The Long March of BFT

Lorenzo Alvisi
UT Austin

A hierarchy of
failure models

@ Receive Omission

General Omission

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

A specter is haunting the
systems community...

5

Weird Things Happen in
Distributed Systems

Weird Things Happen in
Distributed Systems

A4 Biting the hand that feedswhat IT

Th e 4 JUAT Home | My LATimes | Print Edition | A Sectons

Times Travel

PCs & Chips | Servers | Storage | |You are here: LAT Home > Travel > Articles > At LAX, computer glitch delays 20,00...

Software | Music & Media

Travel

 Print [E-mail] Add to My 1

FREQUENT FLIER | HOMELAND SECURITY

The Register » Hardware » Data Networking » Los Angeles
Hawaii

— Dublin airport was crippled b | .~
_' — “:'”} — Flight into terrer tedium

Europe
‘By Joe F? y thi Las Vegas
P Santa Barbara
Orange County
ffic control fault that brought Dublin 2 San Diego
Sugrehead San Francisco
Napa Wine Country
| sEARcH:—® @ washingtor California’s Central
Coast

NEWS | POLITICS | OPINIONS | LOCAL | SPORTS | ARTS & LIVII

I washingtonpost.com >Technology i

E Great Britain

.TechCrunch About | More Headlines Latin America &

Caribbean

Pacific & Australia

More Destinations Related Stories

! Systemwide GMail Outage

Michael Arrington

Outline

At LAX, computer glitch delays 20,000 passengers
Computer malfunction delays passengers on planes and in halls, s g prox S custom
n, which also holds a list of people more likely to be searched, failed, stranding 6,

More than 20,000 |nlema(mna| passengers were stranded fc
hours at ation rport on Saturday, waiti
airplanes and in packed cus(oms halls while a malfunctionin
computer system prevented U.S. officials from processing th¢
travelers' entry into the country.

Editor's note: Have you been affected b delays atLAX rece
Share your story on our Travel Message Boa

The U.S. Customs and Border Protection computer system w
down around 2 p m, Yorcmg some planes to siton the tarmac

How it all began: BFT in synchronous systems

@ FLP: Elaborating the grief

@ A new dawn: Practical Byzantine Fault Tolerance

@ Citius, Altius, Fortius

Why BFT?

@ Systems are not fail-stop

D insider attacks, soft errors, bugs...
@ Assumptions are vulnerabilities!

@ Hardware gets cheaper/data gets more valuable

O Google FS already uses 3-way replication

@ Lean and mean BFT systems have been built

The Problem

Clients Server

%@@

/

Solution: replicate server!

State Machine Replication

1. Make server deterministic (state machine)

O . State machine

State Machine Replication

1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

Commands

% / O | State machines

: g i
cnenfs\i_ [| O 7
\% O

State Machine Replication

1. Make server deterministic (state machine)

2. Replicate server

State Machine Replication

1. Make server deterministic (state machine)
. Replicate server

. Ensure correct replicas step through the same
sequence of state transitions

. Vote on replica outputs for fault-tolerance

% State machines

Clients =
\%

State Machine Replication

Make server deterministic (state machine)
. Replicate server

. Ensure correct replicas step through the same
sequence of state transitions

. Vote on replica outputs for fault-tolerance

Clienfs<% £ !ﬁk//sfa’re machines
\%L g
¥ P |

Voter

A conundrum

H)E

o
O

A: voter
and client
share fate!

A conundrum

e

A: voter
and client
share fate!

