
The Long March of BFT
Lorenzo Alvisi

UT Austin

A specter is haunting the
system’s community...

BFT

A hierarchy of
failure models

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

Weird Things Happen in
Distributed Systems

Weird Things Happen in
Distributed Systems Why BFT?

Systems are not fail-stop
insider attacks, soft errors, bugs...

Assumptions are vulnerabilities!

Hardware gets cheaper/data gets more valuable
Google FS already uses 3-way replication

Lean and mean BFT systems have been built

Outline

How it all began: BFT in synchronous systems

FLP: Elaborating the grief

A new dawn: Practical Byzantine Fault Tolerance

Citius, Altius, Fortius

Solution: replicate server!

The Problem
Clients Server

State Machine Replication
1. Make server deterministic (state machine)

State machine

State Machine Replication
1. Make server deterministic (state machine)

2. Replicate server

State machines

State Machine Replication
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

Clients

Commands

State machines

State Machine Replication
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients
State machines

State Machine Replication
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients

Voter

State machines

A conundrum

. . .

A: voter
and client
share fate!

A conundrum

. . .

A: voter
and client
share fate!

Replica Coordination

AGREEMENT: Every non-faulty state machine receives
! !! ! ! ! !every command

ORDER: Every non-faulty state machine processes the
! !! ! !commands it receives in the same order

All non-faulty state machines receive
all commands in the same order

Terminating
Reliable Broadcast

Validity! ! If the sender is correct and broadcasts a
! ! message , then all correct processes
! ! eventually deliver

Agreement! ! If a correct process delivers a message ,
! ! then all correct processes eventually
! ! deliver
Integrity! ! Every correct process delivers at most one
! ! message, and if it delivers " SF, then
! ! some process must have broadcast
Termination ! Every correct process eventually delivers
! ! some message

m

m

m

m

m

m

Arbitrary failures with
message authentication

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Process can send
conflicting messages
to different receivers
Messages signed with
unforgeable signatures

Valid messages

A valid message has the following form:

in round 1:
 . (is signed by the sender)

in round > 1, if received by from :
 where

 = sender;
 are distinct from each other and from
message has not been tampered with
p1, . . . , pr

p1 pr = q

m

m

r p q

p

m : sid

m : p1 : p2 : . . . : pr

AFMA: The Idea

A correct process discards all non-valid messages
it receives
If a message is valid,

it “extracts” the value from the message
it relays the message, with its own signature
appended

At round :
if it extracted exactly one message, delivers it
otherwise, delivers SF

p

p

p

f+1

AFMA: The Protocol
Initialization for process :
! if = sender and wishes to broadcast then
! !extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay
At the end of round
! ! if such that extracted = then
! ! ! deliver
! !else deliver SF

p

{m}

p

p p m

k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

s : p

Termination

In round , every
correct process delivers
either or SF and then
halts

m

f+1

Initialization for process :
! if = sender and wishes to broadcast then
! ! extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay

At the end of round
! ! if such that extracted = then
! ! ! deliver
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}
∪ {s}

f+1

∃m {m}

m

p

s : p

Lemma. If a correct process
extracts , then every correct
process eventually extracts

Agreement
Proof
Let be the earliest round in which some correct process
extracts . Let that process be .
• if is the sender, then in round 1 sends a valid
! message to all.
All correct processes extract that message in round 1
• If will send a valid message
!
! in round and every correct process will

extract it in round
• If , has received in round a message
! !

• Each has signed and relayed a message
! in round
• At most faulty processes - one is correct and has
! extracted before

CONTRADICTION

Agreement follows directly, since all correct
process extract the same set of messages

m

m

r

m p

pp

p

pj

j−1

m : p1 : p2 : . . . : pr : p

r+1≤f+1

r+1≤f+1

r =f+1

f

Initialization for process :
! if = sender and wishes to broadcast then
! ! extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay

At the end of round
! ! if such that extracted = then
! ! ! deliver
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}
∪ {s}

f+1

∃m {m}

m

p

s : p
r≤f, p

m : p1 : p2 : . . . : pf+1

f+1

pj , 1 ≤j ≤f+1

< f+1

m p

Validity

From Agreement and the
observation that the
sender, if correct,
delivers its own message.

Initialization for process :
! if = sender and wishes to broadcast then
! ! extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay

At the end of round
! ! if such that extracted = then
! ! ! deliver
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}
∪ {s}

f+1

∃m {m}

m

p

s : p

TRB for
arbitrary failures

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Srikanth, T.K., Toueg S.
Simulating Authenticated

Broadcasts to Derive Simple
Fault-Tolerant Algorithms
Distributed Computing 2 (2),

80-94

AF: The Idea

Identify the essential properties of message
authentication that made AFMA work

Implement these properties without using
message authentication

AF: The Approach

Introduce two primitives
broadcast (executed by in round)
accept !! (executed by in round)

Give axiomatic definitions of broadcast and accept
Derive an algorithm that solves TRB for AF using
these primitives
Show an implementation of these primitives that
does not use message authentication

q

p

j≥ i

i(p, m, i)

