
Unreliable Failure 
Detectors

for Reliable Distributed 
Systems

A different approach

Augment the asynchronous model with an 
unreliable failure detector for crash failures

Define failure detectors in terms of abstract 
properties, not specific implementations

Identify classes of failure detectors that allow 
to solve Consensus

The Model
General

asynchronous system
processes fail by crashing
a failed process does not recover

Failure Detectors
outputs set of processes that it currently 
suspects to have crashed
the set may be different for different 
processes

Completeness

Strong Completeness   Eventually every process 
that crashes is permanently suspected by every 
correct process

Weak Completeness   Eventually every process 
that crashes is permanently suspected by some 
correct process



Accuracy
Strong Accuracy   
No correct process is ever suspected
Weak Accuracy   
Some correct process is never suspected

Accuracy
Strong Accuracy   
No correct process is ever suspected
Weak Accuracy   
Some correct process is never suspected
Eventual Strong Accuracy   
There is a time after which no correct process 
is ever suspected
Eventual Weak Accuracy   
There is a time after which some correct 
process is never suspected
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Reducibility
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Simplify, Simplify!
All weakly complete failure detectors are 
reducible to strongly complete failure detectors

P ≥Q, S≥W, ♦P ≥♦Q, ♦S≥♦W

Simplify, Simplify!
All weakly complete failure detectors are 
reducible to strongly complete failure detectors

All strongly complete failure detectors are 
reducible to weakly complete failure detectors (!)

Weakly and strongly complete 
failure detectors are equivalent!

P ≥Q, S≥W, ♦P ≥♦Q, ♦S≥♦W

Q≥P, W ≥S, ♦Q≥♦P, ♦W ≥♦S

From Weak Completeness
to Strong Completeness

Every process p executes the following:
        := 0
cobegin
|| Task 1: !repeat forever
! !! ! {   queries its local failure detector module    }
! !! !           := 
! !! ! send (            ) to all
|| Task 2: !when receive(            ) from some 
! !! !          := (                      ) -
coend 

Dp
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outputp
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p, suspectsp

q

{q}

p

The Theorems
Theorem 1  In an asynchronous system with   , 
consensus can be solved as long as 
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The Theorems
Theorem 1  In an asynchronous system with   , 
consensus can be solved as long as 
Theorem 2  There is no  -resilient consensus 
protocol using   for 
Theorem 3  In asynchronous systems in which 
processes can use  , consensus can be solved   
as long as
Theorem 4  A failure detector can solve consensus 
only if it satisfies weak completeness and eventual 
weak accuracy–i.e.      is the weakest failure 
detector that can solve consensus.

f ≤n−1

W

♦W

f <n/2

f ≥n/2♦P

f

♦W

Solving consensus 
using  .   

   : Strong Completeness, Weak Accuracy
at least some correct process   is never 
suspected

Each process   has its own failure detector 

Input values are chosen from the set {0,1}

S

c

p
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Notation
We introduce the operators !, !, "  
They operate element-wise on vectors whose entries 
have values from the set {0, 1, #}

v ! # = v   #! v = v
v ! v = #   #! # = #
v ! # = v   # ! v = v
v ! v = v    # ! # = #
v " # = #    # " v = #
 v " v = v    # " # = #

Given two vectors A and B, we write A $ B if 
         A[i] % # implies B[i] % #

Solving Consensus
using any        . 

 1:!    :=                                    ! ! ! ! {p’s estimate of the proposed values}

 2:!    := 
 3:!{phase 1}! ! ! ! ! ! ! ! ! ! ! ! {asynchronous rounds   ,                   }

 4:! for    := 1 to 
 5:!! ! send           to all
 6:!! ! wait until [    : received            or         ] ! {query the failure detector}

 7:!! !     := 
 8:!!         := 
 9:!! !      :=   !! ! ! ! !  !           {value is only echoed the first time it is seen} 
10:!{phase 2}
11:!! send           to all
12:!! wait until [    : received            or         ]
13:!!     := !! ! ! ! ! ! ! ! !       {computes the “intersection”, including    }

14:!{phase 3}
15:!! decide on leftmost non-⊥ coordinate of 

(rp,∆p, p)

Vp (⊥, . . . ,⊥, vp,⊥, . . . ,⊥)

∆p (⊥, . . . ,⊥, vp,⊥, . . . ,⊥)

rp

∀q (rp,∆q, q) q ∈ Dp

Op Vp

Vp ⊕ (⊕q received ∆q)Vp

∆p

(rp, Vp, p)

(rp, Vq, q) q ∈ Dp∀q

⊗q received VqVp

Vp

Vp

1 ≤ rp ≤ n − 1rp

Vp ! Op

n−1

D ∈ S

A useful Lemma
Lemma 1  After phase 1 is complete,      
! for all processes   that 
complete phase 1