Replica Coordination

All non-faulty state machines receive
all commands in the same order

® AGREEMENT: Every non-faulty state machine receives
every command

® ORDER: Every non-faulty state machine processes the
commands it receives in the same order

Terminating
Reliable Broadcast

Validity If the sender is correct and broadcasts a
message m, then all correct processes
eventually deliver m

Agreement If a correct process delivers a message m,
then all correct processes eventually
deliver m

Integrity Every correct process delivers at most one
message, and if it delivers m # SF, then
some process must have broadcast m

Termination Every correct process eventually delivers
some message

Valid messages

A valid message m has the following form:

in round 1:

m: s;q (mis signed by the sender)

in round r > 1, if received by p from ¢ :
m:pi:p2:...:p- Where
@ p1 = sender; pr =¢
@ Di1,...,pr are distinct from each other and from p
@ message has not been tampered with

Arbitrary failures with
message authentication

Fail-stop@)-"- - - - - Q

Send Omission @) @ Receive Omission

General Omission

. Process can send

capflicting eSS Arbitrary failures with

to different receivers message authentication

O Messages signed with

f ble signatures
unforgedy e Arbitrary (Byzantine) failures

AFMA: The Idea

@ A correct process p discards all non-valid messages
it receives

@ If a message is valid,
O it “extracts” the value from the message

D it relays the message, with its own signature
appended

@ At round f+1:
O if it extracted exactly one message, pdelivers it
0 otherwise, p delivers SF

AFMA: The Protocol

Initialization for process p :

if p= sender and p wishes to broadcast m then

extracted := relay := {m}

Process p in round k,1<k<f+1

for each s € relay
send s : p to all

receive round k& messages from all processes

relay := ()

for each valid message received s=m:p; :ps:...:

if m & extracted then

extracted := extracted U {m}

relay := relay U{s}

At the end of round f+1

if 3m such that extracted ={m} then

deliver m
else deliver SF

Agreement

Proof

Let 7 be the earliest round in which some correct process
extracts m. Let that process be p.

Initialization for process p:
if p = sender and p wishes to broadcast m then
extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s €relay
send s : p to all
receive round k messages from all processes
relay := ()

for each valid message received s = m :p; :po:...:

if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if 3msuch that extracted = {m}then
deliver m
else deliver SF

Lemma. If a correct process
extracts m, then every correct
process eventually extracts m

e if p is the sender, then in round 1 p sends a valid
message to all.

All correct processes extract that message in round 1
o If 7<f,p will send a valid message
TRRDESEDE RO Dyl D
in round 7+1<f+1 and every correct process will
extract it in round 7+1<f+1

e If r =f+1, p has received in round f+1 a message
Tt Dy s = - DI
® Each p;,1 <j < f+1 has signed and relayed a message
inround j—1< f+1
® At most f faulty processes - one p; is correct and has
extractedn before

CONTRADICTION

Agreement follows directly, since all correct
process extract the same set of messages

Termination

Initialization for process p:
if p = sender and p wishes to broadcast m then
extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s €relay
send s : p to all
receive round k messages from all processes
relay :=)
for each valid message received s = m :p; :po:...:
if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if 3msuch that extracted = {m} then
deliver m
else deliver SF

In round f+1, every
correct process delivers
either m or SF and then
halts

Validity

Initialization for process p:
if p = sender and p wishes to broadcast m then
extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s €relay
send s : p to all
receive round k messages from all processes
relay :=)
for each valid message received s = m :p; :po:...:pp
if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if 3msuch that extracted = {m} then
deliver m
else deliver SF

From Agreement and the
observation that the
sender, if correct,
delivers its own message.

TRB for
arbitrary failures

Fail-stop @ & === Crash

9"

. Receive Omission

General Omission
Srikanth, T.K., Toueg S.

Arbitrary failures with
message authentication

Distributed Computing 2 (2),
80-94 Arbitrary (Byzantine) failures

AF: The Approach

@ Introduce two primitives
broadcast(p, m. i) (executed by p in round i)
accept(p, m, i) (executed by ¢ in round j>1)
@ Give axiomatic definitions of broadcast and accept

@ Derive an algorithm that solves TRB for AF using
these primitives

@ Show an implementation of these primitives that
does not use message authentication

AF: The Idea

@ Identify the essential properties of message
authentication that made AFMA work

@ Implement these properties without using
message authentication

Properties of
broadcast and accept

@ Correctness If a correct process p executes
broadcast(p,m,i) in round i, then all correct
processes will execute accept(p,m,i)in roundi

