Unreliable Failure
Detectors
for Reliable Distributed
Systems

The Model

General
O asynchronous system
0O processes fail by crashing
O a failed process does not recover

Failure Detectors

D outputs set of processes that it currently
suspects to have crashed

0 the set may be different for different
processes

A different approach

@ Augment the asynchronous model with an
unreliable failure detector for crash failures

@ Define failure detectors in terms of abstract
properties, not specific implementations

@ Identify classes of failure detectors that allow
to solve Consensus

Completeness

Strong Completeness Eventually every process
that crashes is permanently suspected by every
correct process

Weak Completeness Eventually every process
that crashes is permanently suspected by some
correct process

Accuracy Accuracy

Strong Accuracy Strong Accuracy
No correct process is ever suspected No correct process is ever suspected

Weak Accuracy Weak Accuracy
Some correct process is never suspected Some correct process is never suspected

Eventual Strong Accuracy
There is a time after which no correct process
is ever suspected

Eventual Weak Accuracy
There is a time after which some correct
process is never suspected

Failure detectors Reducibility

Tp_.p' transforms failure detector
Accuracy 2 D into failure detector D’

Completeness Eventual |Eventual [: ; /
P S’rrong Weak : &l If we can transform D into D’ then

strong weak B we say that D is stronger than D’
; (D>T') and that D' is reducible
to D

Strong Perfect P| Strong S OP oS

Weak Quasi Q@ | Weak W 0Q

If D>D' and D'>D then we say
that D and D’ are equivalent:
EY

Simplify, Simplify!

@ All weakly complete failure detectors are
reducible to strongly complete failure detectors
P2Qy S=2W, OP20Q, OS=0W

From Weak Completeness
to Strong Completeness

Every process p executes the following:

output,:= 0

cobegin

Il Task 1: repeat forever
{ p queries its local failure detector module D}
suspectsy, := D,
send (p, suspects,) to all

Il Task 2: when receive(g, suspects,) from some ¢

ou,tp/u,tp:= (r)ut[)utp &) su,s’pcctsp) = {q}
coend

Simplify, Simplify!

@ All weakly complete failure detectors are
reducible to strongly complete failure detectors
PzQ%s 5=W, QR=20GT Q8= 0W

@ All strongly complete failure detectors are
reducible to weakly complete failure detectors (!)
QZP, s Wby QU 2> OB oW 0.5,

The Theorems

Theorem 1 In an asynchronous system with W,
consensus can be solved as long as f<n—1

The Theorems

Theorem 1 In an asynchronous system with W,
consensus can be solved as long as f<n—1

Theorem 2 There is no f-resilient consensus
protocol using OP for f>n/2

The Theorems

Theorem 1 In an asynchronous system with W,
consensus can be solved as long as f<n—1

Theorem 2 There is no f-resilient consensus
protocol using OP for f>n/2

Theorem 3 In asynchronous systems in which
processes can use OW, consensus can be solved
as long as f<n/2

Theorem 4 A failure detector can solve consensus
only if it satisfies weak completeness and eventual
weak accuracy-i.e. OWis the weakest failure
detector that can solve consensus.

The Theorems

Theorem 1 In an asynchronous system with W,
consensus can be solved as long as f<n—1

Theorem 2 There is no f-resilient consensus
protocol using OP for f>n/2

Theorem 3 1In asynchronous systems in which
processes can use OW, consensus can be solved
as long as f<n/2

Solving consensus
using S

S: Strong Completeness, Weak Accuracy

D at least some correct process c is never
suspected

@ Each process p has its own failure detector

@ Input values are chosen from the set {0,1}

Solving Consensus
using any D € §

2= S 8t e b A sl {p$ estimate of the proposed values}
Ap=i(L peg S T SR T 1)

p:
g {phase l} {asynchronous rounds r,,, 1 <, <n—1}

Notation

We introduce the operators o, x,®

oY

They operate element-wise on vectors whose entries
have values from the set {0, 1, 1}
for 7p:=1to n—1

send (r,, A,,p) to all

wait until [Vq: received (7, ¢, q) or ¢ € D,] {query the failure detector}

Op:= Vp

Voiiz Vo @ (B pircrorue g
5 Api= V%0, {value is only echoed the first time it is seen}
vel=1 1lev=l : {phase 2}
vev=yv lel=1 1 send (rp, Vp, p) to all

wait until [Vq: received (rp, V;,q) or g € D]