(p, m, i)

Properties of
broadcast and accept

Correctness If a correct process executes
broadcast in round , then all correct
processes will execute accept in round

Unforgeability If a correct process executes
accept in round , and is correct, then
did in fact execute broadcast in round

Relay If a correct process executes accept
in round , then all correct processes will
execute accept by round

p

p

i

i

p

i

(p,m, i) j≥ i

(p,m, i)

(p,m, i)

(p,m, i)

(p,m, i) j+1

(p,m, i)
j≥ i

q

q

AF: The Protocol - 1
sender in round 0:
0:!extract
sender in round 1:
1:!broadcast
Process in round
2:!if extracted in round and " sender then
4:!! broadcast
5:!if has executed at least accept in rounds 1 through

! (where (i) distinct from each other and from , (ii) one is , and
(iii)) and has not previously extracted then

6:!! extract
7:!if then
8:!! if in the entire execution has extracted exactly one then
9:!! deliver
10:! else deliver SF
11:! halt

(p, m, k)

m

k=f+1

(s,m, 1)

m

s

s

k, 1≤k≤f+1

1≤ i≤k

1≤ji≤k

p

p

p

pm k−1

m

m

p

(qi,m, ji)

mp

k k

qi qip s

Termination

In round , every
correct process delivers
either or SF and then
halts

f+1

m

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and " sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s,m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p,m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Agreement - 1

Lemma
If a correct process extracts , then

every correct process eventually extracts

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and " sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s,m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p,m, k)

p

p k (qi,m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

m

m

Agreement - 1
Proof

Let be the earliest round in which some correct process
extracts . Let that process be .

if , then and will execute broadcast
! in round 1. By CORRECTNESS, all correct processes
! will execute accept in round 1 and extract

if , the sender is faulty. Since has extracted
! in round , has accepted at least triples with
! properties (i), (ii), and (iii) by round

 By RELAY, all correct processes will have
! accepted those triples by round
 will execute broadcast in round
By CORRECTNESS, any correct process other than

! will have accepted triples
! , by round
 are all distinct
every correct process other than

! will extract
 already extracted ; what about ?

Lemma
If a correct process extracts , then

every correct process eventually extracts

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and " sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s,m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p,m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

m

m

r

m p

r=0 p=s p (s, m, 1)

(s, m, 1) m

r > 0 p

pm r

r

r

r≤f

r r+1

r+1

r+1

r+1

p (p,m, r+1)

p, q1, q2, . . . , qr

q1, q2, . . . , qr, p

(qk,m, jk), 1≤jk≤r+1

q1, q2, . . . , qr, p

m

p q1, q2, . . . , qrm

Agreement - 2
 Claim: are all faulty

Suppose were correct

p has accepted in round

By UNFORGEABILITY, executed
!broadcast in round
 extracted m in round

CONTRADICTION

Case 2:
Since there are at most faulty processes,
some process in is correct

By UNFORGEABILITY, executed
broadcast in round

 has extracted m in round

CONTRADICTION

ql q1, q2, . . . , qf+1

(ql,m, jl) jl ≤ r

ql jl−1 < f + 1

jk−1 < rqk

jk

ql

(qk,m, jk)

qk

qk

(qk,m, jk) jk ≤ r

q1, q2, . . . , qr

r = f+1

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and " sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s,m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p,m, k)

p

p k (qi,m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

f

Validity
A correct sender executes !
broadcast in round 1

By CORRECTNESS, all correct processes
execute accept in round 1 and
extract

In order to extract a different message
! , a process must execute accept
in some round

By UNFORGEABILITY, and because s is
correct, no correct process can
extract .

All correct processes will deliver m

m
′ != m

i ≤ f + 1

(s,m, 1)
m

(s,m′
, 1)

(s,m, 1)

m
′

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and " sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s,m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p,m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Implementing
broadcast and accept

A process that wants to broadcast , does so
through a series of witnesses

Sends to all
Each correct process becomes a witness by
relaying to all

If a process receives enough witness confirmations,
it accepts

m

m

m

m

Can we rely on
witnesses?

Only if not too many faulty processes!

Otherwise, a set of faulty processes could fool
a correct process by acting as witnesses of a
message that was never broadcast

How large can be with respect to ?f n

Byzantine Generals

One General G, a set of Lieutenants
General can order Attack (A) or Retreat (R)
General may be a traitor; so may be some of the
Lieutenants

* * *
I. If G is trustworthy, every trustworthy must

follow G’s orders
II. Every trustworthy must follow same battleplan

Li

Li

Li

G

L2L1

The plot thickens...

