VC properties:
event ordering

Given two vectors V and V, less than is defined as:
V<V =(V£V)AVEk:1<k<n:V[k <V'[k])

@ Strong Clock Condition: e — ¢’ =V C(e) < VC(e')

@ Simple Strong Clock Condition:
Given ¢; of p; and ¢;of pj, where i # j
e; —r e = VIe, lil.s ViEe,) 4
@ Concurrency
Given ¢; of pi and €; of pj, where i # j
ei || ej = (VC(e:)li] > VCl(e;)li]) A (VC(ej)ls] > VCl(ei)ls])

VC properties:
weak gap detection

@ Weak gap detection
Givene; of p;and e;of pj, if VC(e;)[k] < VC(e;)[k]
for somek +# j, then there exists ey, s.t

—(er — gi)ilb{es — 60}

[2,01]

VC properties:
consistency

@ Pairwise inconsistency

Events ¢; of pi and ¢, of p; (i # j) are pairwise
inconsistent (i.e. cant be on the frontier of the
same consistent cut) if and only if

(VC(en)[i] < VC(ej)d]) v (VC(e5)l5] < VC(ei)[])

@ Consistent Cut

A cut defined by (c1,...,¢,)is consistent if and
only if

Vi, i1 <4< pelis § = e (Ve lalos VC(el)[i])

VC properties:
weak gap detection

@ Weak gap detection
Given €; of Di and €; of D if VC(@Z)[]{?] < VC(GJ)[]C]
for somek +# j, then there exists ej, s.t

—(ex — e;) A (ex — €5)

[1,01] [2,01]

s [2,2,2]
/ [2,11] /

Pk

VC properties:
strong gap detection

@ Weak gap detection
Given ¢;of p; and ¢; of pj;, if VC(e;)[k] < VC(e;)[k]
for some k # j, then there exists e s.t

—(er — i) A (ex — €;)

@ Strong gap detection
Given e; of p; and ¢€; of pj, if VC(e;)[i] < V(e)li]
then there exists €] s.t.

(e — €;) A (€ — ¢;)

Stability

Suppose pg has received m; from p;.
When is it safe for po to deliver m;?

VCs for Causal Delivery

@ Each process increments the local component
of its VC only for events that are notified to
the monitor

@ Each message notifying evente is timestamped
with VC(e)

@ The monitor keeps all notification messages in
a set M

Stability

Suppose pg has received m; from p;.
When is it safe for po to deliver m;?

@ There is no earlier message in M

Stability Stability

Suppose pg has received m; from p;. Suppose pg has received m; from p;.
When is it safe for po to deliver m;? When is it safe for po to deliver m;?

@ There is no earlier message in M @ There is no earlier message in M

@ There is no earlier message from p; @ There is no earlier message from p;
no. of p, messages delivered by no. of p, messages delivered by

@ There is no earlier message m;, frompx, k # j
see next slide...

Checking for m;/ The protocol

@ po maintains an array D[1,...,n]of counters

/ .
@ Letm;, be the last message pg delivered from p. & Dl < T il wheredt i the Idst

@ By strong gap detection, m;, exists only if message delivered fromp;

TS(mi)[k] < TS(my)[K] :
Deliver m from p; as soon as both of the

@ Hence, deliver m; as soon as following conditions are satisfied:
vk © TS(my) k] = TS5(m;) k] D[j] = TS(m)[j] — 1
2. DIlk] > TS(m)[k],Vk # j

Properties

Property: a predicate that is evaluated over a
run of the program

“every message that is received was
previously sent”

Not everything you may want to say about a
program is a property:

“the program sends an average of 50
messages in a run”

Liveness properties

@ “something good eventually happens”

O a process that wishes to enter the critical
section eventually does so

D some message is eventually delivered

0O Windows eventually boots

@ Every run can be extended to satisfy a
liveness property
0 if it does not hold in a prefix of a run, it
does not mean it may not hold eventually

Safety properties

@ “nothing bad happens”

O no more than k processes are
simultaneously in the critical section

O messages that are delivered are delivered
in causal order

0 Windows never crashes

@ A safety property is “prefix closed”:
D if it holds in a run, it holds in every prefix

A really cool theorem

Every property is a combination of a safety
property and a liveness property

(Alpern & Schneider)

The challenges of
non-stable predicates

@ Consider a non-stable predicate ® encoding,
say, a safety property. We want to determine
whether @ holds for our program.

