
Paxos
Always safe

Live during periods
of synchrony

Leader (primary)
responsible for
proposing the
consensus value

Features Dijkstra as
a cheese inspector

Paxos
Always safe

Live during periods
of synchrony

Leader (primary)
responsible for
proposing the
consensus value

Features Dijkstra as
a cheese inspector

Somewhat popular…
Part-time Parliament [L98]

Frangipani [TML97]

Byzantine Paxos [CL99]

Disk Paxos [GL00]
Deconstructing Paxos [BDFG01]
Reconstructing Paxos [BDFG01]
Active Disk Paxos [CM02]
Separating Agreement & Execution
[YMAD 03]
Byzantine Disk Paxos [ACKM04]
Fast Byzantine Paxos [MA05]
Fast Paxos [L05]
Hybrid Quorums [CMLRS06]
Chubby [B06]
Paxos Register [LCAA07]
Zyzzyva [KADCW07]
....

Processes are competing to write a value
in a write-once register

To learn the final value:

The Game of Paxos

Read Write

1. Push the read button and examine the token
! that falls into the tray

Value dial

2. If the token is green, GAME OVER - the final
! value of the register is stamped on the token!

va
lue

3. ! ! ! ! ! !
! ! place the token in the slot,
! !

va
lue

3. If the token is red and stamped with a value,

set the dial to the same value, and
push the write button

Processes are competing to write a value
in a write-once register

To learn the final value:

The Game of Paxos

Read Write

1. Push the read button and examine the token
! that falls into the tray

Value dial

2. If the token is green, GAME OVER - the final
! value of the register is stamped on the token!

3. ! ! ! ! ! !
! ! place the token in the slot,
! !

3. If the token is red and stamped with a value,

set the dial to the same value, and
push the write button

4. ! ! ! ! ! !
! ! place the token in the slot,
! !

4. If the token is red and not stamped,

set the dial to any value, and
push the write button

Quorum Systems

Given a set of servers

! a quorum system is a set such that

Each in is a quorum

U , |U| = n

Q ⊆ 2
U

∀Q1, Q2 ∈ Q : Q1 ∩ Q2 $= ∅

Q Q

A R/W Register

store at each server
a pair(v, ts)}servers

x

A R/W Register

store at each server
a pair(v, ts)

x

Write
Ask servers in some for their
Set any previous
Update some with

Q ts

(x, d)

tsc > max({ts}∪ tsc)
(d, tsc)Q′

A R/W Register

store at each server
a pair(v, ts)

x

Write
Ask servers in some for their
Set any previous
Update some with

Q ts

(x, d)

tsc > max({ts}∪ tsc)
(d, tsc)Q′

Read
Ask servers in some for their
Select most recent

Q (v, ts)

(v, ts)

(x)

System Model

Universe U of servers, |U| = n
Byzantine faulty servers

modeled as a non-empty fail-prone system ! 2U
no is contained in another
some contains all faulty servers

Clients are correct (can be weakened)
Point-to-point authenticated and reliable channels

A correct process q receives a message from
another correct process p if and only if p sent it

B ∈ B

B ∈ B

B

Masking Quorum System
[Malkhi and Reiter, 1998]

A quorum system is a masking quorum
system for a fail-prone system if the

following properties hold:

M-Consistency

M-Availability

∀Q1, Q2 ∈ Q ∀B1, B2 ∈ B : (Q1 ∩ Q2) \ B1 $⊆ B2

Q

B

∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅

Dissemination
Quorum System
A masking quorum system for

self-verifying data
client can detect modification by faulty server

D-Consistency

D-Availability
∀Q1, Q2 ∈ Q ∀B ∈ B : (Q1 ∩ Q2) $⊆ B

∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅

f-threshold
Masking Quorum Systems

M-Consistency D-Consistency
∀Q1, Q2 ∈ Q : |Q1 ∩ Q2| ≥ f + 1∀Q1, Q2 ∈ Q : |Q1 ∩ Q2| ≥ 2f + 1

M-Availability D-Availability
|Q| ≤ n − f |Q| ≤ n − f

QQ

Q =

{

Q ⊆ U : |Q| =

⌈

n + 2f + 1

2

⌉}

Q =

{

Q ⊆ U : |Q| =

⌈

n + f + 1

2

⌉}

B = {B ⊆ U : |B| = f}

n n

n ≥ 4f + 1 n ≥ 3f + 1

Client c executes:

