
Zyzzyva

Why then another
BFT protocol?

Complex decision tree hampers BFT adoption

High
contention?

Low
latency?

Replicas
! 5f+1?

NoYes

Yes No

Yes No

PBFT

PBFT

Q/UHQ

“Simplify, simplify”
H.D. Thoreau

High
contention?

Low
latency?

Replicas
! 5f+1?

NoYes

Yes No

Yes No

PBFT

PBFT

Q/UHQ

“Simplify, simplify”
H.D. Thoreau

One protocol that matches or tops its competitors in

✓ latency ✓throughput ✓cost of replication

BFT?

Yes

Zyzzyva

Replica coordination

All correct replicas execute the same
sequence of commands

For each received command , correct replicas:

Agree on ’s position in the sequence

Execute in the agreed upon order

Replies to the client

c

c

c

How it is done now

Command

 Agreement

Voter

 Execution

How Zyzzyva does it

Command

Voter

 Execution Agreement

Stability

RSM Safety

Correct clients only
process replies to
stable commands

 RSM Liveness

All commands issued by
correct clients eventually
become stable and elicit a
reply

A command is stable at a replica once its
position in the sequence cannot change

Enforcing safety

RSM safety requires:

Correct clients only process replies to stable
commands

...but RSM implementations enforce instead:

Correct replicas only execute and reply to
commands that are stable

Service performs an output commit with each
reply

Speculative BFT:
“Trust, but Verify”

Insight: output commit at the client," " "
" " not at the service!

Replicas execute and reply to a command
without knowing whether it is stable

trust order provided by primary

no explicit replica agreement!

Correct client, before processing reply, verifies
that it corresponds to stable command

if not, client takes action to ensure liveness

Verifying stability
Necessary condition for stability in Zyzzyva:
A command can become stable only if a majority of
correct replicas agree on its position in the sequence

Client can process a response for iff:
a majority of correct replicas agrees on ’s position
the set of replies is incompatible, for all possible
future executions, with a majority of correct
replicas agreeing on a different command holding
" ’s current position

c

c

c

c

Command History

 = a hash of the sequence of the first
commands executed by replica

On receipt of a command from the primary,
replica appends to its command history

Replica reply for includes:
the application-level response
the corresponding command history

Hi,k k

i

c

c

c

Case 1: Unanimity

Client processes response if all replies match:

Voter

c

〈c, k〉

〈c, k〉

〈c, k〉

〈r1, H1,k〉

〈r2, H2,k〉

〈r3, H3,k〉

〈r4, H4,k〉

r1 = . . . = r4∧H1,k = . . . = H4,k

Safe?

✓ A majority of correct replicas agrees on ’s
position (all do!)

If primary fails

New primary determines k-th command by
asking replicas for their

c

n−f H

Safe?

✓ A majority of correct replicas agrees on ’s
position (all do!)

If primary fails

New primary determines k-th command by
asking replicas for their

c

n−f H

c

c c

c

Safe?

✓ A majority of correct replicas agrees on ’s
position (all do!)

If primary fails

New primary determines k-th command by
asking replicas for their

c

n−f H

c

c c

x

Safe?

✓ A majority of correct replicas agrees on ’s
position (all do!)

If primary fails

New primary determines ’s position by
asking replicas for their

✓ It is impossible for a majority of correct
replicas to agree on a different command for
" ’s position

c

c

n−f H

c

Case 2: A majority of
correct replicas agree

At least replies match

Voter

c

〈c, k〉

〈c, k〉

〈c, k〉

〈r1, H1,k〉

〈r2, H2,k〉

〈r3, H3,k〉

2f+1

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines k-th command by
asking replicas for their

c

n−f H

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c

c c

x

k

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c

c

x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c

c

x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

x

x

x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c

c c

x

k

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

x

x

x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines k-th command by
asking replicas for their

๏ Not safe!

c

n−f H

Case 2: A majority of
correct replicas agree

Client sends to all a commit certificate
containing matching histories

Voter

c

〈c, k〉

2f+1

〈ri, Hi,k〉

CC ≡ 〈H1,k, . . . , H4,k〉

Case 2: A majority of
correct replicas agree

Client processes response if it receives
at least acks

Voter

c

〈c, k〉

〈r1, H1,k〉

2f+1

CC
acks

Safe?
Certificate proves that a majority of correct
replicas agreed on ’s position

