VC properties: event ordering

Given two vectors V and V, less than is defined as: $V < V' \equiv (V \neq V') \land (\forall k : 1 \leq k \leq n : V[k] \leq V'[k])$

- **Strong Clock Condition:** $e \rightarrow e' \equiv VC(e) < VC(e')$
- Simple Strong Clock Condition: Given e_i of p_i and e_j of p_j , where $i \neq j$ $e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$
- Goncurrency Given e_i of p_i and e_j of p_j , where $i \neq j$ $e_i \parallel e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \wedge (VC(e_j)[j] > VC(e_i)[j])$

VC properties: consistency

Pairwise inconsistency

Events e_i of p_i and e_j of p_j $(i \neq j)$ are pairwise inconsistent (i.e. can't be on the frontier of the same consistent cut) if and only if $(VC(e_i)[i] < VC(e_i)[i]) \lor (VC(e_i)[j] < VC(e_i)[j])$

@ Consistent Cut

A cut defined by (c_1,\ldots,c_n) is consistent if and only if

 $\forall i, j : 1 \le i \le n, 1 \le j \le n : (VC(e_i^{c_i})[i] \ge VC(e_j^{c_j})[i])$

VC properties: weak gap detection

Weak gap detection

Given e_i of p_i and e_j of p_j , if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t

$$\neg(e_k \to e_i) \land (e_k \to e_j)$$

$$p_k \xrightarrow{}$$
 [0,0,2]

VC properties: weak gap detection

Weak gap detection

Given e_i of p_i and e_j of p_j , if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t

$$\neg(e_k \to e_i) \land (e_k \to e_j)$$

VC properties: strong gap detection

Weak gap detection Given e_i of p_i and e_j of p_j , if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t $\neg (e_k \to e_i) \land (e_k \to e_i)$

Strong gap detection

Given e_i of p_i and e_j of p_j , if $VC(e_i)[i] < VC(e_j)[i]$ then there exists e'_i s.t.

$$(e_i \to e_i') \land (e_i' \to e_j)$$

VCs for Causal Delivery

- @ Each process increments the local component of its VC only for events that are notified to the monitor
- \odot Each message notifying event e is timestamped with VC(e)
- The monitor keeps all notification messages in a set M

Stability

Suppose p_0 has received m_i from p_i . When is it safe for p_0 to deliver m_i ?

Stability

Suppose p_0 has received m_i from p_i . When is it safe for p_0 to deliver m_i ?

 $\ensuremath{\mathfrak{G}}$ There is no earlier message in M

Stability

Suppose p_0 has received m_j from p_j . When is it safe for p_0 to deliver m_j ?

- There is no earlier message in M $\forall m \in M : \neg (m \to m_j)$
- There is no earlier message from p_j $TS(m_j)[j] = 1 + \mbox{ no. of } p_j \mbox{ messages delivered by } p_0$

Stability

Suppose p_0 has received m_j from p_j . When is it safe for p_0 to deliver m_j ?

- **⊘** There is no earlier message in M $\forall m \in M : \neg (m \to m_i)$
- $\mbox{ \ \ \, \ \ }$ There is no earlier message from p_j $TS(m_j)[j] = 1 + \mbox{ no. of } p_j \mbox{ messages delivered by } p_0$
 - There is no earlier message m_k'' from p_k , $k \neq j$ see next slide...

Checking for $m_k^{\prime\prime}$

- lacktriangle Let m_k' be the last message p_0 delivered from p_k
- $\ \ \,$ By strong gap detection, m_k'' exists only if $TS(m_k')[k] < TS(m_j)[k]$
- $oldsymbol{\otimes}$ Hence, deliver m_j as soon as $orall k: \mathit{TS}(m_k')[k] \geq \mathit{TS}(m_j)[k]$

The protocol

- $\ensuremath{\mathfrak{G}}\xspace p_0$ maintains an array $D[1,\ldots,n]$ of counters
- $m{o}$ $D[i] = TS(m_i)[i]$ where m_i is the last message delivered from p_i