@ Unforgeability If a correct process ¢ executes
accept(p, m,) in round j>i, and p is correct, then p
did in fact execute broadcast(p,m,i) in round i

@ Relay If a correct process g executes accept(p,m,1)
in round j>i, then all correct processes will

execute accept(p,m,i) by round j+1

AF: The Protocol -1

sender s in round O:
0: extract m

sender s in round 1:

1: broadcast(s,m, 1)

Process p in round k,1<k<f+1

2: if p extracted m in round k—1 and p# sender then

4: broadcast(p, m, k)

5: if p has executed at least k accept(g;, m,j;) 1<i<k in rounds | through k
(where (i) g; distinct from each other and from p, (ii) one ¢; is s, and

(iii) 1<j;<k) and p has not previously extracted m then

6: extract m

7:if k=f+1 then

8: if in the entire execution p has extracted exactly one m then

Termination

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s,m,1)

Process p in round k,1<k<f+1
2: if p extracted m in round k—1 and p # sender then
4: broadcast(p, m, k)
5: if p has executed at least k accept(qi,m,ji) 1<i<k in
rounds 1 through
(where (i) ¢ distinct from each other and from
p, (i) one ¢; is s, and (iii) 1<ji <k)
and p has not previously extracted m then
extract m
if k=f+1 then
if in the entire execution p has extracted exactly
one m then
deliver m
else deliver SF
halt

In round f+1, every
correct process delivers
either m or SF and then
halts

CH deliver m
10: else deliver SF
11: halt

Agreement - 1

Agreement - 1

Proof
sender s in round O: sender s in round O:
0: extract m 0: extract m
sender s in round 1: sender s in round 1:
1: broadcast(s,m,1) 1: broadcast(s,m,1)

Let r be the earliest round in which some correct process
extracts m. Let that process be p.

@ if r=0, then p=s and p will execute broadcast(s,m,1)
in round 1. By CORRECTNESS, all correct processes

Process p in round k,1<k<f+1 Process p in round k. 1<k<f+1
3 will execute accept(s,m,1) in round 1 and extract m

2: if p extracted m in round k—1and p # sender then 2: if p extracted m in round k—1and p # sender then
4 broadcast(p, m, k) 4 broadcast(p, m, k)
5: if p has executed at least k accept(gi,m,ji) 1<i<k in 5: if p has executed at least k accept(qi,m,ji) 1<i<Fk in
rounds 1 through & rounds 1 through k
(where (i) ¢; distinct from each other and from

if r > 0, the sender is faulty. Since p has extracted
m in round r, p has accepted at least r triples with

p, (ii) one i is s, and (iii) 1=ji<k)
and p has not previously extracted m then
extract m
if k=f+1 then
if in the entire execution p has extracted exactly
one m then

deliver m

else deliver SF

halt

Lemma
If a correct process extracts m, then
every correct process eventually extracts m

(where (i) ¢ distinct from each other and from
p, (ii) one ¢: is s, and (jii) 1<ji<k)
and p has not previously extracted m then
extract m
if k=f+1 then
if in the entire execution p has extracted exactly
one m then

deliver m

else deliver SF

halt

Lemma
If a correct process extracts m, then

every correct process eventually extracts m

properties (i), (i), and (iii) by round r

o

3
o

r<f By RELAY, all correct processes will have
accepted those r triples by round r+1

p will execute broadcast(p, m,7+1) in round r+1
By CORRECTNESS, any correct process other than
P:q1, 42, - - - g Will have accepted r+1 triples
(qk, ™, ji), 1 <jr <r+1, by round r+1

q1,q2 ,qr,p are all distinct

every correct process other than ¢i1,¢2

will extract m

p already extracted m; what about q1,q2

Agreement - 2

sender s in round O:
0: extract m
sender s in round 1:
1: broadcast(s,m,1)