Write(d)
→ Ask all servers for their current timestamp t
← Wait for answer from |Q| different servers

!Set tsc > max({t} � any previous tsc)
→ Send (d,tsc) to all servers
← Wait for |Q| acknowledgments

Read()
→ Ask all servers for latest value/timestamp pair
← Wait for answer from |Q| different servers
 Select most recent (v,ts) for which at least f + 1 answers agree (if any)

A safe read/write protocol

verifiable

A simple observation

Client c (with current threshold f) executes:

Write(d)
→ Ask all servers for their current timestamp t
← Wait for answer from |Q| different servers

!Set tsc > max({t} � any previous tsc)
→ Send (d,tsc) to all servers
← Wait for |Q| acknowledgements

Read()
→ Ask all servers for latest value/timestamp pair
← Wait for answer from |Q| different servers
 Select most recent (v,ts) for which at least f + 1
answersagree (if any)

(Asynchronous)
Authenticated

Reliable channels

A correct process
receives a message
from another
correct process if
and only if sent it

q

p
p

A-Masking
Quorum Systems

AM-Consistency

AM-Availability

A quorum system is an a-masking quorum system for a
fail-prone system B if the following properties hold for

and :

∀B ∈ B ∃Qr ∈ Qr : B ∩ Qr = ∅

∀Qr ∈ Qr ∀Qw ∈ Qw ∀B1, B2 ∈ B

(Qr ∩ Qw) \ B1 "⊆ B2 :

Qr Qw

Q

Tradeoffs

best known . confirmable non-confirmable

self-verifying

generic

2f+13f+1

3f+14f+1

n

Tradeoffs

Lower bound: never two rows again!

best known n confirmable non-confirmable

self-verifying
and generic

3f+1 2f+1

PBFT:
A Byzantine Renaissance

Practical Byzantine Fault-Tolerance (CL99, CL00)
first to be safe in asynchronous systems
live under weak synchrony assumptions -Byzantine Paxos!
fast! PBFT uses MACs instead of public key cryptography
uses proactive recovery to tolerate more failures over
system lifetime: now need no more than failures in a
“window”

BASE (RCL 01)
uses abstraction to reduce correlated faults

f

The Setup

Asynchronous system
Unreliable channels

System Model

Always safe
Live during periods of
synchrony

System Goals

Public/Private key pairs
MACs
Collision-resistant hashes
Unbreakable

Crypto

Service

Byzantine clients
Up to Byzantine servers
 total servers

f

N >3f

The General Idea

Primary-backup + quorum system
executions are sequences of views!! ! !
clients send signed commands ! ! ! ! ! ! !
to primary of current view
primary assigns sequence ! ! ! ! ! !
!number to client’s command
primary writes sequence ! ! ! ! ! !
!number to the register !! ! ! ! !
!implemented by the quorum system ! ! !
!defined by all the servers ! ! ! ! ! !
!(primary included)

c

Primary

What could possibly
go wrong?

The Primary could be faulty!
could ignore commands; assign same sequence number to different requests; skip
sequence numbers; etc

Backups monitor primary’s behavior and trigger view changes to
replace faulty primary

Backups could be faulty!
could incorrectly store commands forwarded by a correct primary

use dissemination Byzantine quorum systems [MR98]

Faulty replicas could incorrectly respond to the client!

What could possibly
go wrong?

The Primary could be faulty!
could ignore commands; assign same sequence number to different requests; skip
sequence numbers; etc

Backups monitor primary’s behavior and trigger view changes to
replace faulty primary

Backups could be faulty!
could incorrectly store commands forwarded by a correct primary

use dissemination Byzantine quorum systems [MR98]

Faulty replicas could incorrectly respond to the client!
Client waits for matching replies before accepting responsef+1

What could possibly
go wrong?

The Primary could be faulty!
could ignore commands; assign same sequence number to different requests; skip
sequence numbers; etc

Backups monitor primary’s behavior and trigger view changes to
replace faulty primary

Backups could be faulty!
could incorrectly store commands forwarded by a correct primary

use dissemination Byzantine quorum systems [MR98]

Faulty replicas could incorrectly respond to the client!
Client waits for matching replies before accepting response

Carla Bruni could start singing!
f+1

Me, or your lying eyes?