The challenges of
non-stable predicates

@ Consider a non-stable predicate ® encoding,
say, a safety property. We want to determine
whether @ holds for our program.

@ Suppose we apply @ to X°

@ @ holding in X°does not preclude the
possibility that our program violates safety!

The challenges of
non-stable predicates

@ Consider a non-stable predicate ® encoding,
say, a safety property. We want to determine
whether @ holds for our program.

@ Suppose we apply ® to X°

The challenges of
non-stable predicates

@ Consider now a different non-stable predicate .
We want to determine whether ® ever holds
during a particular computation.

@ Suppose we apply @ to ¥°

The challenges of
non-stable predicates

@ Consider now a different non-stable predicate .
We want to determine whether ® ever holds
during a particular computation.

@ Suppose we apply @ to ¥°

@ O holding in X*does not imply that ® ever held
during the actual computation!

Possibly

%]
8

J\M/

& 1EET s o')
x =1y — 2 is detected,
but it may never have
occurred

-

™
S
%}

R
\/

G i
BV

N

BN

e
NS
Al

7
Ve

/M@
L,\M

(3

v

2
Y

oF

N\

‘ 5 ’
2

g=0 1 y=2

Detect whether the following

predicates hold: Assume that initially:

ge = (0 g =1l

Possibly

b
8

J\M/

& 1EES s o)
x =1y — 2 is detected,
but it may never have
occurred

—

™
S
%}

A
N/
T
%\M >

BN

@ Possibly(®)
There exists a
consistent observation
of the computation O
such that ® holds in a
global state of O

e
Nz
AR

%
Vi

/M@
L,\M

(3

N

2
Y

3

Definitely

e
8

J\M/

@ We know thatz =y
has occurred, but it
may not be detected
if tested before ¥*?
or after £

-

™
S
%}

AT
%\M 7

S
J o

N
'S
@

75
/i

N
%
h

>
t?f
/

bl

Computing Possibly

<

%

B,
[t

@ Scan lattice, level after
level

B
%)

LS
N
o6

@ If ® holds in one global
state, then Possibly(®)

N
Al
/

s
5

\g|
&

4
A

/Ma

Definitely

b
8

J\M/

@ We know thatz =y
has occurred, but it
may not be detected
if tested before ¥*?
or after %4

-

™
S
%}

Ao
N/

AT
%\M 7

S
e o

N
'S
@

i
\%/

&\M

@ Definitely(d)
For every consistent
observation O of the
computation, there
exists a global state
of Oin which @ holds

7N
A\M/
pi

N
4
h

>
t?f
/

1

Computing Possibly

\

A

B,
[t

@ Scan lattice, level after
level

B
%)

N
b

{

@ If ® holds in one global
state, then Possibly(®)

N
Al
/

s
5

\g|
&

4
A

/Ma

NS 0.

m\z/u \.2/3 m\z/u \.2/3
0\/\/\/ % 0\/\/\/ g
,{xfx/\%\/\k ,(xﬁ\/\%\/\fm

/\/\/\/\ /\/\/\/\
/\u /\

/\z/\

Computing Possibly
Computing Deﬁni’rely

state, then Possibly(®)

level
@ Scan lattice, level after

@ If ® holds in one global

—
Q
B
(.
<
o
>
o
()
2O
e
+
S
c
(=]
O
(V2]

O 0L
m\z/u \.2/3 m\z/u \.2/3
0\/\/\/ . 0\/\/\/ %
,{xfx/\%\/\k ,(xﬁ\/\%\/\f
/\/\/\/\ /\/\/\/\
/\u /\ /\Q /\

Possibly(:c =y—2)