Process p inround k,1<k<f+1
2: if p extracted m in round k—1and p # sender then
4 broadcast(p, m, k)
5: if p has executed at least k accept(gi,m,ji) 1<i<k in
rounds 1 through &
(where (i) ¢; distinct from each other and from
p, (ii) one i is s, and (iii) 1=ji<k)
and p has not previously extracted m then
- extract m
2 if k= f+1 then
if in the entire execution p has extracted exactly
one m then
deliver m
else deliver SF

q1,92,- - -4, are all faulty

> Suppose g;, were correct
> p has accepted(gy, m, ji) in round ji <

> By UNFORGEABILITY, gx executed
broadcast (i, m, ji) in round ji

> qi extracted m in round ji—; <7

0 Case 2: r= f+1

0o Since there are at most f faulty processes,
some process ¢ in qi,q2 qf+1 is correct

DO By UNFORGEABILITY, ¢ executed
broadcast (¢, m, j;) in round j; <r

0 ¢ has extracted m in round ji—1 < f+1

Implementing
broadcast and accept

@ A process that wants to broadcast m, does so

through a series of
O Sends m to all

O Each correct process becomes a witness by

relaying m to all

@ If a process receives enough witness confirmations,

it accepts m

Validity

sender s in round O:
0: extract m
sender s in round 1:
1: broadcast(s,m,1)

Process p inround k,1<k<f+1
2: if p extracted m in round k—1and p # sender then
4 broadcast(p, m, k)
5: if p has executed af least k accept(qi,m.j;) 1<i<Fk in
rounds 1 through k
(where (i) ¢ distinct from each other and from
p, (ii) one ¢: is s, and (jii) 1<ji<k)
and p has not previously extracted m then
: extract m
< if k=i
if in the entire execution p has extracted exactly
one m then
deliver m
else deliver SF
halt

@ A correct sender executes
broadcast(s,m, 1) in round 1

@ By CORRECTNESS, all correct processes
execute accept(s,m,1) in round 1 and

extract m

@ In order fo extract a different message
m/, a process must execute accept(s,m’, 1)

in some round i < f + 1

@ By UNFORGEABILITY, and because s is

correct, no correct process can
extract m’' #m

@ All correct processes will deliver m

Can we rely on
witnhesses?

@ Only if not too many faulty processes!

@ Otherwise, a set of faulty processes could fool

a correct process by acting as witnesses of a
message that was never broadcast

@ How large can be f with respect to n?

Byzantine Generals

@ One General G, a set of Lieutenants [,
@ General can order Attack (A) or Retreat (R)

@ General may be a traitor; so may be some of the
Lieutenants
e i

I. If G is trustworthy, every trustworthy L; must
follow G orders

Il. Every trustworthy L; must follow same battleplan

A Lower Bound

Theorem

There is no algorithm that solves TRB for
Byzantine failures if n < 3f

(Lamport, Shostak, and Pease, The Byzantine Generals Problem,
ACM TOPLAS, 4 (3), 382-401, 1982)

The plot thickens...

One traitor

Back to the protocol...

@ To broadcast a message in round r, p sends (init, p, m,r) to all
@ A confirmation has the form (echo,p, m,r)

@ A witness sends (echo, p, m,) if either:
Dt receives (init, p, m,r) from p directly or
nit receives confirmations for (p,m,r) from at least
f + 1 processes (at least one correct witness)

@ A process accepts(p,m,7) if it has received n — f confirmations
(as many as possible...)