 1: Vp := (#, …, #, vp, #, …, #)  {p’s estimate of the proposed values}

 2: &p := (#, …, #, vp, #, …, #) 

 3: {phase 1}      {asynchronous rounds rp, 1$ rp $ n – 1}

 4:!! for rp := 1 to n-1

 5:   send (rp, &p ,p) to all

 6:   wait until ['q: received (rp, &q ,q) or q ( Dp] 

 7:   Op := Vp
 8:   Vp  := Vp ! (!q received &q)

 9:    &p := Vp ! Op          {value is only echoed first time it is seen} 

10: {phase 2}
11:  send (rp, Vp ,p) to all

12:  wait until ['q: received (rp, Vq ,q) or q ( Dp]

13:  Vp  := "q received Vq {computes the “intersection”, including  Vp}

14: {phase 3}
15:  decide on leftmost non- # coordinate of Vp 

Vc ≤ Vp p

A useful Lemma
Lemma 1  After phase 1 is complete, 
! for all processes   that 
complete phase 1

Proof   We show that

Let   be the first round when   sees 
.

  will send to all    with    in 
round 
By weak accuracy, all correct 
processes receive    by next round 

.
   has been forwarded      times: 
every other process has seen   

Vc[i] = vi ∧ vi "= ⊥ ⇒ ∀p : Vp[i] = vi

vi

Vc ≤ Vp p

∆c
vi

vi

vi n−1

vi

r≤n−2

r=n−1

c

r
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 1: Vp := (#, …, #, vp, #, …, #)  {p’s estimate of the proposed values}

 2: &p := (#, …, #, vp, #, …, #) 

 3: {phase 1}      {asynchronous rounds rp, 1$ rp $ n – 1}

 4:!! for rp := 1 to n-1

 5:   send (rp, &p ,p) to all

 6:   wait until ['q: received (rp, &q ,q) or q ( Dp] 

 7:   Op := Vp
 8:   Vp  := Vp ! (!q received &q)

 9:    &p := Vp ! Op          {value is only echoed first time it is seen} 

10: {phase 2}
11:  send (rp, Vp ,p) to all

12:  wait until ['q: received (rp, Vq ,q) or q ( Dp]

13:  Vp  := "q received Vq {computes the “intersection”, including  Vp}

14: {phase 3}
15:  decide on leftmost non- # coordinate of Vp 

c



Two additional cool 
lemmas

Lemma 2   After Phase 2 is 
complete,          for each  that 
completes phase 2
Proof

All processes that completed 
phase 2 have received   . 
Since    .is the smallest   vector, 

By the definition of 

after phase 2

Lemma 3

Vc = Vp p

Vc

Vc
V

Vc[i] != ⊥ ⇒ Vp[i] != ⊥ ∀p

⊗

Vc[i] = ⊥ ⇒ Vp[i] = ⊥ ∀p

Vc != (⊥,⊥,⊥, . . . ,⊥)

 1: Vp := (#, …, #, vp, #, …, #)  {p’s estimate of the proposed values}

 2: &p := (#, …, #, vp, #, …, #) 

 3: {Phase 1}      {asynchronous rounds rp, 1$ rp $ n – 1}

 4:!! for rp := 1 to n-1

 5:   send (rp, &p ,p) to all

 6:   wait until ['q: received (rp, &q ,q) or q ( Dp] 

 7:   Op := Vp
 8:   Vp  := Vp ! (!q received &q)

 9:    &p := Vp ! Op          {value is only echoed first time it is seen} 

10: {Phase 2}
11:  send (rp, Vp ,p) to all

12:  wait until ['q: received (rp, Vq ,q) or q ( Dp]

13:  Vp  := "q received Vq {computes the “intersection”, including  Vp}

14: {Phase 3}
15:  decide on leftmost non- # coordinate of Vp 

Solving consensus
Theorem    The protocol to 
the left satisfies Validity, 
Agreement, and Termination

Proof
Left as an exercise

 1: Vp := (#, …, #, vp, #, …, #)  {p’s estimate of the proposed values}

 2: &p := (#, …, #, vp, #, …, #) 

 3: {phase 1}      {asynchronous rounds rp, 1$ rp $ n – 1}

 4:!! for rp := 1 to n-1

 5:   send (rp, &p ,p) to all

 6:   wait until ['q: received (rp, &q ,q) or q ( Dp] 

 7:   Op := Vp
 8:   Vp  := Vp ! (!q received &q)

 9:    &p := Vp ! Op          {value is only echoed first time it is seen} 

10: {phase 2}
11:  send (rp, Vp ,p) to all

12:  wait until ['q: received (rp, Vq ,q) or q ( Dp]

