





Weird Things Happen in Distributed Systems









# State Machine Replication 1. Make server deterministic (state machine) State machine















# Terminating Reliable Broadcast

Validity If the sender is correct and broadcasts a

message m, then all correct processes

eventually deliver m

Agreement If a correct process delivers a message  $m_i$ 

then all correct processes eventually

deliver m

Integrity Every correct process delivers at most one

message, and if it delivers  $m \neq \text{SF}$ , then some process must have broadcast m

Termination Every correct process eventually delivers

some message



# Valid messages

A valid message m has the following form:

in round 1:

 $m: s_{id}$  (m is signed by the sender)

in round r > 1, if received by p from q:

 $m:p_1:p_2:\ldots:p_r$  where

- $p_1 =$  sender;  $p_r = q$
- $\ensuremath{\mathfrak{G}}\xspace p_1,\dots,p_r$  are distinct from each other and from p
- message has not been tampered with

## AFMA: The Idea

- $\odot$  A correct process p discards all non-valid messages it receives
- If a message is valid,
  - □ it "extracts" the value from the message
  - ☐ it relays the message, with its own signature appended
- $\odot$  At round f+1:
  - $\hfill\Box$  if it extracted exactly one message, p delivers it
  - $\square$  otherwise, p delivers SF

## AFMA: The Protocol

```
Initialization for process p:
 if p = sender and p wishes to broadcast m then
  extracted := relay := \{m\}
Process p in round k, 1 \le k \le f+1
 for each s \in \text{relay}
   send s:p to all
 receive round k messages from all processes
 relay := 0
 for each valid message received s=m:p_1:p_2:\ldots:p_k
  if m \not\in \text{extracted then}
    extracted := extracted \cup \{m\}
   relay := relay \cup \{s\}
At the end of round f+1
  if \exists m such that extracted = \{m\} then
   deliver m
   else deliver SF
```

## Termination

```
Initialization for process p:
if p = sender and p wishes to broadcast m then extracted := relay := {m}
Process p in round k, 1≤k≤f+1 for each s ∈ relay send s:p to all receive round k messages from all processes relay := ∅ for each valid message received s = m:p1:p2:...:pk if m ∉ extracted then extracted := extracted ∪{m} relay := relay ∪{s}
At the end of round f+1 if ∃m such that extracted = {m} then deliver m
```

else deliver SF

Initialization for process p:

In round f+1, every correct process delivers either m or SF and then halts

# Agreement

```
Initialization for process p: if p = sender and p wishes to broadcast m then extracted := relay := \{m\}
```

for each  $s \in \text{relay}$ send s: p to all receive round k messages from all processes relay: s = 0

Process p in round k,  $1 \le k \le f+1$ 

relay :=  $\emptyset$  for each valid message received  $s=m:p_1:p_2:\ldots:p_k$  if  $m\not\in \text{extracted then}$ 

if  $m \not\in$  extracted then extracted := extracted  $\cup \{m\}$  relay := relay  $\cup \{s\}$ 

At the end of round f+1 if  $\exists m$  such that extracted =  $\{m\}$  then deliver m else deliver SF

Lemma. If a correct process extracts m , then every correct process eventually extracts m

#### Proof

Let r be the earliest round in which some correct process extracts m. Let that process be  $p\,.$ 

 $\bullet$  if p is the sender, then in round 1 p sends a valid message to all.

All correct processes extract that message in round 1

 $\bullet$  If  $r \le f, p$  will send a valid message

p will send a valid message

in round  $r+1 \le f+1$  and every correct process will extract it in round  $r+1 \le f+1$ 

• If r=f+1 , p has received in round f+1 a message  $m:p_1:p_2:\ldots:p_{f+1}$ 

- $\bullet$  Each  $p_j, 1 \leq j \leq f+1$  has signed and relayed a message in round j-1 < f+1
- ullet At most f faulty processes one  $p_j$  is correct and has extracted n before

CONTRADICTION

Agreement follows directly, since all correct process extract the same set of messages

## Validity

```
if p = sender and p wishes to broadcast m then extracted := relay := \{m\}

Process p in round k, 1 \le k \le f+1 for each s \in relay send s:p to all receive round k messages from all processes relay := \emptyset for each valid message received s=m:p_1:p_2:\ldots:p_k if m \not\in extracted then extracted := extracted \cup \{m\} relay := relay \cup \{s\}
```

t the end of round f+1 if  $\exists m$  such that extracted =  $\{m\}$  then deliver m else deliver SF

From Agreement and the observation that the sender, if correct, delivers its own message.