@ Protocol proceeds in rounds. Each round has 2 phases

Implementation of The implementation
broadcast and accept is correct

Phase 2r—1
1: p sends (init,p,m,r) to all Theorem

Phase 2r
2: if ¢ received (init,p,m,) in phase 2r—1 then If n > 3f, the given implementation of
3: g sends (echo,p,m,r) to all /*q becomes a witness */ bl"OCldCClS‘l'(p, m, ’I“) and GCCQP‘I'(p, m, T’)

o i echo, p, m,r — f disti i 2r . "
4: if ¢ receives (echo,p,m,r) from at least n— f distinct processes in phase 2r then SCl1'|Sﬁ€S UnForgeablllfy, COFrGCanSS, Cll'ld
5: ¢ accepts(p,m,r)

Phase j>2r Relay
6: if ¢ has received (echo,p,m,r) from at least f+1 distinct processes in

phases (2r,2r + 1, Assump’rion
7: g sends (echo,p,m,r) to all processes /*q becomes a witness */ Channels are reliable (be’rween correct

8:if ¢ has received (echo,p, m,r) from at least n— f processes in

phases (2r,2r +1,...,5) then processes) and authenticated
9: q accepts (p,m,r)

Is termination a problem?

Correctness Correctness

If pis correct then
O p sends (init,p, m,r) to all in round r
(phase 2r—1)
If a correct process p If a correct process p O by Validity of the underlying send and
executes broadcast(p, m,) executes broadcast(p, m,) receive, every correct process receives
in round r, then all in round r, then all (init,p,m,r) in phase 2r—1
correct processes will correct processes will every correct process becomes a

; 3 witness
execute accept(p, m,r) in execute accept(p,m,r) in Sery Eoktt P ends (eonsip i, 7)

round round r in phase 2r
since there are at least n—f correct
processes, every correct process
receives at least n—f echoes in phase 2r
every correct process executes
accept(p,m,r) in phase 2r (in round r)

Unforgeability - 1 Unforgeability - 1

If a correct process ¢ If a correct process ¢ Case I: k' =2r—1
executes accept(p,m,r) in executes accept(p,m,r) in 0 ¢ received (init, p,m,r) from p
round j >, and pis correct, round j >, and pis correct, £V SHise b s correcfiidfnllows that

then p did in fact execute then p did in fact execute ﬁ?:usze:we Bl . 7)

broadcast(p, m,r) in round r broadcast(p,m,7) in roundr ~ieo 2. B > 90— 1

- Suppose g executes accept(p, m,) . Suppose q executes accept(p,m, r) 0 ¢ has become a witness by
in round j in round j receiving (echo,p, m,r) from f+1
distinct processes

o at most f are faulty; one is
correct

0 this process was a witness to
(p,m,r) before phase &’

« g received (echo, p, m,r) from at q received (echo, p, m,r) from at
least n—f distinct processes by least n—f distinct processes by
phase k, where k=25 —1 or phase k, where k=25 —1 or
k=2 o |

o Let k&’ be the earliest phase in o Let k&’ be the earliest phase in
which some correct process ¢’ which some correct process ¢’

The first correct process
becomes a witness to (p,m,r) becomes a witness to (p,m,r)

receives (init,p, m,r) from p!

Summing up... Relay

@ For ¢ to accept, some correct process must
become witness.

@ Earliest correct witness ¢’ becomes so in If a correct process ¢
phase 2r — 1, and only if p did indeed executed executes accept(p,m,r) in
broadcast(p, m,) round j > 7, then all

correct processes will

execute accept(p, m,r) by

round j + 1

@ Any correct process that becomes a witness later
can only do so if a correct process is already a
witness.

@ For any correct process to become a witness, p
must have executed broadcast(p, m,r)

Relay

@ Suppose correct q executes accept(p,m,r) in
round j (phase k = 2j — 1 or k = 2j)
@ qreceived at least n — f (echo,p, m,r) from
If a correct process ¢ distinct processes by phase i
executes accept(p,m,7) in
round j > r, then all

correct processes will

@ At least n — 2f of them are correct.

@ All correct procs received (echo,p, m,r) from at
least n — 2f correct processes by phase k

® From n > 3f, it follows that n —2f > f+1.

execute GCCQPf(])- m, 7’) by Then, all correct processes become witnesses

round j + 1 il

@ All correct processes send (echo,p,m,) by
phase k + 1

@ Since there are at least n— f correct processes,
all correct processes will accept(p,m,r) by
phase k + 1 (round 2j or 2j +1)