If primary fails

New primary determines k-th command by
contacting replicas

This set contains at least one correct
replica with a copy of the certificate

✓ Incompatible with a majority backing a
different command for that position

n−f

c

Stability and
command histories

Stability depends on matching command histories

Stability is prefix-closed:

If a command with sequence number is
stable, then so is every command with
sequence number

n

n
′
< n

Case 3: None of the above

Fewer than replies match

Clients retransmits to all replicas-hinting
primary may be faulty

Voter

c

〈c, k〉

〈c, k〉

〈c, k〉

〈r1, H1,k〉

〈r2, H2,k〉

2f+1

c

Zyzzyva recap

Output commit at the client, not the service

Replicas execute requests without explicit
agreement

Client verifies if response corresponds to
stable command

At most 2 phases within a view to make
command stable

The Case of the
Missing Phase

Client processes response if it receives at least""
" matching replies after commit phase

Command

Voter

Pre-prepare Prepare Commit

f+1

The Case of the
Missing Phase

Unanimity

Command

Voter

Pre-prepare

The Case of the
Missing Phase

Majority

Command

Voter

Pre-prepare Prepare

Majority

The Case of the
Missing Phase

Command

Voter

Pre-prepare Prepare Commit

Where did the third phase go?

Why was it there to begin with?

BFT

View-Change:
replacing the primary

In PBFT, a replica that suspects primary is faulty
goes unilaterally on strike

Stops processing messages in the view
Third “Commit” phase needed for liveness

View-Change:
replacing the primary

In PBFT, a replica that suspects primary is faulty
goes unilaterally on strike

Stops processing messages in the view
Third “Commit” phase needed for liveness

In Zyzzyva, the replica goes on “Technion strike”
Broadcasts “I hate the primary” and keeps on working
Stops when sees enough hate mail to ensure all
correct replica will stop as well

Extra phase is moved to the uncommon case

Faulty clients
can’t affect safety

Faulty clients cannot create inconsistent
commit certificates

Clients cannot fabricate command
histories, as they are signed by replicas

It is impossible to generate a valid commit
certificate that conflicts with the order of
any stable request

Stability is prefix closed!

“Olly Olly Oxen Free!”
or, faulty clients can’t affect liveness

“Olly Olly Oxen Free!”
or, faulty clients can’t affect liveness

Faulty client omits to send CC for

Replicas commit histories are unaffected!

Later correct client who establishes is
stable “frees” as well

Stability is prefix closed

c

c

c
′
> c

Optimizations

Checkpoint protocol to garbage collect histories

Optimizations include:

Replacing digital signatures with MAC

Replicating application state at only
replicas

Batching

Zyzzyva5

2f+1

Batching

Batching

Only one history digest for all requests in
the batch-amortizes crypto operations

Throughput

Best
case

PBFT 62K

QU 24K

HQ 15K

Zyzzyva 80K

Throughput

Best
case

Faulty
Client

Client
Flood

Faulty
Primary

Faulty
Replica

PBFT 62K 0 crash 1k 250

QU 24K 0 crash NA 19K

HQ 15K NA 4.5K NA crash

Zyzzyva 80K 0 crash crash 0

BFT: From Z To A

Zyzzyva

BFT: From Z To A

Aardvark
Making Byzantine

Fault Tolerant Systems
Tolerate Byzantine Faults

Paved with
good intentions

No BFT protocol should rely on synchrony for safety

FLP: No consensus protocol can be both safe and live in an
asynchronous system

All one can guarantee is eventual progress

Paved with
good intentions

No BFT protocol should rely on synchrony for safety

FLP: No consensus protocol can be both safe and live in an
asynchronous system

All one can guarantee is eventual progress

“Handle normal and worst case separately as a rule,
because the requirements for the two are quite different:
 the normal case must be fast;
 the worst case must make some progress”
-- Butler Lampson, “Hints for Computer System Design”

Maximize performance when

the network is synchronous

all clients and servers behave correctly

While remaining

safe if at most servers fail

eventually live

The road more traveled

f

The Byzantine Empire
(565 AD)

Synchronous,
no failures

Synchronous,
with faults!