## AF: The Idea

- Identify the essential properties of message authentication that made AFMA work
- Implement these properties without using message authentication

# AF: The Approach

- Introduce two primitives
  - broadcast(p, m, i) (executed by p in round i) accept(p, m, i) (executed by q in round  $j \ge i$ )
- 6 Give axiomatic definitions of broadcast and accept
- Derive an algorithm that solves TRB for AF using these primitives
- Show an implementation of these primitives that does not use message authentication

# Properties of broadcast and accept

- © Correctness If a correct process p executes broadcast(p,m,i) in round i, then all correct processes will execute accept(p,m,i) in round i
- **⊘** Unforgeability If a correct process q executes accept(p, m, i) in round  $j \ge i$ , and p is correct, then p did in fact execute broadcast(p, m, i) in round i
- Relay If a correct process q executes accept(p,m,i) in round  $j\!\geq\!i$ , then all correct processes will execute accept(p,m,i) by round  $j\!+\!1$

### AF: The Protocol - 1 sender s in round 0: 0: extract msender s in round 1: 1: broadcast(s, m, 1)Process p in round $k, 1 \le k \le f+1$ 2: if p extracted m in round k-1 and $p \neq$ sender then 4: broadcast(p, m, k)5: if p has executed at least k accept $(q_i, m, j_i)$ $1 \le i \le k$ in rounds 1 through k (where (i) $q_i$ distinct from each other and from $p_i$ (ii) one $q_i$ is $s_i$ and (iii) $1 < j_i < k$ ) and p has not previously extracted m then 6: extract m7: if k=f+1 then if in the entire execution p has extracted exactly one m then 10: else deliver SF halt 11:

# $\begin{array}{c} \text{Termination} \\ \\ \text{Sender $s$ in round $0$:} \\ \text{O: extract $m$} \\ \text{sender $s$ in round $t$:} \\ \text{I: broadcast}(a,m,1) \\ \\ \\ \text{Process $p$ in round $k,1 \le k \le f+1$} \\ \text{2: if $p$ extracted $m$ in round $k-1$ and $p$ $s$ sender then} \\ \text{4: broadcast}(p,m,k) \\ \text{5: if $p$ has executed at least $k$ accept}(q_i,m,j_i) \ 1 \le i \le k$ in round $k$. 1 frough $k$ in round $k$ 1 through $k$ correct process delivers \\ \text{(where $(p)$ $q$ distinct from each other and from $p$, (ii) one $q$, is $a$, and (iii) <math>1 \le j \le k$$ and p has not previously extracted m then m for if k = f+1 then m for secution p has extracted exactly one m then m for m for

# $\begin{array}{c} \textbf{Agreement} - \mathbf{1} \\ \textbf{sender} * \text{ in round 0:} \\ \textbf{0:} & \textbf{extract} m \\ \textbf{sender} * \text{ in round 1:} \\ \textbf{1:} & \textbf{broadcast}(s, m.1) \\ \textbf{Process } p \text{ in round } k.1 \leq k \leq f+1 \\ \textbf{2:} & \text{if } p \text{ extracted } m \text{ in round } k-1 \text{ and } p * \text{ sender then} \\ \textbf{4:} & \textbf{broadcast}(p, m.k) \\ \textbf{5:} & \text{if } p \text{ has executed at least } k \text{ accept}(q, m.j.) & 1 \leq i \leq k \text{ in round } 1 \text{ through } k \\ \textbf{(where (i) } q. \text{ distinct from each other and from } p, (ii) \text{ one } q \text{ is } s, \text{ and } \text{ (iii) } 1 \leq j \leq k \text{ )} \\ \textbf{and } p \text{ has not previously extracted } m \text{ then} \\ \textbf{6:} & \text{ extract } m \\ \textbf{7:} & \text{ if } k = f+1 \text{ then} \\ \textbf{8:} & \text{ if in the entire execution } p \text{ has extracted exactly } \\ \textbf{one } m \text{ then} \\ \textbf{9:} & \text{ deliver } \mathbf{F} \\ \textbf{11:} & \text{ halt} \\ \\ \textbf{Lemma} \\ \textbf{If a correct process extracts } m, \text{ then} \\ \text{every correct process eventually extracts } m. \\ \end{array}$

