
VC properties:
event ordering

Given two vectors  and  , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition: 
   Given     of   and   of   , where   

Concurrency
   Given    of   and   of   , where   

V V
′

V < V
′ ≡ (V "= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ‖ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i != j

ei pi pjej i != j

e → e
′
≡ V C(e) < V C(e′)

VC properties: 
consistency

Pairwise inconsistency
Events   of   and   of            are pairwise 
inconsistent (i.e. can’t be on the frontier of the 
same consistent cut) if and only if

Consistent Cut
A cut defined by               is consistent if and 
only if
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : (VC(eci

i )[i] ≥ VC(e
cj

j )[i])

(VC(ei)[i] < VC(ej)[i]) ∨ (VC(ej)[j] < VC(ei)[j])

(i != j)

(c1, . . . , cn)

ei pi pjej

VC properties:
weak gap detection

Weak gap detection
Given   of    and   of   , if                     
for some       , then there exists    s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)
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weak gap detection

Weak gap detection
Given   of    and   of   , if                     
for some       , then there exists    s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj
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ei pi pjej
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VC properties:
strong gap detection
Weak gap detection

Given   of    and   of   , if                       
for some       , then there exists    s.t 

Strong gap detection
Given   of    and   of   , if                     
then there exists   s.t.

VC(ei)[i] < VC(ej)[i]ei pi pjej

e
′

i

¬(ek → ei) ∧ (ek → ej)

(ei → e
′

i) ∧ (e′i → ej)

VC(ei)[k] < VC(ej)[k]
k != j ek

ei pi pjej

VCs for Causal Delivery

Each process increments the local component 
of its     only for events that are notified to 
the monitor

Each message notifying event   is timestamped 
with 

The monitor keeps all notification messages in 
a set  M

e

VC

VC(e)

Stability

Suppose     has received     from   .
When is it safe for    to deliver    ?

p0 pjmj

p0 mj

Stability

Suppose     has received     from   .
When is it safe for    to deliver    ?

There is no earlier message in 

p0 pjmj

p0 mj

M

∀m ∈ M : ¬(m → mj)



Stability

Suppose     has received     from   .
When is it safe for    to deliver    ?

There is no earlier message in 

There is no earlier message from 

p0 pjmj

p0 mj

pj

M

TS(mj)[j] = 1+ no. of   messages delivered by pj p0

∀m ∈ M : ¬(m → mj)

Stability

Suppose     has received     from   .
When is it safe for    to deliver    ?

There is no earlier message in 

There is no earlier message from 

There is no earlier message    from   , 

p0 pjmj

p0 mj

m
′′

k

pj

pk k != j

M

TS(mj)[j] = 1+ no. of   messages delivered by pj p0

see next slide...

∀m ∈ M : ¬(m → mj)

Checking for     .     

Let     be the last message    delivered from

By strong gap detection,     exists only if

Hence, deliver    as soon as  

m
′

k p0 pk

m
′′

k

m
′′

k

TS(m′

k)[k] < TS(mj)[k]

∀k : TS(m′

k)[k] ≥ TS(mj)[k]

mj

The protocol

   maintains an array             of counters

                   where     is the last 
message delivered from 

DR3: Deliver   from    as soon as both of the 
following conditions are satisfied:

2.

p0 D[1, . . . , n]

D[i] = TS(mi)[i] mi

pi

D[j] = TS(m)[j] − 1

D[k] ≥ TS(m)[k],∀k #= j

m pj



Properties

Property: a predicate that is evaluated over a 
run of the program 

“every message that is received was 
previously sent”

Not everything you may want to say about a 
program is a property:

 “the program sends an average of 50 
messages in a run”

Safety properties
“nothing bad happens”

no more than k processes are 
simultaneously in the critical section
messages that are delivered are delivered 
in causal order
Windows never crashes

A safety property is “prefix closed”:
if it holds in a run, it holds in every prefix

Liveness properties
“something good eventually happens”

a process that wishes to enter the critical 
section eventually does so
some message is eventually delivered 
Windows eventually boots

Every run can be extended to satisfy a 
liveness property 

if it does not hold in a prefix of a run, it 
does not mean it may not hold eventually

A really cool theorem

Every property is a combination of a safety 
property and a liveness property

(Alpern & Schneider)



The challenges of 
non-stable predicates
Consider a non-stable predicate   encoding, 
say, a safety property.  We want to determine 
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The challenges of 
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Consider a non-stable predicate   encoding, 
say, a safety property.  We want to determine 
whether   holds for our program.
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   holding in    does not preclude the 
possibility that our program violates safety!
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The challenges of 
non-stable predicates
Consider now a different non-stable predicate  .       
We want to determine whether   ever holds 
during a particular computation.