Asynchronous

The Byzantine Empire
(circa 2009 AD)

Synchronous,
with or without

failures

Asynchronous

Misguided

Dangerous

Futile

Maximize performance when

the network is synchronous

all clients and servers behave correctly

While remaining

safe if at most servers fail

eventually live

Recasting the problem

f

Recasting the problem

Misguided
it encourages systems that fail to deliver BFT

Dangerous

Futile

Recasting the problem

Misguided
it encourages systems that fail to deliver BFT

Dangerous
it encourages fragile optimizations

Futile

Recasting the problem

Misguided
it encourages systems that fail to deliver BFT

Dangerous
it encourages fragile optimizations

Futile
it yields diminishing return on common case

Build the system around execution path
that:

provides acceptable performance across
the broadest set of executions

it is easy to implement

it is robust against Byzantine attempts
to push the system away from it

BFT: a blueprint Revisiting
conventional wisdom

Signatures are expensive - use MACs

View changes are to be avoided"

Hardware multicast is a boon

Revisiting
conventional wisdom

Signatures are expensive - use MACs
Faulty clients can use MACs to generate ambiguity

View changes are to be avoided

Hardware multicast is a boon

Big MAC Attack

c

c

c

c

c

c

Big MAC Attack

cc

c c

c

c

Big MAC Attack
c

Faulty Client

c

c

Faulty Primary

c

Big MAC Attack

request
submission

primary
orders
request

replicas agree on
the next request

replicas respond
to the client

request
submission

primary
orders
request

replicas agree on
the next request

replicas respond
to the client

primary
orders
request

execut
e the

request

request
submission

“primary” orders request replicas respond
to the client

replicas agree on
the next request

view
change

execut
e the

request

PBFTZyzzyvaQ/UHQ

request
submission

replicas agree on
the next request

replicas respond
to the client

“primary” orders request

view change

execute
the

request

Revisiting
conventional wisdom

Signatures are expensive - use MACs
Faulty clients can use MACs to generate ambiguity
Aardvark requires clients to sign requests

View changes are to be avoided

Hardware multicast is a boon

Slow Primary

. . ..

Adaptive View Changes

Time

Required Throughput

Observed Throughput

Th
ro

ug
hp

ut

Revisiting
conventional wisdom

Signatures are expensive - use MACs
Faulty clients can use MACs to generate ambiguity
Aardvark requires clients to sign requests

View changes are to be avoided
Aardvark uses regular view changes to maintain
high throughput despite faulty primaries

Hardware multicast is a boon

Revisiting
conventional wisdom

Signatures are expensive - use MACs
Faulty clients can use MACs to generate ambiguity
Aardvark requires clients to sign requests

View changes are to be avoided
Aardvark uses regular view changes to maintain
high throughput despite faulty primaries

Hardware multicast is a boon
Aardvark uses separate work queues for clients
and individual replicas

Throughput

Best
case

Faulty
Client

Client
Flood

Faulty
Primary

Faulty
Replica

PBFT 62K 0 crash 1k 250

QU 24K 0 crash NA 19K

HQ 15K NA 4.5K NA crash

Zyzzyva 80K 0 crash crash 0

Aardvark 39K 39K 7.8K 37K 11K

BAR Protocols
for MAD Services

Lorenzo Alvisi
University of Texas at Austin

How to build a service without an
a priori guarantee that any node

will follow the protocol?

 "We were put on this Earth to help others.
 Why others were put here is beyond me."

 -W. H. Auden

Dude, back up my files?
Sure dude. Mine?

Sure dude.

Dude, I downloaded
some MP3s; had

to delete your data.

Dude.

Dude my disk crashed.

Cloud, back up my files?
Yes sir. Just $10/mo

Excellent.

Our servers are
currently unavailable

Dude.

Cloud my disk crashed.

 "We were put on this Earth to help others.
 Why others were put here is beyond me."

 -W. H. Auden

MAD Systems
Multiple Administrative Domain services

Nodes controlled by different entities

Challenges
Nodes may fail

How do you build protocols when nodes may fail in arbitrary ways?

Black box
How do you build protocols when some nodes are black boxes whose
internals are unknown?

Competing interests
How do you build protocols when nodes may have an incentive to
cheat?

Who’s to blame

Edmund Wong

Lorenzo Alvisi

Harry Li
(Facebook)

Mike Dahlin

Allen Clement
(MPI SWS)

Jean-Philippe
Martin (MSR)

Examples

P2P Services
Just TRB [DSN08]

BAR Backup [SOSP05]

BAR Gossip [OSDI06]

Flightpath Live Streaming [OSDI08]

Cloud Storage
SafeStore [USENIX07]

Depot [OSDI10]

This Talk

BAR model

BAR Services
Flightpath (P2P live streaming)

Open Questions

How to build a service without an
a priori guarantee that any nodes

will follow the protocol?

Disk crash, network failure,
machine crash, etc.