#### Agreement - 1 sender s in round 0: Let r be the earliest round in which some correct process 0: extract m extracts m. Let that process be p. $\bullet$ if r=0, then p=s and p will execute broadcast(s,m,1)in round 1. By CORRECTNESS, all correct processes 2: if p extracted m in round k-1 and $p \neq$ sender then will execute $\mathbf{accept}(s,m,1)$ in round 1 and extract m4: broadcast(p,m,k)5: if p has executed at least k accept $(q_i,m,j_i)$ $1 \le i \le k$ in if r > 0, the sender is faulty. Since p has extracted rounds 1 through km in round r, p has accepted at least r triples with properties (i), (ii), and (iii) by round rp, (ii) one $q_i$ is s, and (iii) $1 \le j_i \le k$ ) and p has not previously extracted m then accepted those r triples by round r+1if in the entire execution p has extracted exactly By CORRECTNESS, any correct process other than $p,q_1,q_2,\ldots,q_r$ will have accepted r+1 triples else deliver SF halt $(q_k, m, j_k), 1 \le j_k \le r+1$ , by round r+1 $\ \ \Box \ \ q_1,q_2,\ldots,q_r,p$ are all distinct $\square$ every correct process other than $q_1, q_2, \ldots, q_r, p$ If a correct process extracts m, then p already extracted m; what about $q_1, q_2, \ldots, q_r$ ? every correct process eventually extracts m

#### Agreement - 2 sender s in round 0: 0: extract m Claim: $q_1, q_2, \ldots, q_r$ are all faulty sender s in round 1: > Suppose $q_k$ were correct > p has accepted $(q_k, m, j_k)$ in round $j_k \le r$ Process p in round $k, 1 \le k \le f+1$ 2: if p extracted m in round k-1 and $p \ne$ sender then > By <u>UNFORGEABILITY</u>, $q_k$ executed broadcast $(q_k, m, j_k)$ in round $j_k$ 5: if p has executed at least k accept $(q_i, m, j_i)$ $1 \le i \le k$ in rounds 1 through $> q_k$ extracted m in round $j_{k-1} < r$ (where (i) $q_i$ distinct from each other and from p, (ii) one $q_i$ is s, and (iii) $1 \le j_i \le k$ ) $\sqcap$ Case 2: r = f+1 $\square$ Since there are at most f faulty processes, some process $q_l$ in $q_1, q_2, \ldots, q_{f+1}$ is correct D By UNFORGEABILITY, q executed else deliver SF $\mathsf{broadcast}(q_l, m, j_l)$ in round $j_l \leq r$ $q_l$ has extracted m in round $j_{l-1} < f+1$

#### Validity sender s in round 0: 0: extract m A correct sender executes sender s in round 1: broadcast(s, m, 1) in round 1 Process p in round $k,1 \le k \le f+1$ 2: if p extracted m in round k-1 and $p \ne$ sender then By CORRECTNESS, all correct processes execute accept(s, m, 1) in round 1 and 5: if p has executed at least k accept $(q_i, m, j_i)$ $1 \le i \le k$ in rounds 1 through kextract m (where (i) $q_i$ distinct from each other and from p, (ii) one $q_i$ is s, and (iii) $1\!\leq\! j_i\!\leq\! k$ ) In order to extract a different message m', a process must execute accept(s, m', 1)in some round $i \le f + 1$ By UNFORGEABILITY, and because s is correct, no correct process can else deliver SF extract $m' \neq m$ All correct processes will deliver m

# Implementing broadcast and accept

- $\odot$  A process that wants to broadcast m, does so through a series of witnesses
  - $\sqcap$  Sends m to all
  - $\hfill\square$  Each correct process becomes a witness by relaying m to all
- $\ensuremath{\mathfrak{G}}$  If a process receives enough witness confirmations, it accepts m

# Can we rely on witnesses?

- Only if not too many faulty processes!
- Otherwise, a set of faulty processes could fool a correct process by acting as witnesses of a message that was never broadcast
- $\odot$  How large can be f with respect to n?

## Byzantine Generals

- $\odot$  One General G, a set of Lieutenants  $L_i$
- General can order Attack (A) or Retreat (R)
- General may be a traitor; so may be some of the Lieutenants

\* \* \*

- I. If G is trustworthy, every trustworthy  $L_i$  must follow G's orders
- II. Every trustworthy  $L_i$  must follow same battleplan



## A Lower Bound

#### Theorem

There is no algorithm that solves TRB for Byzantine failures if  $n \leq 3f$ 

(Lamport, Shostak, and Pease, The Byzantine Generals Problem, ACM TOPLAS, 4 (3), 382–401, 1982)

# Back to the protocol...

- lacktriangledown To broadcast a message in round r, p sends (init, p, m, r) to all
- $\odot$  A confirmation has the form (echo, p, m, r)
- - $\square$  it receives (init, p, m, r) from p directly
  - $\Box$  it receives confirmations for (p,m,r) from at least f+1 processes (at least one correct witness)
- $\ensuremath{\mathfrak{D}}$  A process accepts (p,m,r) if it has received n-f confirmations (as many as possible...)

