
VC properties:
event ordering

Given two vectors and , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition:
 Given of and of , where

Concurrency
 Given of and of , where

V V
′

V < V
′ ≡ (V "= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ‖ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i != j

ei pi pjej i != j

e → e
′
≡ V C(e) < V C(e′)

VC properties:
consistency

Pairwise inconsistency
Events of and of are pairwise
inconsistent (i.e. can’t be on the frontier of the
same consistent cut) if and only if

Consistent Cut
A cut defined by is consistent if and
only if
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : (VC(eci

i)[i] ≥ VC(e
cj

j)[i])

(VC(ei)[i] < VC(ej)[i]) ∨ (VC(ej)[j] < VC(ei)[j])

(i != j)

(c1, . . . , cn)

ei pi pjej

VC properties:
weak gap detection

Weak gap detection
Given of and of , if
for some , then there exists s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk

[0,0,2]

ei pi pjej

VC properties:
weak gap detection

Weak gap detection
Given of and of , if
for some , then there exists s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk

[0,0,2]

ei pi pjej

[2,1,1]

[0,0,1]

[1,0,1]

VC properties:
strong gap detection
Weak gap detection

Given of and of , if
for some , then there exists s.t

Strong gap detection
Given of and of , if
then there exists s.t.

VC(ei)[i] < VC(ej)[i]ei pi pjej

e
′

i

¬(ek → ei) ∧ (ek → ej)

(ei → e
′

i) ∧ (e′i → ej)

VC(ei)[k] < VC(ej)[k]
k != j ek

ei pi pjej

VCs for Causal Delivery

Each process increments the local component
of its only for events that are notified to
the monitor

Each message notifying event is timestamped
with

The monitor keeps all notification messages in
a set M

e

VC

VC(e)

Stability

Suppose has received from .
When is it safe for to deliver ?

p0 pjmj

p0 mj

Stability

Suppose has received from .
When is it safe for to deliver ?

There is no earlier message in

p0 pjmj

p0 mj

M

∀m ∈ M : ¬(m → mj)

Stability

Suppose has received from .
When is it safe for to deliver ?

There is no earlier message in

There is no earlier message from

p0 pjmj

p0 mj

pj

M

TS(mj)[j] = 1+ no. of messages delivered by pj p0

∀m ∈ M : ¬(m → mj)

Stability

Suppose has received from .
When is it safe for to deliver ?

There is no earlier message in

There is no earlier message from

There is no earlier message from ,

p0 pjmj

p0 mj

m
′′

k

pj

pk k != j

M

TS(mj)[j] = 1+ no. of messages delivered by pj p0

see next slide...

∀m ∈ M : ¬(m → mj)

Checking for .

Let be the last message delivered from

By strong gap detection, exists only if

Hence, deliver as soon as

m
′

k p0 pk

m
′′

k

m
′′

k

TS(m′

k)[k] < TS(mj)[k]

∀k : TS(m′

k)[k] ≥ TS(mj)[k]

mj

The protocol

 maintains an array of counters

 where is the last
message delivered from

DR3: Deliver from as soon as both of the
following conditions are satisfied:

2.

p0 D[1, . . . , n]

D[i] = TS(mi)[i] mi

pi

D[j] = TS(m)[j] − 1

D[k] ≥ TS(m)[k],∀k #= j

m pj

Properties

Property: a predicate that is evaluated over a
run of the program

“every message that is received was
previously sent”

Not everything you may want to say about a
program is a property:

 “the program sends an average of 50
messages in a run”

Safety properties
“nothing bad happens”

no more than k processes are
simultaneously in the critical section
messages that are delivered are delivered
in causal order
Windows never crashes

A safety property is “prefix closed”:
if it holds in a run, it holds in every prefix

Liveness properties
“something good eventually happens”

a process that wishes to enter the critical
section eventually does so
some message is eventually delivered
Windows eventually boots

Every run can be extended to satisfy a
liveness property

if it does not hold in a prefix of a run, it
does not mean it may not hold eventually

A really cool theorem

Every property is a combination of a safety
property and a liveness property

(Alpern & Schneider)

The challenges of
non-stable predicates
Consider a non-stable predicate encoding,
say, a safety property. We want to determine
whether holds for our program.

Φ

Φ

The challenges of
non-stable predicates
Consider a non-stable predicate encoding,
say, a safety property. We want to determine
whether holds for our program.