Storage
Provider()

PUT(k,)

GET(k)

Failures 1: Nodes Can Break

Arbitrary Failures:
Bugs, fire, flood, operator error

malicious user, malware, ...

Storage
Provider()

PUT(k,)

GET(k)

Failures 1: Nodes Can Break

Failures 2: Selfishness

Rational “failure”
Minimize work, maximize gain

Dude, I downloaded
some MP3s; had

to delete your data.

Sir, although we
normally maintain 17
redundant copies of
data, as the SLA
indicates, in some
circumstances...

Byzantine Model

Tolerates arbitrary deviations from specification

Limits number of faulty nodes

e.g. Agreement requires

Assumes all other nodes are correct

f <n/3

f

Byzantine Model

Tolerates arbitrary deviations from specification

Limits number of faulty nodes

e.g. Agreement requires

Assumes all other nodes are correct

Inappropriate when all nodes
may deviate when in their interest

f <n/3

f

Rational Model

All nodes are rational

Rational nodes can deviate selfishly from their
specification

Does not tolerate Byzantine behavior
Broken nodes may violate assumptions
Malicious nodes may cause unbounded damage

Inappropriate when some node
may deviate against its interest

BAR: A Failure Model for
Cooperative Services

Three classes of nodes

Byzantine: Deviate in any way, for any reason
Typically bound number of Byzantine nodes

Altruistic: Don’t deviate (obedient)

Rational: Deviate iff in their interest
Typically no bound on number of Rational nodes

BAR Research Agenda
1. New model

Develop a model in which it is possible to prove
properties about MAD services

2. Is the model usable?
Understand how to simplify the development of MAD
services in the new model

3. Is the model practical?
Demonstrate that MAD services developed under the
new model can be efficient, effective

Outline

BAR model

BAR Services
Flightpath (P2P live streaming)

Open Questions

How to build a service without an
a priori guarantee that any nodes

will follow the protocol?

P2P Live Streaming

Examples: Internet radio, NCAA tournament, web
concerts, Internet TV

Practical challenges:
Deliver updates by deadline
Minimize jitter
Be mindful of bandwidth requirements
Tolerate churn
Handle Byzantine and rational peers

P2P Streaming Setup
Broadcaster

Peers Peers

P2P Streaming Setup
Broadcaster

Broadcaster

Peers

Rational Peers Don’t Share! Rational Peers Don’t Share!
Broadcaster

Peers

?

?
?

Reliability Degrades...

Traditional Gossip

...and Altruistic nodes suffer

Traditional Gossip

Data stream

Percentage of peers acting rationally

Av
g.
 u

pl
oa

d
b/

w
 o

f
al
tr

ui
st

ic
 p

ee
r

(K
bp

s)

BAR Gossip

First BAR tolerant gossip protocol

Design game for Nash equilibrium

No peer gains from unilateral deviation

Benefit: Delivering stream packets

Cost: Bandwidth

Key protocol: Balanced Exchange

Design Principles
Restrict choice

Eliminate non-determinism

Evict provably deviant peers

Balance costs

Costdivergence = Costobedience

Delay gratification

Postpone payoff

Balanced Exchange
is a Nash Equilibrium

Theorem: A balanced exchange is incentive
compatible for strategies that maximize the
number of useful updates received in that
exchange

Partner selection

History exchange

Update exchange

(1) Partner Selection

Q: How do we limit a peer to one
 uniformly selected partner per
 round?

A B

C

D

E

Problem: Gossip relies on randomness
 Rational node may

 Choose nearby partner
 Choose well-connected partner
 Choose multiple partners
 ...

C

D

E

(1) Partner Selection

A: Restrict Choice
 Verifiable pseudo-random
 partner selection

A’s PRNG seed in round:

Retains strength of randomness:
Uniform selection of partners
Unpredictability

Supports Nash equilibrium
Unilateral deviation not useful

r : 〈r〉A

A B
check current round
check selection

〈〈r〉A, . . . 〉A

(2) History Exchange

Negotiate update exchange
Deterministic function of histories

Problem: Strategic client might
 Under-report
 Over-report
 Etc.

A B
〈〈r〉A,#HA〉A

〈HA〉A

〈HB〉B

Q: How do we handle a client lying
! about its history?

(2) History Exchange

Correct reporting maximizes
useful exchange

Under-reporting decreases
number of useful updates
exchanged

Over-reporting risks eviction

A: Restrict Choice
Client commits to a history before
discovering partner’s history

A B
〈〈r〉A,#HA〉A

〈HA〉A

〈HB〉B

(3) Briefcase Exchange

A BHistory exchangeQ: How do we encourage a rational
 client to send a briefcase?