Algorithm steps are justified by certificates

Sets (quorums) of signed messages from distinct
replicas proving that a property of interest holds

With quorums of size at least
Any two quorums intersect in at least one correct
replica
Always one quorum contains only non-faulty
replicas

2f+1

PBFT: The site map
Normal operation

How the protocol works in the absence of failures -
hopefully, the common case

View changes
How to depose a faulty primary and elect a new one

Garbage collection
How to reclaim the storage used to keep certificates

Recovery
How to make a faulty replica behave correctly again

Normal Operation

Three phases:
Pre-prepare ! assigns sequence number to request
Prepare ! ensures fault-tolerant consistent
! ! ordering of requests within views
Commit ! ensures fault-tolerant consistent
! ! ordering of requests across views

Each replica maintains the following state:
Service state
A message log with all messages sent or received
An integer representing ’s current view

i

i

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >,o,t,c
σc

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >
σc

,o,t,c

state machine operation

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >
σc

,o,t,c

timestamp

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >
client id

,o,t,c
σc

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >,o,t,c

client signature

σc

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
,v,n,d m

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m,v,n,d

View

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m,v,n,d

Sequence number

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
,v,n,d m

client’s request

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m,v,n,d

digest of m

PRE-PREPARE is well formed
 is in view
 has not accepted another PRE-PREPARE
for with a different
 is between two water-marks and
(to prevent sequence number exhaustion)

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m

Correct backup
! accepts
PRE-PREPARE if:

i

i v

i

v, n d

n L H

,v,n,d

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m,v,n,d

Each accepted PRE-PREPARE message is stored in the
accepting replica’s message log (including the Primary’s)

Prepare

Backup 1

Backup 2

Backup 3

Primary

Backup multicasts <PREPARE >

Pre-prepare phase

i σi
,v,n,d,i

Correct replica
accepts PREPARE if:

i
PREPARE is well formed
 is in view
 is between two water-marks and
i v

n L H

Prepare

Backup 1

Backup 2

Backup 3

Primary

Backup multicasts <PREPARE >

Pre-prepare phase

i σi
,v,n,d,i

Replicas that send PREPARE accept seq.# for in view
Each accepted PREPARE message is stored in the accepting
replica’s message log

n m v

Prepare Certificate
P-certificates ensure total order within views

Prepare Certificate
P-certificates ensure total order within views

Replica produces P-certificate iff its log holds:
The request
A PRE-PREPARE for in view with sequence number
 PREPARE from different backups that match the pre-
prepare

(m,v,n)

m

m v n

2f

Prepare Certificate
P-certificates ensure total order within views

Replica produces P-certificate iff its log holds:
The request
A PRE-PREPARE for in view with sequence number
 PREPARE from different backups that match the pre-
prepare

A P-certificate means that a quorum agrees with
assigning sequence number to in view

NO two non-faulty replicas with !P-certificate
! and P-certificate

(m1,v,n)
(m2,v,n)

(m,v,n)

m

m v n

2f

(m,v,n)
n m v

P-certificates
are not enough

A P-certificate proves that a majority of
correct replicas has agreed on a sequence
number for a client’s request

Yet that order could be modified by a new
leader elected in a view change

Commit

Backup 1

Backup 2

Backup 3

Primary

After collecting a P-certificate,
replica multicasts <COMMIT >

Prepare phasePre-prepare phase Commit phase

,v,n,d,ii
σi

Commit Certificate
C-certificates ensure total order across views

can’t miss P-certificate during a view change

A replica has a C-certificate if:
it had a P-certificate
log contains matching COMMIT
from different replicas (including itself)

Replica executes a request after it gets C-
certificate for it, and has cleared all requests
with smaller sequence numbers

2f+1

(m,v,n)

(m,v,n)

Reply

Backup 1

Backup 2

Backup 3

Primary

After executing request,
replica replies with

Prepare phasePre-prepare phase Commit phase Reply phase

<REPLY > ,v,t,c,i,r
σi

i

Aux armes les backups!
A disgruntled backup mutinies:

stops accepting messages (but for VIEW-CHANGE
& NEW-VIEW)
multicasts <VIEW-CHANGE >
 contains all P-Certificates known to replica