Suppose we apply to

Φ

Φ

Φ Σ
s

The challenges of
non-stable predicates
Consider a non-stable predicate encoding,
say, a safety property. We want to determine
whether holds for our program.

Suppose we apply to

 holding in does not preclude the
possibility that our program violates safety!

Φ

Φ

Φ Σ
s

Φ Σ
s

The challenges of
non-stable predicates
Consider now a different non-stable predicate .
We want to determine whether ever holds
during a particular computation.

Suppose we apply to

Φ

Φ

Φ Σ
s

The challenges of
non-stable predicates
Consider now a different non-stable predicate .
We want to determine whether ever holds
during a particular computation.

Suppose we apply to

 holding in does not imply that ever held
during the actual computation!

Φ

Φ

Φ Σ
s

Φ Σ
s

Φ

Example

Detect whether the following
predicates hold: Assume that initially:

x = 3 x = 4 x = 5

y = 6 y = 4 y = 2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
6

1

e
4

2 e
5

2

x = y x = y − 2 x = 0; y = 10

Possibly

If is or , .
ccc is detected,
but it may never have
occurred

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

x = y − 2

Σ
41

Σ
31

Σ
s

x = y − 2

Possibly

If is or , .
ccc is detected,
but it may never have
occurred

Possibly()
There exists a
consistent observation
of the computation
such that holds in a
global state of

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

x = y − 2

Σ
41

Σ
31

Σ
s

x = y − 2

Φ

O

Φ

O

Definitely

We know that
has occurred, but it
may not be detected
if tested before
or after

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

x = y

x = y

Σ
32

Σ
54

Definitely

We know that
has occurred, but it
may not be detected
if tested before
or after

Definitely()
For every consistent
observation of the
computation, there
exists a global state
of in which holds

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

x = y

x = y

Σ
32

Σ
54

Φ

O

ΦO

Computing Possibly

Scan lattice, level after
level

If holds in one global
state, then Possibly()

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Φ

Φ

Computing Possibly

Scan lattice, level after
level

If holds in one global
state, then Possibly()

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Φ

Φ

Computing Possibly

Scan lattice, level after
level

If holds in one global
state, then Possibly()

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Φ

Φ

Computing Possibly

Scan lattice, level after
level

If holds in one global
state, then Possibly()

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Φ

Φ

Computing Possibly

Scan lattice, level after
level

If holds in one global
state, then Possibly()

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Φ

Φ

Σ
31

Possibly (x = y − 2)

Computing Definitely
Scan lattice, level after
level

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Computing Definitely
Scan lattice, level after
level

Given a level, only
expand nodes that
correspond to states
for which

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

¬Φ

Computing Definitely
Scan lattice, level after
level

Given a level, only
expand nodes that
correspond to states
for which

If no such state, then
Definitely()

If reached last state ,
and , then
¬Definitely()

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
43

Σ
33

Σ
44

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Φ

Φ

¬Φ

Σ
l

Φ(Σl)

Computing Definitely
Scan lattice, level after
level

Given a level, only
expand nodes that
correspond to states
for which

If no such state, then
Definitely()

If reached last state ,
and , then
¬Definitely()Φ

Φ

¬Φ

Σ
l

Φ(Σl)

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
03

Σ
13

Σ
23

Σ
31

Σ
41

Σ
21

Σ
32

Σ
42

Σ
33

Definitely (x = y)

Building the lattice:
collecting local states
To build the global states in the lattice,
collects local states from each process.

 keeps the set of local states received
from in a FIFO queue

Key questions:

1. when is it safe for to discard a local
state of ?

2. Given level of the lattice, how does one
build level ?

p0

pi

p0

p0

piσ
k
i

i

i + 1

Qi

 Garbage-collecting
local states

For each local state , we need to determine:

 , the earliest consistent state
that can belong to

 , the latest consistent state
that . can belong to

σ
k
i

σ
k
i

Σmin(σk
i))

Σmax(σk
i))

σ
k
i

Defining
“earliest” and “latest”

Consistent
Global State

Defining
“earliest” and “latest”

Consistent
Global State

Consistent Cut

Defining
“earliest” and “latest”

Consistent
Global State

Consistent Cut

Frontier

Defining
“earliest” and “latest”