〈id
s
′
,
up
ds
′
〉B

〈ids
,upds

〉
A

A2: Fair enough exchange

A1: Fair exchange is impossible*

* Without a trusted third party
B. Garbinato and I. Rickebusch. Impossibility results on fair
exchange. Tech. Rep. DOP-20051122, Université de
Lausanne, Distributed Object Programming Lab.

(3) Briefcase Exchange

A B

A: Defer gratification
 Client gives key only after
 swapping briefcases

History exchangeQ: How do we encourage a rational
 client to send a briefcase?

〈id
s
′
,
up
ds
′
〉B

〈ids
,upds

〉
A

Valid Briefcase Exchange

Briefcase contains ids of
updates and encrypted updates
Inconsistencies risk eviction
Decryption key is reproducible
by broadcaster

Q: How do we encourage a rational
 client to send only appropriate
 briefcases?

A: Restrict choice
 Hold client accountable for contents

A BHistory exchange

〈id
s
′
,
up
ds
′
〉B

〈ids
,upds

〉
A

Key Exchange

A BHistory exchange

Q: How do we encourage a rational
 client to send the appropriate key? Briefcase exchange

〈
AB 〉

A 〈
BA

〉B

Key Exchange

Rational client minimizes cost
by sending key

B
Q: How do we encourage a rational
 client to send the appropriate key?

A: Balance costs
 Repeated Key Requests

A BHistory exchange

Briefcase exchange

〈
AB 〉

A〈
AB 〉

A〈
AB 〉

A

〈 BA〉B

Key Exchange

Rational client minimizes cost
by sending key
Rational client proactively sends
key

Q: How do we encourage a rational
 client to send the appropriate key?

A: Balance costs
 Repeated Key Requests

A BHistory exchange

Briefcase exchange

〈
AB 〉

A 〈
BA

〉B

Balanced Exchange

In each round

Select a partner

Exchange histories

Trade equal number of updates

Exchange briefcases

Exchange keys

pester to nudge unresponsive Rational nodes

} fair enough
exchange

Reliability is way up!

Traditional Gossip

99%Balanced exchange

“Obedience sums up
 our entire duty”Hosea Ballou

Restrict choice Deterministic partner
 Deterministic items

Static membership
Inflexible communication
patterns

Balance costs Fixed message sizes
 Even exchange

Extra overheads
Garbage messages

Defer gratification Chain steps of protocol

Prove Equilibrium “Balanced exchange is
Nash”

Micro-manage protocol
Ignore cross-round
strategies

Jitterbug

% rounds jittered

%
 o

f
pe

er
s

Balanced Exchange

1 anomaly per minute

“Obedience sums up
 our entire duty”Hosea Ballou

Restrict choice Deterministic partner
 Deterministic items

Static membership
Inflexible communication
patterns

Balance costs Fixed message sizes
 Even exchange

Extra overheads
Garbage messages

Defer gratification Chain steps of protocol

Prove Equilibrium “Balanced exchange is
Nash”

Micro-manage protocol
Ignore cross-round
strategies

Average Bandwidth

Kbps

%
 o

f
pe

er
s

Balanced Exchange
Average

da
ta

 s
tr

ea
m

Peak Bandwidth

51
2

Kb
ps Balanced Exchange

Kbps

%
 o

f
pe

er
s

da
ta

 s
tr

ea
m

Peak

Restrict choice Deterministic partner
 Deterministic items

Static membership
Inflexible communication
patterns

Balance costs Fixed message sizes
 Even exchange

Extra overheads
Garbage messages

Defer gratification Chain steps of protocol

Prove Equilibrium “Balanced exchange is
Nash”

Micro-manage protocol
Ignore cross-round
strategies

“Obedience sums up
 our entire duty”Hosea Ballou

BAR Research Agenda
1. New model

Develop a model in which it is possible to prove
properties about MAD services

2. Is the model usable?
Understand how to simplify the development of MAD
services in the new model

3. Is the model practical?
Demonstrate that MAD services developed under the
new model can be efficient, effective

Obedience vs Choice
Nash --> Nash

Deviate only if doing so increases utility by
more than

Similar to BAR Gossip
Partner selection --> choose “good” partner
History exchange --> prioritize important updates
Briefcase exchange --> allow limited imbalance