13:  Vp  := "q received Vq {computes the “intersection”, including  
Vp}

14: {phase 3}
15:  decide on leftmost non- # coordinate of Vp 

A lower bound - I

Theorem   Consensus with     requires♦P f <n/2

A lower bound - I

Theorem   Consensus with     requires

Proof
Suppose   is even, and a protocol exists  
that solves consensus when  
Divide the set of processes in two sets of 
size         and 

♦P f <n/2

f =n/2

n/2, P1 P2

n



A lower bound - II
Consider three executions:

 
All processes in   .   
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A lower bound - II
Consider three executions:
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crash before they 
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perfectly
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crash before they 

can propose

Detectors work 
perfectly

 
No process crashes

Detectors make 
mistakes:

until            ,   .  
believes    crashed, 

and vice versa

   decides 0

after  .   after  .

   decides 1   decides 0 
   decides 1

P1 P1

P2
t1 t2

P1←0;P2←0 P1←0;P2←1 P1←1;P2←1

P1P2

max(t1, t2) P1

P2
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The case of the 
Rotating Coordinator

Solving consensus with     (actually,    )

Asynchronous rounds
Each round has a coordinator   
 
Each process   has an opinion              (with a time of 
adoption    ) 
Coordinator collects opinions to form a suggestion
If they believe   to be correct, processes adopt its 
suggestion and make it their own opinion
A suggestion adopted by a majority of processes is “locked”

♦W ♦S

c

cid = (r modn)+1

p vp∈{0, 1}
tp

c

One round, four phases
Phase 1  
!Each process, including  , sends its opinion timestamped   to rc c



One round, four phases
Phase 1  
!Each process, including  , sends its opinion timestamped   to 

Phase 2 
  !waits for first            opinions with timestamp 
  ! selects  , one of the most recently adopted opinions
  !becomes   ’s suggestion for round 
  ! sends its suggestion to all

r

r

r

c

c

v

c

v

c

c c

!n/2+1"

One round, four phases
Phase 1  
!Each process, including  , sends its opinion timestamped   to 

Phase 2 
  !waits for first            opinions with timestamp 
  ! selects  , one of the most recently adopted opinions
  !becomes   ’s suggestion for round 
  ! sends its suggestion to all

Phase 3
!Each   waits for a suggestion, or for failure detector to signal   is faulty
! If   receives a suggestion,   adopts it as its new opinion and ACKs to 
!Otherwise,    NACKs to 
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One round, four phases
Phase 1  
!Each process, including  , sends its opinion timestamped   to 

Phase 2 
  !waits for first            opinions with timestamp 
  ! selects  , one of the most recently adopted opinions
  !becomes   ’s suggestion for round 
  ! sends its suggestion to all

Phase 3
!Each   waits for a suggestion, or for failure detector to signal   is faulty
! If   receives a suggestion,   adopts it as its new opinion and ACKs to 
!Otherwise,    NACKs to 

Phase 4
  ! waits for first            responses
! if all ACKs, then   decides on   and sends DECIDE to all
! if   receives DECIDE, then   decides on   
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Consensus using .

    := input bit;   := 0;    := 0;        := undecided
 while   undecided do
!  := 
!  :=            + 1
! {phase 1: all processes send opinion to current coordinator}
!!   sends              to 
  !{phase 2: current coordinator gather a majority of opinions}

!!   waits for first             opinions 
!!   selects among them the value    with the largest  
!!   sends          to all 
!{phase 3: all processes wait for new suggestions from the current coordinator}

!!   waits until suggestion         arrives or 
!! if suggestion is received then {   :=  ;    :=  ;    sends ( , ACK) to  }
!! else   sends ( , NACK) to 
 !{phase 4: coordinator waits for majority of replies. If majority adopted the coordinator’s suggestion, then coordinator sends 

request to decide}
 !!   !waits for first             ( , ACK) or ( , NACK)
!! if   receives               ACKs, then   sends ( , DECIDE,  ) to all
when   delivers ( , DECIDE,  ) then  {   decides   ;        := decided}

vp r tp statep

p

r+1r

(p, r, vp, tp)p c

(q, r, vq, tq)c

c

c (c, r, vq)

vq tq

c (r mod n)

(c, r, v) c ∈ ♦Spp

vp v tp r p c

p c

r rc

c c r v

vpp vr statep

r

r

♦S

!n/2+1"

!n/2+1"
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     Consensus as Paxos
All processes are acceptors

In round  , node                 serves both as 
a distinguished proposer and as a 
distinguished learner

The round structure guarantees a unique 
proposal number

The value that a proposer proposes when no 
value is chosen is not determined

♦S

r (r mod n)+1