Suppose we apply   to 

   holding in    does not imply that   ever held 
during the actual computation!
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Example

Detect whether the following 
predicates hold:   Assume that initially:

x = 3 x = 4 x = 5

y = 6 y = 4 y = 2
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x = y x = y − 2 x = 0; y = 10

Possibly
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occurred
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but it may never have 
occurred
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There exists a 
consistent observation    
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Definitely

We know that     
has occurred, but it 
may not be detected 
if tested before     
or after  

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

x = y

x = y

Σ
32

Σ
54

Definitely

We know that     
has occurred, but it 
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Definitely(  )         
For every consistent 
observation   of the 
computation, there 
exists a global state 
of   in which    holds
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Computing Possibly

Scan lattice, level after 
level

If   holds in one global 
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Computing Definitely
Scan lattice, level after  
level
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Computing Definitely
Scan lattice, level after  
level

Given a level, only 
expand nodes that 
correspond to states 
for which 
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Computing Definitely
Scan lattice, level after  
level

Given a level, only 
expand nodes that 
correspond to states 
for which 

If no such state, then 
Definitely(  )

If reached last state   , 
and       , then  
¬Definitely(  )
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Computing Definitely
Scan lattice, level after  
level

Given a level, only 
expand nodes that 
correspond to states 
for which 

If no such state, then 
Definitely(  )
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Building the lattice:
collecting local states
To build the global states in the lattice,    
collects local states from each process. 

   keeps the set of local states received 
from   in a FIFO queue 

Key questions:

1. when is it safe for   to discard a local 
state    of   ?

2. Given level   of the lattice, how does one 
build level      ?             
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pi

p0

p0

piσ
k
i

i

i + 1

Qi



 Garbage-collecting  
local states

For each local state   , we need to determine:

           , the earliest consistent state 
that    can belong to

            , the latest consistent state 
that    . can belong to 

σ
k
i

σ
k
i

Σmin(σk
i ))

Σmax(σk
i ))

σ
k
i

Defining 
“earliest” and “latest”

Consistent 
Global State 

Defining 
“earliest” and “latest”

Consistent 
Global State 

Consistent Cut  

Defining 
“earliest” and “latest”

Consistent 
Global State 

Consistent Cut  

Frontier   



Defining 
“earliest” and “latest”

Consistent 
Global State 

Consistent Cut  

Frontier   

Vector Clock   

Defining 
“earliest” and “latest”

Associate a vector clock 
with each consistent 
global state

            is the consistent 
global state with the 
lowest vector clock that 
has    on its frontier

             is the one with 
the highest

Consistent 
Global State 

Consistent Cut  

Frontier   

Vector Clock   

Σmin(σk
i ))

Σmax(σk
i ))

σ
k
i

Computing Σmin

[1,0,0]

[1,0,0] [1,2,0]
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[1,3,1]

[1,4,1]

[1,5,1]

[3,4,1] [4,4,1] [5,5,5]

[1,6,1]

Label     with 

           and     have the same vector clock! 

σ
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i )

Σmin(σk
i ) σ

k
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Σmin(σk
i ) = (σc1

1
, σc2

2
, . . . , σcn

n ) : ∀j : cj = VC(σk
i )[j]
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∧∀j : VC(σ
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∧((σ
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j )[i] > VC(σk
i )[i]))
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[1,0,0]

[1,0,0] [1,2,0]

[2,0,0]

[0,0,1] [0,0,2] [1,5,3] [4,5,4] [4,5,5]

[1,3,1]

[1,4,1]

[1,5,1]

[3,4,1] [4,4,1] [5,5,5]

[1,6,1]
σ

k
i

Σmax

Σmax(σk
i ) = (σc1

1
, σ

c2

2
, . . . σ

cn

n ) :

∧∀j : VC(σ
cj

j )[i] ≤ VC(σk
i )[i]

∧((σ
cj

j = σ
cf

j ) ∨ VC(σ
cj+1

j )[i] > VC(σk
i )[i]))

set of local states
one for each process, 
s.t. 
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set of local states
one for each process, 
s.t. all local states are pair-

wise consistent with σk
i
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set of local states
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and they are the 
last such state

Assembling the levels
To build level 

wait until each    contains a local state for 
whose vector clock:

To build level 
For each global state     on level  , build

 

Using    s, check whether these global 
states are consistent

l

Qi
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i=1
VC[i] ≥ l
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