Vix L ="y siliyES y
ARSI s AR

Vel =v 1loev=v

VeVvs=yV Al =ik

10 00 NGO - UL REO R O

Given two vectors A and B, we write A=< B if
Ali] = L implies B[i] = L

Vok:= ER e e {computes the “intersection”, including V»}

: {phase 3}
decide on leftmost non-L coordinate of Vy

A useful Lemma A useful Lemma

g Vp 1= (LN vp. L, g, 1) {ps estimate of the proposed values} Lemma 1 Aﬁ'er phase lis comple’re, s Vp s a4 L vl g, 1) {p’s estimate of the proposed values} Lemma 1 AH’er phqse 1is Complefe,
 Apis (L e Dl V. <V, for all processes p that 2 Ap = (L e V. <V, for all processes p that

: {phase 1 {asynchronous round: <rp<n-1} 3: {phase 1 {asynchronous round <rp<n-1}
{phase 1} synchronous rounds rp 1s 1 complete phase 1 {phased) v TRl complete phase 1
for rp := 1 to n-1 4. forrp:i=1ton-l
b send (rp, Ap p) toall
wait until [Vq: received (rp, Aq) or q € D] 6: wait until [¥q: received (np, Aq 4) or q € D] Proof We show that
O 7: Opiile Velil =vi Avi # L = Vp : V[i] = v
8

Vp = Vp @ (g received Aq) Vp = Vp @ (% received Aq) Let r be the first round when ¢ sees v;
9: AP i= VP * OP {value is only echoed first time it is seen} 9: Ap = VP * Op {value is only echoed first time it is seen}

10: {phase 2} 10: {phase 2} %
11: send (rp,l\/p p)toall 4 ¢ send ("vaVp p) toall . 0 ¢ will send to all A, with v; in
2: wait until [Vq: received (rp, V. orqe o ¢ wait until [Vq: received (rp, V, orqE D,
130 Vp =@ ,-[ecqeived \Z (io:;mjs ::Z "mf:'secﬁa:jl, including Vp} © Vp =@ r[eciived Vq (Eo:;;m: ::Z “imjsecm}:}, including Vp} b
14: {phase 3} :{phase 3) O By weak accuracy, all correct
15: decide on leftmost non- L coordinate of Vp i decide on leftmost non- L coordinate of Vp processes receive v; by next round
=
o v; has been forwarded n—1 times:
every other process has seen v;

1
2
3
4
5: send (rp, AP p) toall
6
74
8

Two additional cool
lemmas

13 vp 1= (LA NS vp. Lo, 1) {p$s estimate of the proposed values}
2: Ap o= (U Vp gl 1)
3: {Phase 1} fasynchronous rounds rp, 1s rp < n - 1}
for rp := 1 to n-1
send (rp, AP p) toall
wait until [Vq: received (rp, Aq .9) or q € D]
OpElp
Vp = Vp ® (@q received Aq)
Ap:=Vp *x Op
10: {Phase 2}
11: send (rp, Vp ,p) toall

{value is only echoed first time it is seen}

12: wait until [Vq: received (rp, Vq g)orqe q)l,]

13 Vp i=®q received Vq {computes the “intersection”, including Vp}
14: {Phase 3}

15: decide on leftmost non- L coordinate of Vp

Lemma 2 After Phase 2 is
complete, V. = V), for each p that
completes phase 2

Proof

@ All processes that completed
phase 2 have received V..
Since V, is the smallest Vvector,
Vel # L= Vplil # L vp

@ By the definition of ®
Vel = L = Vil = L Vp
after phase 2

Lemma 35 VoA (=Ll .| 1)

A lower bound - I

Theorem Consensus with P requires f<mn/2

Solving consensus

i Vp 3= (LR, vpo Lo 1) {ps estimate of the proposed values}
2: AP = (U vp. flelt s 1 D)
3: {phase 1} fasynchronous rounds rp, 1< rp < n - 1}
4. forrp:i=1ton-1
§ send (rp, Ap p) toall
wait until [Vq: received (rp, Aq ,9) or q € D]
Opiaip
: Vp = Vp @ (g received Aq)
9: Ap = VP * Op
10: {phase 2}
11: send (rp, Vp p) toall

