
Unreliable Failure
Detectors

for Reliable Distributed
Systems

A different approach

Augment the asynchronous model with an
unreliable failure detector for crash failures

Define failure detectors in terms of abstract
properties, not specific implementations

Identify classes of failure detectors that allow
to solve Consensus

The Model
General

asynchronous system
processes fail by crashing
a failed process does not recover

Failure Detectors
outputs set of processes that it currently
suspects to have crashed
the set may be different for different
processes

Completeness

Strong Completeness Eventually every process
that crashes is permanently suspected by every
correct process

Weak Completeness Eventually every process
that crashes is permanently suspected by some
correct process

Accuracy
Strong Accuracy
No correct process is ever suspected
Weak Accuracy
Some correct process is never suspected

Accuracy
Strong Accuracy
No correct process is ever suspected
Weak Accuracy
Some correct process is never suspected
Eventual Strong Accuracy
There is a time after which no correct process
is ever suspected
Eventual Weak Accuracy
There is a time after which some correct
process is never suspected

Failure detectors

Completeness
AccuracyAccuracyAccuracyAccuracy

Completeness Strong Weak Eventual
strong

Eventual
weak

Strong Perfect . Strong .

Weak Quasi....... Weak .

♦P

♦Q

♦S

♦WW

SP

Q

Reducibility

 transforms failure detector .
 into failure detector

If we can transform into then
we say that is stronger than
() and that is reducible
to

If and then we say
that and are equivalent: Algorithm A uses

D

TD→D′

TD→D′

D D
′

D≥D′
D′≥D

D D
′

D D
′

D
′

D

D D
′

D≡D
′

D
′

D≥D′

Simplify, Simplify!
All weakly complete failure detectors are
reducible to strongly complete failure detectors

P ≥Q, S≥W, ♦P ≥♦Q, ♦S≥♦W

Simplify, Simplify!
All weakly complete failure detectors are
reducible to strongly complete failure detectors

All strongly complete failure detectors are
reducible to weakly complete failure detectors (!)

Weakly and strongly complete
failure detectors are equivalent!

P ≥Q, S≥W, ♦P ≥♦Q, ♦S≥♦W

Q≥P, W ≥S, ♦Q≥♦P, ♦W ≥♦S

From Weak Completeness
to Strong Completeness

Every process p executes the following:
 := 0
cobegin
|| Task 1: !repeat forever
! !! ! { queries its local failure detector module }
! !! ! :=
! !! ! send () to all
|| Task 2: !when receive() from some
! !! ! := () -
coend

Dp

Dp

outputp

outputp

outputp ∪ suspectsp

suspectsp

q, suspectsq

p, suspectsp

q

{q}

p

The Theorems
Theorem 1 In an asynchronous system with ,
consensus can be solved as long as

f ≤n−1

W

The Theorems
Theorem 1 In an asynchronous system with ,
consensus can be solved as long as
Theorem 2 There is no -resilient consensus
protocol using for

f ≤n−1

W

f ≥n/2♦P

f

The Theorems
Theorem 1 In an asynchronous system with ,
consensus can be solved as long as
Theorem 2 There is no -resilient consensus
protocol using for
Theorem 3 In asynchronous systems in which
processes can use , consensus can be solved
as long as

f ≤n−1

W

♦W

f <n/2

f ≥n/2♦P

f

The Theorems
Theorem 1 In an asynchronous system with ,
consensus can be solved as long as
Theorem 2 There is no -resilient consensus
protocol using for
Theorem 3 In asynchronous systems in which
processes can use , consensus can be solved
as long as
Theorem 4 A failure detector can solve consensus
only if it satisfies weak completeness and eventual
weak accuracy–i.e. is the weakest failure
detector that can solve consensus.

f ≤n−1

W

♦W

f <n/2

f ≥n/2♦P

f

♦W

Solving consensus
using .

 : Strong Completeness, Weak Accuracy
at least some correct process is never
suspected

Each process has its own failure detector

Input values are chosen from the set {0,1}

S

c

p

S

Notation
We introduce the operators !, !, "
They operate element-wise on vectors whose entries
have values from the set {0, 1, #}

v ! # = v #! v = v
v ! v = # #! # = #
v ! # = v # ! v = v
v ! v = v # ! # = #
v " # = # # " v = #
 v " v = v # " # = #

Given two vectors A and B, we write A $ B if
 A[i] % # implies B[i] % #

Solving Consensus
using any .