A backup joins mutiny after seeing
distinct VIEW-CHANGE messages

Mutiny succeeds if new primary collects a
new-view certificate , indicating support
from distinct replicas (including itself)

,v+1,P
σi

2f+1

V

P i

f+1

On to view :
the new primary

The “primary elect” (replica)
extracts from the new-view certificate :

the highest sequence number of any message
for which contains a P-certificate

v+1

v+1

V

V

mod Np̂

h

On to view :
the new primary

The “primary elect” (replica)
extracts from the new-view certificate :

the highest sequence number of any message
for which contains a P-certificate

v+1

v+1

V

V

mod Np̂

h

h

On to view :
the new primary

The “primary elect” (replica)
extracts from the new-view certificate :

the highest sequence number of any message
for which contains a P-certificate
two sets and :

If there is a P-certificate for in ,
! ! ! ! ! <PRE-PREPARE >
Otherwise, if but no P-certificate:
! ! ! <PRE-PREPARE >

v+1

v+1

V

V

n ≤ h

mod N

n,m V

O = O∪ ,v+1,n,m

p̂

σp̂

O N

h

N = N ∪ ,v+1,n,null
σp̂

n ≤ h

On to view :
the new primary

The “primary elect” (replica)
extracts from the new-view certificate :

the highest sequence number of any message
for which contains a P-certificate
two sets and :

If there is a P-certificate for in ,
! ! ! ! ! <PRE-PREPARE >
Otherwise, if but no P-certificate:
! ! ! <PRE-PREPARE >

 multicasts <NEW-VIEW >

v+1

v+1

V

V

n ≤ h

mod N

n,m V

O = O∪ ,v+1,n,m

p̂

σp̂

O N

h

N = N ∪ ,v+1,n,null
σp̂

p̂ ,v+1,V,O,N
σp̂

n ≤ h

On to view :
the backup

 Backup accepts NEW-VIEW message for if
it is signed properly
it contains in a valid VIEW-CHANGE messages for
it can verify locally that is correct (repeating
the primary’s computation)

Adds all entries in to its log (so did !)

Multicasts a PREPARE for each message in

Adds all PREPARE to log and enters new view

V v+1

v+1

O

O

v+1

O

p̂

Garbage Collection

For safety, a correct replica keeps in log
messages about request o until it

o has been executed by a majority of correct
replicas, and
this fact can proven during a view change

Truncate log with Certificate
Each replica periodically (after processing
requests) checkpoints state and multicasts
<CHECKPOINT >

i k

,n,d,i

Garbage Collection

For safety, a correct replica keeps in log
messages about request o until it

o has been executed by a majority of correct
replicas, and
this fact can proven during a view change

Truncate log with Certificate
Each replica periodically (after processing
requests) checkpoints state and multicasts
<CHECKPOINT >

i k

,n,d,i

last executed request
reflected in state

Garbage Collection

For safety, a correct replica keeps in log
messages about request o until it

o has been executed by a majority of correct
replicas, and
this fact can proven during a view change

Truncate log with Certificate
Each replica periodically (after processing
requests) checkpoints state and multicasts
<CHECKPOINT >

i k

,n,d,i

state’s digest

Garbage Collection

For safety, a correct replica keeps in log
messages about request o until it

o has been executed by a majority of correct
replicas, and
this fact can proven during a view change

Truncate log with Stable Certificate
Each replica periodically (after processing
requests) checkpoints state and multicasts
<CHECKPOINT >
 CHECKPOINT messages are a proof of the
checkpoint’s correctness

i k

2f+1

,n,d,i

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >,v+1,n,s,C,P,i
σi

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >,v+1,n,s,C,P,i
σi

sequence number of
last stable checkpoint

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >,v+1,n,s,C,P,i
σi

last stable checkpoint

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >,v+1,n,s,C,P,i
σi

stable certificate for s

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >
σi

,v+1,n,s,C,P,i

P certificates for requests
with sequence number > n

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >

 multicasts

<NEW-VIEW >

,v+1,n,s,C,P,i
σi

p̂

,v + 1,n,V,O,N σp̂

sequence number of
last stable checkpoint

Citius, Altius, Fortius:
Towards deployable BFT

Reducing the costs of BFT replication

Addressing confidentiality

Reducing complexity

Reducing the costs of
BFT replication

Who cares? Machines are cheap...