Flightpath

ε−

ε

The Power of Choice

BAR Gossip
One pre-determined
partner for each
round

?
Flightpath

One of O(logN)
buckets per round
Choose a partner from
bucket
Flightpath specifies heuristics

BAR Gossip
Node failure -->
! Miss round

The Power of Choice

Flightpath
Node failure -->
! Pick another node

Flightpath
Node overload -->
! Pick another node

BAR Gossip
Node overload -->
! Exceed max BW

The Power of Choice

The Power of Choice

BAR Gossip
Fall behind -->
! Too bad

Flightpath
Fall behind -->
! Initiate extra
! exchanges

Jitterdämmerung

Balanced Exchange
FlightPath%

 o
f

pe
er

s

% rounds jittered

Average Bandwidth

Kbps

%
 o

f
pe

er
s

Balanced Exchange
da

ta
 s

tr
ea

m

FlightPath

Peak Bandwidth

51
2

Kb
ps Balanced Exchange

Kbps

%
 o

f
pe

er
s

da
ta

 s
tr

ea
m

FlightPath

Peak

50 join 50

Rounds

Av
er

ag
e

Ba
nd

w
id

th
 (K

bp
s)

join event new epoch

100 join 50

Rounds

Av
er

ag
e

Ba
nd

w
id

th
 (K

bp
s)

join event new epoch

200 join 50

Rounds

Av
er

ag
e

Ba
nd

w
id

th
 (K

bp
s)

join event new epoch

400 join 50

Rounds

Av
er

ag
e

Ba
nd

w
id

th
 (K

bp
s)

join event new epoch

peak b/w

Approximate Equilibrium
Nash

Peer cannot gain by deviating
Extra trades, ignore newly joined, nodes, etc...
Bet: a Flightpath peer can gain by deviating

 Nash
Peer cannot gain much by deviating

Increase benefit (i.e decrease jitter)
Flightpath already has minimal jitter

Reduce cost (i.e. reduce bandwidth)
Rational peer must pay at least
for updates

ε−

x
x

FlightPath’s .

c " 3

Benefit to cost ratio (c)

FlightPathε

ε

Limitations, Open Questions
Theory

Refine solution concepts
E.g., Weaken assumption that rational nodes are “Risk averse”

Altruism in BAR systems [DISC ‘10]

Altruism encourages free riders
Free riders encourage more free riders

Simplify proofs, protocol design
Rules of thumb -- balance cost, restrict choice, ...
 Nash helps a lot!

Practice
Additional applications
Cloud vs p2p

ε−

Conclusions

Modern distributed systems are MAD
Fault-tolerance and game theory must come together
to bring about some sanity

BAR is a compelling model for reasoning about
robust MAD systems

Solid theoretical foundation
Supports practical implementations of diverse systems

Many open challenges
If you build it, they will come...

Keeping the A in BAR

The amazingly shrinking...

B RA
 Current BAR protocols

neither depend on nor leverage
altruistic nodes

Good will
considered harmful

Unselfishness encourages free riders

Free riders encourage more free riders

“Be a hero” does not scale...

 File sharing on Gnutella
(2000)

The top ____ hosts Share ____ of all
files1% 37%

5% 70%

10% 87%

15% 94%

20% 98%

25% 99%

34% 100%

From E. Adar and B. Huberman, “Free Riding on Gnutella”, First Monday, 2000.

66% of users are
selfish free-riders

but
34% of users are
giving away their
content freely!

34% 100%

The top ___ hosts Share ___ of all files

34% 100%

 File sharing on Gnutella
(2005)

The top ____ hosts Share ____ of all
files

15% 100%

From E. Adar and B. Huberman, “Free Riding on Gnutella”, First Monday, 2000.

66% of users are
selfish free-riders

but
34% of users are
giving away their
content freely!

The top ___ hosts Share ___ of all files

In 2005, free-riders
had grown to 85%!

What is the role
of altruism?

Altruism is both
necessary and sufficient

to trigger rational cooperation

Cooperation in P2P services

Exchange 1

Exchange 2

Exchange 3

Exchange 4

Why contribute at all?

Because doing so provides future benefits
(or lower costs).!

Exchange 1

Exchange 2

Exchange 3

Exchange 4

...but how about
the last exchange?

Exchange 3

Last exchange

Exchange 1

Exchange 2

?

?

What incentive is there for a participant
to contribute?