 1:! := ! ! ! ! {p’s estimate of the proposed values}

 2:! :=
 3:!{phase 1}! ! ! ! ! ! ! ! ! ! ! ! {asynchronous rounds , }

 4:! for := 1 to
 5:!! ! send to all
 6:!! ! wait until [: received or] ! {query the failure detector}

 7:!! ! :=
 8:!! :=
 9:!! ! := !! ! ! ! ! ! {value is only echoed the first time it is seen}
10:!{phase 2}
11:!! send to all
12:!! wait until [: received or]
13:!! := !! ! ! ! ! ! ! ! ! {computes the “intersection”, including }

14:!{phase 3}
15:!! decide on leftmost non-⊥ coordinate of

(rp,∆p, p)

Vp (⊥, . . . ,⊥, vp,⊥, . . . ,⊥)

∆p (⊥, . . . ,⊥, vp,⊥, . . . ,⊥)

rp

∀q (rp,∆q, q) q ∈ Dp

Op Vp

Vp ⊕ (⊕q received ∆q)Vp

∆p

(rp, Vp, p)

(rp, Vq, q) q ∈ Dp∀q

⊗q received VqVp

Vp

Vp

1 ≤ rp ≤ n − 1rp

Vp ! Op

n−1

D ∈ S

A useful Lemma
Lemma 1 After phase 1 is complete,
! for all processes that
complete phase 1

 1: Vp := (#, …, #, vp, #, …, #) {p’s estimate of the proposed values}

 2: &p := (#, …, #, vp, #, …, #)

 3: {phase 1} {asynchronous rounds rp, 1$ rp $ n – 1}

 4:!! for rp := 1 to n-1

 5: send (rp, &p ,p) to all

 6: wait until ['q: received (rp, &q ,q) or q (Dp]

 7: Op := Vp
 8: Vp := Vp ! (!q received &q)

 9: &p := Vp ! Op {value is only echoed first time it is seen}

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until ['q: received (rp, Vq ,q) or q (Dp]

13: Vp := "q received Vq {computes the “intersection”, including Vp}

14: {phase 3}
15: decide on leftmost non- # coordinate of Vp

Vc ≤ Vp p

A useful Lemma
Lemma 1 After phase 1 is complete,
! for all processes that
complete phase 1

Proof We show that

Let be the first round when sees
.

 will send to all with in
round
By weak accuracy, all correct
processes receive by next round

.
 has been forwarded times:
every other process has seen

Vc[i] = vi ∧ vi "= ⊥ ⇒ ∀p : Vp[i] = vi

vi

Vc ≤ Vp p

∆c
vi

vi

vi n−1

vi

r≤n−2

r=n−1

c

r

r

 1: Vp := (#, …, #, vp, #, …, #) {p’s estimate of the proposed values}

 2: &p := (#, …, #, vp, #, …, #)

 3: {phase 1} {asynchronous rounds rp, 1$ rp $ n – 1}

 4:!! for rp := 1 to n-1

 5: send (rp, &p ,p) to all

 6: wait until ['q: received (rp, &q ,q) or q (Dp]

 7: Op := Vp
 8: Vp := Vp ! (!q received &q)

 9: &p := Vp ! Op {value is only echoed first time it is seen}

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until ['q: received (rp, Vq ,q) or q (Dp]

13: Vp := "q received Vq {computes the “intersection”, including Vp}

14: {phase 3}
15: decide on leftmost non- # coordinate of Vp

c

Two additional cool
lemmas

Lemma 2 After Phase 2 is
complete, for each that
completes phase 2
Proof

All processes that completed
phase 2 have received .
Since .is the smallest vector,

By the definition of

after phase 2

Lemma 3

Vc = Vp p

Vc

Vc
V

Vc[i] != ⊥ ⇒ Vp[i] != ⊥ ∀p

⊗

Vc[i] = ⊥ ⇒ Vp[i] = ⊥ ∀p

Vc != (⊥,⊥,⊥, . . . ,⊥)

 1: Vp := (#, …, #, vp, #, …, #) {p’s estimate of the proposed values}

 2: &p := (#, …, #, vp, #, …, #)

 3: {Phase 1} {asynchronous rounds rp, 1$ rp $ n – 1}

 4:!! for rp := 1 to n-1

 5: send (rp, &p ,p) to all

 6: wait until ['q: received (rp, &q ,q) or q (Dp]

 7: Op := Vp
 8: Vp := Vp ! (!q received &q)

 9: &p := Vp ! Op {value is only echoed first time it is seen}

10: {Phase 2}
11: send (rp, Vp ,p) to all

12: wait until ['q: received (rp, Vq ,q) or q (Dp]

13: Vp := "q received Vq {computes the “intersection”, including Vp}

14: {Phase 3}
15: decide on leftmost non- # coordinate of Vp

Solving consensus
Theorem The protocol to
the left satisfies Validity,
Agreement, and Termination

Proof
Left as an exercise

 1: Vp := (#, …, #, vp, #, …, #) {p’s estimate of the proposed values}

 2: &p := (#, …, #, vp, #, …, #)

 3: {phase 1} {asynchronous rounds rp, 1$ rp $ n – 1}

 4:!! for rp := 1 to n-1

 5: send (rp, &p ,p) to all

 6: wait until ['q: received (rp, &q ,q) or q (Dp]

 7: Op := Vp
 8: Vp := Vp ! (!q received &q)

 9: &p := Vp ! Op {value is only echoed first time it is seen}

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until ['q: received (rp, Vq ,q) or q (Dp]

13: Vp := "q received Vq {computes the “intersection”, including
Vp}

14: {phase 3}
15: decide on leftmost non- # coordinate of Vp

A lower bound - I

Theorem Consensus with requires♦P f <n/2

A lower bound - I

Theorem Consensus with requires

Proof
Suppose is even, and a protocol exists
that solves consensus when
Divide the set of processes in two sets of
size and

♦P f <n/2

f =n/2

n/2, P1 P2

n

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

P1←0;P2←0

P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

 decides 0

after .