Consistent
Global State

Consistent Cut

Frontier

Vector Clock

Defining
“earliest” and “latest”

Associate a vector clock
with each consistent
global state

 is the consistent
global state with the
lowest vector clock that
has on its frontier

 is the one with
the highest

Consistent
Global State

Consistent Cut

Frontier

Vector Clock

Σmin(σk
i))

Σmax(σk
i))

σ
k
i

Computing Σmin

[1,0,0]

[1,0,0] [1,2,0]

[2,0,0]

[0,0,1] [0,0,2] [1,5,3] [4,5,4] [4,5,5]

[1,3,1]

[1,4,1]

[1,5,1]

[3,4,1] [4,4,1] [5,5,5]

[1,6,1]

Label with

 and have the same vector clock!

σ
k
i

σ
k
i VC(ek

i)

Σmin(σk
i) σ

k
i

Σmin(σk
i) = (σc1

1
, σc2

2
, . . . , σcn

n) : ∀j : cj = VC(σk
i)[j]

Computing
[1,0,0]

[1,0,0] [1,2,0]

[2,0,0]

[0,0,1] [0,0,2] [1,5,3] [4,5,4] [4,5,5]

[1,3,1]

[1,4,1]

[1,5,1]

[3,4,1] [4,4,1] [5,5,5]

[1,6,1]
σ

k
i

Σmax

Σmax(σk
i) = (σc1

1
, σ

c2

2
, . . . σ

cn

n) :

∧∀j : VC(σ
cj

j)[i] ≤ VC(σk
i)[i]

∧((σ
cj

j = σ
cf

j) ∨ VC(σ
cj+1

j)[i] > VC(σk
i)[i]))

Computing
[1,0,0]

[1,0,0] [1,2,0]

[2,0,0]

[0,0,1] [0,0,2] [1,5,3] [4,5,4] [4,5,5]

[1,3,1]

[1,4,1]

[1,5,1]

[3,4,1] [4,4,1] [5,5,5]

[1,6,1]
σ

k
i

Σmax

Σmax(σk
i) = (σc1

1
, σ

c2

2
, . . . σ

cn

n) :

∧∀j : VC(σ
cj

j)[i] ≤ VC(σk
i)[i]

∧((σ
cj

j = σ
cf

j) ∨ VC(σ
cj+1

j)[i] > VC(σk
i)[i]))

set of local states
one for each process,
s.t.

Computing
[1,0,0]

[1,0,0] [1,2,0]

[2,0,0]

[0,0,1] [0,0,2] [1,5,3] [4,5,4] [4,5,5]

[1,3,1]

[1,4,1]

[1,5,1]

[3,4,1] [4,4,1] [5,5,5]

[1,6,1]
σ

k
i

Σmax

Σmax(σk
i) = (σc1

1
, σ

c2

2
, . . . σ

cn

n) :

∧∀j : VC(σ
cj

j)[i] ≤ VC(σk
i)[i]

∧((σ
cj

j = σ
cf

j) ∨ VC(σ
cj+1

j)[i] > VC(σk
i)[i]))

set of local states
one for each process,
s.t. all local states are pair-

wise consistent with σk
i

Computing
[1,0,0]

[1,0,0] [1,2,0]

[2,0,0]

[0,0,1] [0,0,2] [1,5,3] [4,5,4] [4,5,5]

[1,3,1]

[1,4,1]

[1,5,1]

[3,4,1] [4,4,1] [5,5,5]

[1,6,1]
σ

k
i

Σmax

Σmax(σk
i) = (σc1

1
, σ

c2

2
, . . . σ

cn

n) :

∧∀j : VC(σ
cj

j)[i] ≤ VC(σk
i)[i]

∧((σ
cj

j = σ
cf

j) ∨ VC(σ
cj+1

j)[i] > VC(σk
i)[i]))

set of local states
one for each process,
s.t. all local states are pair-

wise consistent with σk
i

and they are the
last such state

Assembling the levels
To build level

wait until each contains a local state for
whose vector clock:

To build level
For each global state on level , build

Using s, check whether these global
states are consistent

l

Qi

∑n

i=1
VC[i] ≥ l

l + 1

l

∑i1,i2,...,in

VC

∑i1+1,i2,...,in

,

∑i1,i2+1,...,in

, . . . ,

∑i1,i2,...,in+1

