
min+ α min+ β

2d(1− ρ) ≤ 2D ≤ 2d(1 + ρ)

P (t)

Q(t)

t

T

Problem #3: master drift

During the master’s clock drifts
Even if you know , there is still some uncertainty!

P (t)

Q(t)

t
2d

min+ α min+ β

2D

t = x

β

T

Cristian’s algorithm

“time=?” “time= ”

min+ α
2d

min+ β

2D

T

T

Q(x) =?

α,β ≥ 0

P (t)

Q(t)

t t = x

Cristian’s algorithm
Naive estimation:

(take master’s drift into account)

Q(x) = T + (min+ β)

Q(x) ∈ [T + (min+ β)(1− ρ) (1 + ρ), T + (min+ β)]

(take delay into account)≤ β ≤0 2d− 2min

Q(x) ∈ [T + (min+0)(1− ρ), T + (min+2d− 2min)(1 + ρ)]

= [T + (min)(1− ρ), T + (2d−min)(1 + ρ)]

(take slaveʼs drift into account)2d ≤2D(1 + ρ)

Q(x) ∈ [T + (min)(1− ρ), T + (2D(1 + ρ)−min)(1 + ρ)]

= [T + (min)(1− ρ), T + 2D(1 + 2ρ)−min(1 + ρ)]

Slave’s estimation and
precision

Slave’s best guess:
Maximum error:

You can keep trying, until you
achieve the required precision

Q(x) = T +D(1 + 2ρ)−min· ρ

e = D(1 + 2ρ)−min

Adjusting the clock

If slave simply sets , it could
create time discontinuities.

After synchronizing:

(clock
time)

(clock
time)

H(t) H(t)

t (real time) t (real time)

P (x) = Q(x)

Adjusting the clock
Logical clock

Hardware clock Adjustment function

Use linear adjustment function

(clock
time)

H(t)

t (real time)

(clock
time)

H(t)

t (real time)

C(t) = H(t) +A(t)

A(t) = mH(t) +N

Adjusting the clock

(logical time) (logical time)

 : need to adjust so that C(x) = L C(x+ α) = M + α

m =
M − L

α
, N = L− (1 +m)H

C(t) C(t)α

αM

M

LL

x x(real time)t (real time)t

Network Time Protocol

The oldest distributed protocol still running
on the Internet

Hierarchical architecture

Latency-tolerant, jitter-tolerant, fault-
tolerant.. very tolerant!

Hierarchical structure
Each level is called a “stratum”

Stratum 0: atomic clocks
Stratum 1: time servers with direct
connections to stratum 0
Stratum 2: Use stratum 1 as time
sources and work as server to stratum 3
etc....

Accuracy is loosely coupled with stratum
level

1

2

3

Very tolerant. How?
Tolerance to jitter, latency, faults:
redundancy

Each machine sends NTP requests to
many other servers on the same or the
previous stratum

The synchronization protocol between
two machines is similar to Cristian’s
algorithm

For each response, we generate a tuple
<T,δ> which defines an interval [T-δ,T+δ]

How to combine those intervals?

1

2

3

Marzullo’s algorithm
Given M source intervals, find the largest
interval that is contained in the largest number
of source intervals

8 9 10 11 12 13 14 15

[8,12]

[11,13]

[10,12]

[11,12]

∩

∩

10±2

12±1

11±1

11.5±0.5

Marzullo’s algorithm
Given M source intervals, find the largest
interval that is contained in the largest number
of source intervals

8 9 10 11 12 13 14 15

[8,12]

[11,13]

[14,15]

∅

∩

∩

10±2

12±1

14.5±0.5

11.5±0.5

The intuition
Visit the endpoints left-to-right

Count how many source intervals are active at each time

Increase count at starting points, decrease at ending points

8 9 10 11 12 13 14 15

10±2

12±1

14.5±0.5

11.5±0.5

Preprocessing
For each source interval [T1,T2], create 2 tuples of the
form <time, type>:

<T1,-1> (start of interval)

<T2,+1> (end of interval)

Sort all tuples according to time
Example:
Source intervals: [8,12], [11,13], [14,15]
Tuples: <8,-1> <12,+1> <11,-1> <13,+1> <14, -1> <15, +1>
Sorted: <8,-1> <11,-1> <12,+1> <13,+1> <14, -1> <15, +1>

8 9 10 11 12 13 14 15

10±2

12±1

14.5±0.5

11.5±0.5

The algorithm
best=0, count=0
for all tuples<time[i],type[i]> {

count = count - type[i]

if(count>best) {
best=count
beststart=time[i]
bestend=time[i+1]

}
}
return [beststart, bestend]

Notes:
count: numbers of “active” intervals
best: best numbers of “active” intervals we have seen

count=count-type[i] : if it’s a startpoint (type=-1),
increase count, else decrease it
if(count>best) : if this is the highest number of active
intervals we have seen, let the best interval be [time[i],
time[i+1]]

If the next point is a startpoint, it will replace
this best interval
If the next point is an endpoint, it will end this
best interval

The algorithm at work
Sorted: <8,-1> <11,-1> <12,+1> <13,+1> <14, -1> <15, +1>

Init: best=0, count=0
<8,-1> : count = count - (-1) = 1
 Is count>best? Yes

 best=1, beststart=8, bestend=11
<11,-1> : count = count - (-1) = 2
 Is count>best? Yes

 best=2, beststart=11, bestend=12
<12,+1> : count = count - (+1) = 1
 Is count>best? No
<13,+1> : count = count - (+1) = 0
 Is count>best? No
<14, -1> : count = count - (-1) = 1
 Is count>best? No
<15, +1 : count = count - (+1) = 0
 Is count>best? No

return [11,12]

8 9 10 11 12 13 14 15

10±2

12±1

14.5±0.5

NTP timestamps
How to represent time?
“Tuesday April 19th 2011, 17:55:00” ?
“20110419175500CDT” ?

NTP: 64-bit UTC timestamp

offset in seconds sub-second precision

32 bits 32 bits

offset = #seconds since January 1, 1900

Wraps around every 232 seconds = 136 years
First wrap-around: 2036
Solution: 128-bit timestamp. “Enough to provide unambiguous time
representation until the universe goes dim”

	week 11.1
	week 11.2