P1

t1

P1←0;P2←0

P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

All processes in .
crash before they

can propose

Detectors work
perfectly

 decides 0

after .

P1

t1

P1←0;P2←0 P1←1;P2←1

P1P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

All processes in .
crash before they

can propose

Detectors work
perfectly

 decides 0

after . after .

 decides 1P1

t1 t2

P1←0;P2←0 P1←1;P2←1

P1P2

P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

All processes in .
crash before they

can propose

Detectors work
perfectly

No process crashes

Detectors make
mistakes:

until , .
believes crashed,

and vice versa

 decides 0

after . after .

 decides 1P1

t1 t2

P1←0;P2←0 P1←0;P2←1 P1←1;P2←1

max(t1, t2)

P1

P1

P2

P2

P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

All processes in .
crash before they

can propose

Detectors work
perfectly

No process crashes

Detectors make
mistakes:

until , .
believes crashed,

and vice versa

 decides 0

after . after .

 decides 1 decides 0
 decides 1

P1 P1

P2
t1 t2

P1←0;P2←0 P1←0;P2←1 P1←1;P2←1

P1P2

max(t1, t2) P1

P2

P2

The case of the
Rotating Coordinator

Solving consensus with (actually,)

Asynchronous rounds
Each round has a coordinator

Each process has an opinion (with a time of
adoption)
Coordinator collects opinions to form a suggestion
If they believe to be correct, processes adopt its
suggestion and make it their own opinion
A suggestion adopted by a majority of processes is “locked”

♦W ♦S

c

cid = (r modn)+1

p vp∈{0, 1}
tp

c

One round, four phases
Phase 1
!Each process, including , sends its opinion timestamped to rc c

One round, four phases
Phase 1
!Each process, including , sends its opinion timestamped to

Phase 2
 !waits for first opinions with timestamp
 ! selects , one of the most recently adopted opinions
 !becomes ’s suggestion for round
 ! sends its suggestion to all

r

r

r

c

c

v

c

v

c

c c

!n/2+1"

One round, four phases
Phase 1
!Each process, including , sends its opinion timestamped to

Phase 2
 !waits for first opinions with timestamp
 ! selects , one of the most recently adopted opinions
 !becomes ’s suggestion for round
 ! sends its suggestion to all

Phase 3
!Each waits for a suggestion, or for failure detector to signal is faulty
! If receives a suggestion, adopts it as its new opinion and ACKs to
!Otherwise, NACKs to

r

r

r

c

c

v

c

v

c

p

c

c

c

c

c

p p

p

!n/2+1"

One round, four phases
Phase 1
!Each process, including , sends its opinion timestamped to

Phase 2
 !waits for first opinions with timestamp
 ! selects , one of the most recently adopted opinions
 !becomes ’s suggestion for round
 ! sends its suggestion to all

Phase 3
!Each waits for a suggestion, or for failure detector to signal is faulty
! If receives a suggestion, adopts it as its new opinion and ACKs to
!Otherwise, NACKs to

Phase 4
 ! waits for first responses
! if all ACKs, then decides on and sends DECIDE to all
! if receives DECIDE, then decides on

r

r

r

c

c

v

c

v

c

p

c

c

c

c

c v

vpp

c

c

p p

p

!n/2+1"

!n/2+1"

Consensus using .

 := input bit; := 0; := 0; := undecided
 while undecided do
! :=
! := + 1
! {phase 1: all processes send opinion to current coordinator}
!! sends to
 !{phase 2: current coordinator gather a majority of opinions}

!! waits for first opinions
!! selects among them the value with the largest
!! sends to all
!{phase 3: all processes wait for new suggestions from the current coordinator}

!! waits until suggestion arrives or
!! if suggestion is received then { := ; := ; sends (, ACK) to }
!! else sends (, NACK) to
 !{phase 4: coordinator waits for majority of replies. If majority adopted the coordinator’s suggestion, then coordinator sends

request to decide}
 !! !waits for first (, ACK) or (, NACK)
!! if receives ACKs, then sends (, DECIDE,) to all
when delivers (, DECIDE,) then { decides ; := decided}

vp r tp statep

p

r+1r

(p, r, vp, tp)p c

(q, r, vq, tq)c

c

c (c, r, vq)

vq tq

c (r mod n)

(c, r, v) c ∈ ♦Spp

vp v tp r p c

p c

r rc

c c r v

vpp vr statep

r

r

♦S

!n/2+1"

!n/2+1"

!n/2+1"

 Consensus as Paxos
All processes are acceptors

In round , node serves both as
a distinguished proposer and as a
distinguished learner

The round structure guarantees a unique
proposal number

The value that a proposer proposes when no
value is chosen is not determined

♦S

r (r mod n)+1