DR3: Deliver m from p_j as soon as both of the following conditions are satisfied:

$$D[j] = TS(m)[j] - 1$$

2. $D[k] \geq TS(m)[k], \forall k \neq j$

Properties

Property: a predicate that is evaluated over a run of the program

"every message that is received was previously sent"

Not everything you may want to say about a program is a property:

"the program sends an average of 50 messages in a run"

Safety properties

- "nothing bad happens"
 - □ no more than k processes are simultaneously in the critical section
 - ☐ messages that are delivered are delivered in causal order
 - □ Windows never crashes
- A safety property is "prefix closed":
 - ☐ if it holds in a run, it holds in every prefix

Liveness properties

- "something good eventually happens"
 - ☐ a process that wishes to enter the critical section eventually does so
 - \square some message is eventually delivered
 - ☐ Windows eventually boots
- Every run can be extended to satisfy a liveness property
 - ☐ if it does not hold in a prefix of a run, it does not mean it may not hold eventually

A really cool theorem

Every property is a combination of a safety property and a liveness property

(Alpern & Schneider)

The challenges of non-stable predicates

© Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program.

The challenges of non-stable predicates

- © Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program.
- ${\mathfrak G}$ Suppose we apply Φ to Σ^s

The challenges of non-stable predicates

- © Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program.
- **3** Suppose we apply Φ to Σ^s
- Φ holding in Σ^s does not preclude the possibility that our program violates safety!

The challenges of non-stable predicates

- © Consider now a different non-stable predicate Φ . We want to determine whether Φ ever holds during a particular computation.
- lacktriangle Suppose we apply Φ to Σ^s

The challenges of non-stable predicates

- © Consider now a different non-stable predicate Φ . We want to determine whether Φ ever holds during a particular computation.
- $\ensuremath{\mathfrak{G}}$ Suppose we apply Φ to Σ^s
- $\ensuremath{\mathfrak{O}}$ Φ holding in Σ^s does not imply that Φ ever held during the actual computation!

Computing Possibly Scan lattice, level after level If Φ holds in one global state, then Possibly(Φ)

Computing Definitely

- Scan lattice, level after level
- Given a level, only expand nodes that correspond to states for which ¬Φ

Computing Definitely

- Scan lattice, level after level
- $\ensuremath{\mathfrak{G}}$ Given a level, only expand nodes that correspond to states for which $\neg\Phi$
- \odot If no such state, then Definitely(Φ)
- If reached last state Σ^l , and $\Phi(\Sigma^l)$, then $\neg \text{Definitely}(\Phi)$

Computing Definitely

- Scan lattice, level after level
- Given a level, only expand nodes that correspond to states for which $\neg Φ$
- If reached last state Σ^l , and $\Phi(\Sigma^l)$, then
 ¬Definitely(Φ)

Definitely (x = y)

Building the lattice: collecting local states

- \odot To build the global states in the lattice, p_0 collects local states from each process.

Key questions:

- 1. when is it safe for p_0 to discard a local state σ_i^k of p_i ?
- 2. Given level i of the lattice, how does one build level i+1?

Garbage-collecting local states

- The state σ_i^k we need to determine:
 - $\Box \Sigma_{min}(\sigma_i^k)$), the earliest consistent state that σ_i^k can belong to
 - \square $\Sigma_{max}(\sigma_i^k)$), the latest consistent state that σ_i^k can belong to

Defining "earliest" and "latest"

Consistent Global State

Defining "earliest" and "latest"

Consistent
Global State

Consistent Cut

Defining "earliest" and "latest"

Defining "earliest" and "latest" Consistent Global State Consistent Cut Frontier Vector Clock

Assembling the levels To build level lwait until each Q_i contains a local state for whose vector clock: $\sum_{i=1}^n VC[i] \ge l$ To build level l+1For each global state $\sum_{i=1}^n on \text{ level } l$, build $\sum_{i=1}^{i+1,i_2,\dots,i_n} \sum_{i=1}^{i+1,i_2,\dots,i_n} \sum_{i=$