How to induce
rational cooperation

Ignorance
infinite horizon

Apathy
no deviation unless significant gain

Threat
pester

P1 P2

Exchange 3

Exchange 1

Exchange 2

Last exchange

Modeling the last exchange

Last exchange

has a contribution wants it

P1 P2

Modeling the last exchange

Modeling the last exchange

Last exchange

can either
contribute or
do nothing

In response, can either
pester P1 or
do nothing

Round KRound K- 1Round 1 Round 2 ...

A round

P1 P2

Network loss
(private signals)

Each player always observes own actions accurately

With probability , player observes peer’s action
accurately

With probability , player observes peer do nothing

X

1−ρ

ρ

What did
P1 do?

P1 P2

Utilities (for rational P1 and P2)

Contributing has positive cost.
Being pestered has positive cost.

Minimize contributing.

Minimize receiving pester.

Pestering has positive cost.
Receiving contribution has positive
cost and one-time positive benefit.

Minimize pestering.

Minimize receiving contribution
(but wants it at least once).

P1

Benefit of contribution >> cost of pestering + cost of recv. contribution

P1 P2

Building the Equilibrium
 Pi starts with an initial belief that P-i is of a
given type (B, A, R)

 Pi updates its beliefs using Bayes rule depending
on what it observes

Rational players don’t expect to be able to affect
the strategy of a Byzantine player

B
Do nothing with

probability independent
of peer’s actions

A
Follow the protocol

R
Follow if no benefit

from deviating

Altruism is necessary
for rational cooperation
Theorem 1. In a bounded game, there exists no
equilibrium in which a rational P1 contributes or a
rational P2 pesters

Altruism is necessary
for rational cooperation
Theorem 1. In a bounded game, there exists no
equilibrium in which a rational P1 contributes or a
rational P2 pesters

Proof (sketch)
Some last round and

P2 never pesters after P1 stops contributing:

P1 never contributes after P2 stops pestering:

(at most,)

P1 never contributes and P2 never pesters

tc tp

tc ≥ tp

tp > tc

tp = tc+1

Altruism is necessary
for rational cooperation
Theorem 1. In a bounded game, there exists no
equilibrium in which a rational P1 contributes or a
rational P2 pesters

Theorem 2. In an unbounded game in which a
rational player believes that there exists some
fraction of Byzantine peers that

never contributes when playing as P1 or

always pesters when playing as P2

there exists no pure equilibrium in which a rational P1
contributes or a rational P2 pesters

Altruistic P1 contributes:
Always in the first round.
With fixed probability in subsequent rounds.

We derive conditions under which these provisions
hold in every round — except the last.

Altruism to the rescue

Rational P2 pesters if:
Prob. of altruistic P1 contributing is sufficiently high
P2’s belief that P1 is altruistic is sufficiently high.{

Pestering becomes a credible threat!

Rational P1 contribute if:
First round or pestered in previous round;
Not at end of game
Belief P2 is non-Byzantine is sufficiently high.

Altruistic P1 contribute:
 Always in the first round.
 With fixed probability in subsequent rounds.

Rational P2 pester if:
No contribution has been received; and
The last round has not been reached.

(under certain conditions)

Altruism to the rescue

Altruistic P2 pester if:
 No contribution has been received; and
 The last round has not been reached.

The cooperative equilibrium
Byzantine P1 contributes arbitrarily Byzantine P2 pesters arbitrarily.

Altruistic P1 contributes:
 Always in the first round.
 With fixed probability in
! subsequent rounds.

Altruistic P2 pesters if:
 Received no contribution
 Not reached last round

Rational P1 contributes if:
First round or pestered in
previous round
Not at end of game
Sufficient belief P2 not Byzantine.

Rational P2 pesters if:
No contribution has been received;
Last round has not been reached.

What does this all mean?

Cooperation is achieved
under realistic conditions

For example, rational peers cooperate in a
system where:

the network drops 5% of the packets

and they believe that

50% of the peers are Byzantine

fewer than 10% are altruistic

Does P1 contribute?
Expected probability of
Byzantine P2 pestering

of times contribution is sent
if P1 observes pester every round
of times contribution is sent

 observes pester every round
Byzantine P2 pestering

Net loss = 0.05 Net loss = 0.25

0.1 14 17

0.5 5 9

1.0 2 3

P1’s cost of sending contribution (relative to cost of recv. pester) = 2
21 rounds

P1’s initial belief that P2 is Byzantine = 0.1

The higher the expected probability,
the more likely P1 is going to

believe P2 is Byzantine if pestered

The higher the network loss
(for reasonable values),
the more forgiving P1 is.