G
One traitor

L1 L2

G

L1 L2

A Lower Bound

Theorem
There is no algorithm that solves TRB for
Byzantine failures if
(Lamport, Shostak, and Pease, The Byzantine Generals Problem,
ACM TOPLAS, 4 (3), 382-401, 1982)

n ≤ 3f

Back to the protocol...
To broadcast a message in round , sends to all

A confirmation has the form

A witness sends if either:
it receives from directly! or
it receives confirmations for from at least
! ! processes (at least one correct witness)

A process accepts if it has received confirmations
(as many as possible…)

Protocol proceeds in rounds. Each round has 2 phases

f + 1

(p, m, r)

(p, m, r) n − f

(echo, p, m, r)

(echo, p, m, r)

(init, p, m, r)

(init, p, m, r) p

pr

Implementation of
broadcast and accept

Phase
1:! sends to all
Phase
2:!if received in phase then
3:!! sends to all /* becomes a witness */
4:!if receives from at least distinct processes in phase then
5:!! accepts
Phase
6:!if has received from at least distinct processes in
! phases . then
7:!! sends to all processes! /* becomes a witness */
8:!if has received from at least processes in !
! phases . then
9:!! accepts

Is termination a problem?

(2r, 2r + 1, . . . , j)

(2r, 2r + 1, . . . , j − 1)

(init, p,m, r)

2r−1

2r

j >2r

(p, m, r)q

p

2r−1

(init, p,m, r)

q

q q

q

q

q

q

q

q

(p, m, r)

(echo, p,m, r)

(echo, p,m, r) n−f 2r

(echo, p,m, r) f+1

(echo, p,m, r)

(echo, p,m, r) n−f

The implementation
is correct

Theorem

If , the given implementation of
broadcast and accept
satisfies Unforgeability, Correctness, and
Relay

Assumption
Channels are reliable (between correct
processes) and authenticated

n > 3f

(p, m, r) (p, m, r)

Correctness

If a correct process
executes broadcast
in round , then all
correct processes will
execute accept in
round

(p, m, r)

(p, m, r)

r

r

p

Correctness
If is correct then

 sends to all in round
(phase)
by Validity of the underlying send and
receive, every correct process receives
! ! ! in phase
every correct process becomes a
witness
every correct process sends
in phase
since there are at least correct
processes, every correct process
receives at least echoes in phase
every correct process executes
accept! ! in phase (in round)

If a correct process
executes broadcast
in round , then all
correct processes will
execute accept in
round

(p, m, r)

(p, m, r)

r

r

p

(echo, p, m, r)

(init, p, m, r)

(init, p, m, r) r

r(p, m, r)

2r−1

2r

2rn−f

2r

n−f

p

p

2r−1

Unforgeability - 1
If a correct process
executes accept in
round , and is correct,
then did in fact execute
broadcast in round

• Suppose executes accept
 in round
• received from at
 least distinct processes by
 phase , where or

• Let be the earliest phase in
 which some correct process
 becomes a witness to

k = 2j − 1

k = 2j

(echo, p, m, r)

(p, m, r)

k
′

q
′

n−f

k

q

q (p, m, r)

j

(p, m, r) r

p

pj≥r

(p, m, r)
q

Unforgeability - 1
Case 1:

 received from
since is correct, it follows that
! did execute broadcast !
in round

Case 2:
 has become a witness by
receiving from
distinct processes
at most are faulty; one is
correct
this process was a witness to
! ! ! before phase

CONTRADICTION
The first correct process
receives ! from !

If a correct process
executes accept in
round , and is correct,
then did in fact execute
broadcast in round

• Suppose executes accept
 in round
• received from at
 least distinct processes by
 phase , where or

• Let be the earliest phase in
 which some correct process
 becomes a witness to

k′ = 2r − 1

k′ > 2r − 1

k = 2j − 1

k = 2j

(echo, p, m, r) f+1

f

(p, m, r) k
′

q
′ (init, p, m, r) p

p

p (p, m, r)
r

p(init, p, m, r)

(echo, p, m, r)

(p, m, r)

k
′

q
′

n−f

k

q

q (p, m, r)

j

(p, m, r) r

p

pj≥r

(p, m, r)
q

q
′

Summing up...
For to accept, some correct process must
become witness.
Earliest correct witness becomes so in
phase . , and only if did indeed executed
broadcast
Any correct process that becomes a witness later
can only do so if a correct process is already a
witness.
For any correct process to become a witness,
must have executed broadcast

q

q
′

2r − 1

p

(p, m, r)

(p, m, r)

p

Relay

If a correct process
executes accept in
round , then all
correct processes will
execute accept by
round

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r

Relay
Suppose correct q executes accept in
round (phase or)
 received at least from
distinct processes by phase
At least of them are correct.
All correct procs received from at
least correct processes by phase
From , it follows that .
Then, all correct processes become witnesses
by phase
All correct processes send by
phase .
Since there are at least correct processes,
all correct processes will accept by
phase (round or)

If a correct process
executes accept in
round , then all
correct processes will
execute accept by
round

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r

n − 2f

k = 2j − 1 k = 2j

n − 2f k

k

k + 1

2j 2j + 1

(p, m, r)

k + 1

n − 2f ≥ f + 1

n − f

k

n > 3f

(p, m, r)

(echo, p,m, r)

(echo, p,m, r)

(echo, p,m, r)

q

j

n−f