Computing Possibly
Computing Possibly

state, then Possibly(®)
state, then Possibly(®)

level

level
@ If ® holds in one global

@ Scan lattice, level after

@ Scan lattice, level after
@ If ® holds in one global

Computing Definitely

@ Scan lattice, level after
level

o

@ Given a level, only
expand nodes that

correspond to states
for which—®

[t

/8 Mf\m
/A \/\M
Y N

\g|
&

™

Computing Definitely

@ Scan lattice, level after
level

@ Given a level, only
expand nodes that

correspond to states
for which—®

@ If no such state, then
Definitely(®)

@ If reached last state X!
and ®(%), then
-Definitely(®)

Definitely (z = y)

Computing Definitely

@ Scan lattice, level after
level

o

@ Given a level, only
expand nodes that

correspond to states
for which—®

9
)

LS
h/_\M
by e

{

@ If no such state, then
Definitely(®)

M/D?B\M
/N
N

\g|
&

™

@ If reached last state X!
and ®(%), then
~Definitely(®)

Building the lattice:
collecting local states

@ To build the global states in the lattice, po
collects local states from each process.

@ Do keeps the set of local states received
from p; in a FIFO queue Q;

Key questions:

1. when is it safe for po to discard a local

state oFof p;?

2. Given level i of the lattice, how does one
build level i + 1?

Garbage-collecting
local states

@ For each local state o\, we need to determine:

0O Zmin(0F)), the earliest consistent state
that of can belong to

DO Ymaz(0F)), the latest consistent state

that o can belong to

Defining
“earliest” and “latest”

~ Consistent
Global State

L

Consistent Cut

Defining
“earliest” and “latest”

~ Consistent
Global State

Defining
“earliest” and “latest”

~ Consistent
Global State

L

Consistent Cut

| B

Frontier

Defining
“earliest” and “latest”

Consistent
Global State

AL

Consistent Cut

|l

Frontier

V'

Vector Clock

Computing 3,,,:,

[1,00] [2,00] [3,4,1] [4,4,1] [5,5,5]

[0.01] [0,02] L53] [454] [455]
@ Label of with VC(el)

@ Yin(cF) and oF have the same vector clock!

Defining
“earliest” and “latest”

Consistent
Global State

§ oot

Consistent Cut

| Eatl

Frontier

e

Vector Clock

Associate a vector clock
with each consistent
global state

@ Ymin(oF))is the consistent
global state with the
lowest vector clock that
has o7 on its frontier

(%] Z,”(,J.(O'[],“» is the one with
the highest

Computing X,,..

[1,0,0] [2,0,0]

[5.5,5]

i

PN

[0,0,1] [0,0,2]

k c
Yimaz (U = (G 3

9

[4,54] [45,5]

Computing X,,.

[1,0,0] [2,0,0] [3,4,1] [4,4,1] [5,5,5]

i

PN

[0,0,1] [0,0.2] [1,53] [454] [4,55]

set of local states
one for each process,
s.t.

E’rna;c(o-f) (051,0'52./...

7 VC(O’;J

Computing X, .

[1,0,0] [2,0,0] [3,4,1] [4,4,1] [5,5,5]

i

[L0,0] [120]

PN

[0,0,1] [0,0.2] [1,53] [454] [455]

‘ set of local states |
one for each process, |

(ﬂ»)m [SE all local states are pairk—

wise consistent with o,

cj+1 s and they are the
(U,)[] > VC()[])) last such state

Computing X,

[1,0,0] [2,0,0] [3,4,1] [4,4,1] [5,5,5]

i

&
[O,g,l] [0,0.2] [1,53] [454] [45/5]

3 . . t of local states |
pIRg [O O e % |
maz (7) (T3 et g) ‘ one for each process,

i VC(O.;J il < (Uk>m 1Sl al} local s"ra’res Eie pairk—

wise consistent with o,

(0] > VC(a¥)[a)))

i

Assembling the levels

@ To build level [
0 wait until each Q; contains a local state for
whose vector clock:

Z; VO] > 1

@ To build level [+1 i
0 For each global s’ra’re > on level [, build

z’l+l,12, s y12 yoeesbn Z’] 725 tn 11

0 UsingVCs, check whether these global
states are consistent