Replicas should fail independently in software,
not just hardware

How many independently failing
implementations of non-trivial services do
actually exist?

Back the old conundrum

. . .

A: voter
and client
share fate!

Not so fast...

V

Not so fast...

V

Not so fast...

V

(

No confidentiality!

Rethinking
State Machine Replication
Not Agreement + Order

but rather Agreement on Order + Execution

Rethinking
State Machine Replication
Not Agreement + Order

but rather Agreement on Order + Execution

Benefits:

3f+1 state machine replicas
2f+1

Rethinking
State Machine Replication
Not Agreement + Order

but rather Agreement on Order + Execution

Benefits:

3f+1 state machine replicas

Replication hurts confidentiality

2f+1

helps

Separation reduces
replication costs

Not all nodes are created equal!
Nodes in E: expensive

(different across applications and within same application)
Nodes in A: cheap

(simple and reusable across applications)

A E

V Execution
ClusterAgreement

Cluster 2f+1
3g+1

Separation enables
confidentiality

Three design principles:
E

A

Separation enables
confidentiality

Three design principles:

1. Use redundant filters for
fault tolerance

2. Restrict communication

3. Eliminate nondeterminism

E

A
h+1

PF h+1

The Privacy Firewall
(h+1)2-filter grid tolerates h
Byzantine failures
A filter only communicates with
filters immediately above or below
Each filter checks both reply and
request certificates
Safe
h+1 rows → one is correct

Live
h+1 columns → one is correct

Restricts nondeterminism
threshold cryptography for replies
cluster A locks rsn
controlled message retransmission

h+1

h+1

PF

V

E

A

Inside the PF
(h+1)2-filter grid tolerates h
Byzantine failures
A filter only communicates with
filters immediately above or below
Each filter checks both reply and
request certificates
Safe
h+1 rows → one is correct

Live
h+1 columns → one is correct

Restricts nondeterminism
threshold cryptography for replies
cluster A locks rsn
controlled message retransmission

h+1

V

h+1

PF

E

A

Inside the PF
(h+1)2-filter grid tolerates h
Byzantine failures
A filter only communicates with
filters immediately above or below
Each filter checks both reply and
request certificates
Safe
h+1 rows → one is correct

Live
h+1 columns → one is correct

Restricts nondeterminism
threshold cryptography for replies
cluster A locks rsn
controlled message retransmission

h+1

h+1

V

PF

E

A

Inside the PF
(h+1)2-filter grid tolerates h
Byzantine failures
A filter only communicates with
filters immediately above or below
Each filter checks both reply and
request certificates
Safe
h+1 rows → one is correct

Live
h+1 columns → one is correct

Restricts nondeterminism
threshold cryptography for replies
cluster A locks rsn
controlled message retransmission

h+1

h+1

V

PF

E

A

h+1

Inside the PF
(h+1)2-filter grid tolerates h
Byzantine failures
A filter only communicates with
filters immediately above or below
Each filter checks both reply and
request certificates
Safe
h+1 rows → one is correct

Live
h+1 columns → one is correct

Restricts nondeterminism
threshold cryptography for replies
cluster A locks rsn
controlled message retransmission

h+1

h+1

PF

V

E

A

Privacy Firewall guarantees
A EPF

=
V

Correct
node

 Output-set confidentiality
! Output sequence through correct cut is a legal
! sequence of outputs produced by a correct node
! accessed trough an asynchronous, unreliable link

correct cut

asynchronous
and unreliable

An exciting decade
State machine replication

Practical Byzantine Fault Tolerance

Reuse of existing (non-deterministic) implementations [SOSP 01]

Reduced replication cost [SOSP 03]

Low-overhead confidentiality [SOSP 03]

High throughput [DSN 04]

Applications: Farsite[OSDI 02], Oceanstore [FAST 03]

Quorums
Fault Scalability (Q/U) [SOSP 05]

Improved performance under contention (HQ) [OSDI 06]