{value is only echoed first time it is seen}

12: wait until [Vq: received (rP, Vg Q)orq €]

13: Vp 1= ®q received Vq {computes the “intersection", including
Vel

14: {phase 3}

15: decide on leftmost non- L coordinate of Vp

Theorem The protfocol to
the left satisfies Validity,
Agreement, and Termination

Proof
Left as an exercise

A lower bound - I

Theorem Consensus with O P requires f<n/2

Proof

@ Suppose n is even, and a protocol exists
that solves consensus when f=n/2

@ Divide the set of processes in two sets of

sizen/2, P; and P,

A lower bound - II A lower bound - II

Consider three executions: Consider three executions:

after t;

A lower bound - II A lower bound - II

Consider three executions: Consider three executions:

after ¢; after t; after ¢

A lower bound - II A lower bound - II

Consider three executions: Consider three executions:

after ¢; after t, after t; after ¢

The case of the
Rotating Coordinator

One round, four phases

Phase 1
Solving consensus with OW (actually, ¢S) Each process, including ¢, sends its opinion timestamped r to ¢

@ Asynchronous rounds
Each round has a coordinator ¢
cia = (rmodn)+1

Each process p has an opinion v, €{0,1} (with a time of
adoption %,)

Coordinator collects opinions to form a suggestion

If they believe c to be correct, processes adopt its
suggestion and make it their own opinion

@ A suggestion adopted by a majority of processes is “locked”

One round, four phases One round, four phases

Phase 1 Phase 1

Each process, including ¢, sends its opinion timestamped r to ¢ Each process, including ¢, sends its opinion timestamped r fo ¢

Phase 2 Phase 2

¢ waits for first [n/2+1] opinions with timestamp » ¢ waits for first [n/2+1] opinions with timestamp 7

c selects v, one of the most recently adopted opinions ¢ selects v, one of the most recently adopted opinions
v becomes ¢ s suggestion for round v becomes ¢ s suggestion for round r

¢ sends its suggestion to all ¢ sends its suggestion tfo all

Phase 3

Each p waits for a suggestion, or for failure detector to signal ¢ is faulty
If p receives a suggestion, p adopts it as its new opinion and ACKs foc
Otherwise, p NACKs toc

One round, four phases Consensus using (.S

Phase 1 vp:= input bit; 7:= 0; t,:= 0; state,:= undecided
Each process, including ¢, sends its opinion timestamped r to ¢ while p undecided do

r= 4l
Phase 2 ¢= (r mod n 1

c WOifS FOT' ﬁrsf "n/2+ 1“ OPiniOnS Wlfh fimesfamp r {phase 1: all processes send opinion to current coordinator}

i oS T :
c selects v, one of the most recently adopted opinions » sendsi(p. 7,0, fo) 18

v becomes ¢’ suggestion for round
¢ sends its suggestion to all

{phase 2: current coordinator gather a majority of opinions}

c waits for first [n/2+1] opinions (q,7,vq,tq)

¢ selects among them the value v, with the largest ¢,
Phase 3 ¢ sends (¢,7,v,) to all
{phase 3: all processes wait for new suggestions from the current coordinator}
p waits until suggestion (¢, r,v) arrives or ¢ € ¢S,
if suggestion is received then {¥p:=v; tp:= 1; p sends (7, Ack) toc}

Each p waits for a suggestion, or for failure detector to signal c is faulty
If p receives a suggestion, p adopts it as its new opinion and ACKs toc

Otherwisei N else p sends (7, NACK) to ¢

phase 4 {phase 4: coordinator waits for majority of replies. If majority adopted the coordinator’s suggestion, then coordinator sends
request to decide}

c waits for first [n/2+1] responses ¢ waits for first [n/2+1] (r, AcK) or (7, NACK)
if all ACKs, then ¢ decides on v and sends DECIDE to all if c receives [n/2+1] Acks, then ¢ sends (r, DECIDE, v) to all

if p receives DECIDE, then p decides on v when p delivers (7, DECIDE, v) then {p decides v ; state,:= decided}

OS Consensus as Paxos

@ All processes are acceptors

@ In round 7, node (r mod n)+1 serves both as
a distinguished proposer and as a
distinguished learner

@ The round structure guarantees a unique
proposal number

@ The value that a proposer proposes when no
value is chosen is not determined