P2’s cost of sending pester = 1
P2’s initial belief that P1 is Byzantine = 0.1 21 rounds
Benefit of receiving contribution = 104 Network loss = 0.05

When can we guarantee
that P2 will pester?

0

0.30

0.60

0.90

0 0.25 0.5 0.75 1
Prob. of altruistic P1 contributing when pestered

In
it.
 b

el
ie
fs

 in
 P

1 b
ei

ng
 a

ltr
ui

st
ic

(assuming Byzantine P1 never contribute &
rational P1 only contribute in first round)

Too much
generosity!

Not
enough

generosity!

Conclusions
Modern distributed systems are MAD

Fault-tolerance and game theory must come together to bring
about some sanity

BAR is a compelling model for reasoning about robust
MAD systems

Solid theoretical foundation
Supports practical implementations of diverse systems

Many open challenges
Collusion
More general treatment of Byzantine nodes
Altruism

If you build it, they will come...

The amazingly shrinking...

B RA
 Current BAR protocols

neither depend on nor leverage
altruistic nodes

Good will
considered harmful

Unselfishness encourages free riders

Free riders encourage more free riders

“Be a hero” does not scale...

The Last Exchange

Two peers: and

 has information of value to

 expects no future benefit from contributing
neither expects to interact with the other beyond
this exchange

How can we induce rational cooperation?

P1 P2

P1 P2

P1

How to induce
rational cooperation

Ignorance
infinite horizon

Apathy
no deviation unless significant gain

Threat
pester

How to induce
rational cooperation

Ignorance
infinite horizon

Apathy
no deviation unless significant gain

Threat
pester

credible?

Modeling the
Last Exchange

 and in a repeated sequential game

In each round
 either contributes or does nothing
 either pesters or does nothing

No free lunch: sending and receiving costs

Network loss modeled through private signals
what observes may not be what played!

P1 P2

P1

P2 (p)

(c) (n)

(n)

Pi P−i

Building the Equilibrium

 assign a belief to being of type B, A, R

 . ’s beliefs depend on what has observed

Beliefs evolve using Bayes rule

Rational players don’t expect to be able to
affect the strategy of a Byzantine player

P−iPi

Pi Pi

Altruism is necessary
for rational cooperation
Theorem 1. In a bounded game, there exists no
equilibrium in which a rational contributes or a
rational pesters

P1

P2

Altruism is necessary
for rational cooperation
Theorem 1. In a bounded game, there exists no
equilibrium in which a rational contributes or a
rational pesters

Theorem 2. In an unbounded game in which a
rational player believes that there exists some
fraction of Byzantine peers that

never contributes when playing as or

always pesters when playing as

there exists no pure equilibrium in which a rational
contributes or a rational pesters

P1

P1

P2

P2

P1

P2

Altruism to the rescue

Pestering becomes a credible threat

We derive a sufficient condition under which
! prefers to pester

The threat of pestering can lead to contribute

For every round far enough from the end of the
game, there exists a belief threshold beyond
which contributing yields a higher expected
utility

P2

P1

P1

Cooperation is achieved
under realistic conditions

For example, rational peers cooperate in a
system where:

the network drops 5% of the packets

and they believe that

50% of the peers are Byzantine

fewer than 10% are altruistic

Net benefit of contribution: 104 Net benefit of contribution: 106

The Dangers of
Excessive Generosity

0

0.17

0.33

0.50

0 0.25 0.5 0.75 1

0

0.17

0.33

0.50

0 0.25 0.5 0.75 1

0

0.17

0.33

0.50

0 0.25 0.5 0.75 1

0

0.17

0.33

0.50

0 0.25 0.5 0.75 1

0

0.17

0.33

0.50

0 10.25 0.750.5

0

0.17

0.33

0.50

0 10.25 0.750.5

0

0.17

0.33

0.50

0 10.25 0.750.5

0

0.17

0.33

0.50

0 10.25 0.750.5

Ne
tw

or
k

lo
ss

: 0
.0

5
Ne

tw
or

k
lo
ss

: 0
.2

5

50% belief peer is Byzantine

generosity

be
lie

f
in

al
tr

ui
st

icP
1

Conclusions
Modern distributed systems are MAD

fault-tolerance and game theory must come together
to bring about some sanity

BAR is a compelling model for reasoning about
robust MAD systems

it has a solid theoretical foundation
it supports practical implementations of very diverse
systems

Many, many open challenges
if you build it, they will come...

	week14
	week14.2