or

Protocol proceeds in rounds. Each round has 2 phases

# Implementation of broadcast and accept

```
Phase 2r-1
1: p sends (init, p, m, r) to all

Phase 2r
2: if q received (init, p, m, r) in phase 2r-1 then
3: q sends (echo, p, m, r) to all /*q becomes a witness */
4: if q receives (echo, p, m, r) from at least n-f distinct processes in phase 2r then
5: q accepts (p, m, r)

Phase j > 2r
6: if q has received (echo, p, m, r) from at least f+1 distinct processes in phases (2r, 2r+1, \ldots, j-1) then
7: q sends (echo, p, m, r) to all processes /*q becomes a witness */
8: if q has received (echo, p, m, r) from at least n-f processes in phases (2r, 2r+1, \ldots, j) then
9: q accepts (p, m, r)

Is termination a problem?
```

# The implementation is correct

#### Theorem

If n>3f, the given implementation of broadcast(p,m,r) and accept(p,m,r) satisfies Unforgeability, Correctness, and Relay

### Assumption

Channels are reliable (between correct processes) and authenticated

## Correctness

If a correct process p executes broadcast(p,m,r) in round r, then all correct processes will execute accept(p,m,r) in round r

## Correctness

If a correct process p executes broadcast(p,m,r) in round r, then all correct processes will execute accept(p,m,r) in round r

If p is correct then

- $\Box$  by Validity of the underlying send and receive, every correct process receives (init, p, m, r) in phase 2r-1
- □ every correct process becomes a witness
- $\hfill\Box$  every correct process sends (echo,p,m,r) in phase 2r
- $\Box$  since there are at least n-f correct processes, every correct process receives at least n-f echoes in phase 2r
- $\hfill\Box$  every correct process executes accept (p,m,r) in phase 2r (in round r )

# Unforgeability - 1

If a correct process q executes accept(p,m,r) in round  $j\!\geq\! r$ , and p is correct, then p did in fact execute broadcast(p,m,r) in round r

- Suppose q executes  $\operatorname{accept}(p,m,r)$  in round j
- q received (echo,p,m,r) from at least n-f distinct processes by phase k , where k=2j-1 or k=2j
- Let k' be the earliest phase in which some correct process q' becomes a witness to (p,m,r)

# Unforgeability - 1

If a correct process q executes  $\operatorname{accept}(p,m,r)$  in round  $j\!\geq\! r$ , and p is correct, then p did in fact execute  $\operatorname{broadcast}(p,m,r)$  in round r

- Suppose q executes accept(p,m,r) in round i
- q received (echo,p,m,r) from at least n-f distinct processes by phase k , where k=2j-1 or k=2j
- Let k' be the earliest phase in which some correct process q' becomes a witness to (p,m,r)

Case 1: k' = 2r - 1

- $\square q'$  received (init, p, m, r) from p
- $\ \square$  since p is correct, it follows that p did execute broadcast(p,m,r) in round r

Case 2: k' > 2r - 1

- $\square$  at most f are faulty; one is correct
- $\Box$  this process was a witness to (p,m,r) before phase k'

The first correct process receives (init, p, m, r) from p!

# Summing up...

- $\odot$  For q to accept, some correct process must become witness.
- $\ensuremath{\mathfrak{S}}$  Earliest correct witness q' becomes so in phase 2r-1 , and only if p did indeed executed broadcast (p,m,r)
- Any correct process that becomes a witness later can only do so if a correct process is already a witness.

# Relay

If a correct process q executes  $\operatorname{accept}(p,m,r)$  in round  $j \geq r$ , then all correct processes will execute  $\operatorname{accept}(p,m,r)$  by round j+1

# Relay

If a correct process q executes  $\operatorname{accept}(p,m,r)$  in round  $j \geq r$ , then all correct processes will execute  $\operatorname{accept}(p,m,r)$  by round j+1

- ${\mathfrak S}$  Suppose correct q executes accept(p,m,r) in round j (phase k=2j-1 or k=2j)
- $\ensuremath{\mathfrak{G}}$  q received at least n-f (echo,p,m,r) from distinct processes by phase k
- $\ensuremath{\mathfrak{g}}$  All correct procs received (echo,p,m,r) from at least n-2f correct processes by phase k
- $\ \ \,$  From n>3f, it follows that  $n-2f\geq f+1$  . Then, all correct processes become witnesses by phase k
- $\ensuremath{\mathfrak{S}}$  All correct processes  $\operatorname{send}(echo,p,m,r)$  by phase k+1
- $\odot$  Since there are at least n-f correct processes, all correct processes will accept(p,m,r) by phase k+1 (round 2j or 2j+1)