
11

Virtual Address Translation
Using TLBs to Speedup Address Translation

Cache recently accessed page-to-frame translations in a TLB
 For TLB hit, physical page number obtained in 1 cycle
 For TLB miss, translation is updated in TLB
 Has better than 99% hit ratio !! (why?)

Page Table

120 910

p o

116 910

f o
Physical

Addresses

Virtual
Addresses

CPUCPU

TLB

f

Key Value

p

p

f

?

X
12

Dealing With Large Page Tables
Multi-level paging

Add additional levels of
indirection to the page table
by sub-dividing page number
into k parts
 Create a “tree” of page

tables

Third-Level
Page Tables

p2 o
Virtual Address

First-Level
Page Table

p3

Second-Level
Page Tables

p1

p1

p2

p3

13

Dealing With Large Page Tables
Multi-level paging

Example: Two-level paging

Second-Level
Page Table

120 1016

p1 o

116 10

f o
Physical

Addresses
Virtual

Addresses

CPUCPU

First-Level
Page Table

page table
p2

f

p1

PTBRPTBR

p2

++++

MemoryMemory

14

Virtual Address Translation
Using Page Registers (aka Inverted Page Tables)

Each frame is associated with a register containing
 Residence bit: whether or not the frame is occupied
 Occupier: page number of the page occupying frame
 Protection bits

Page registers: an example
 Physical memory size: 16 MB
 Page size: 4096 bytes
 Number of frames: 4096
 Space used for page registers (assuming 8 bytes/register): 32

Kbytes
 Percentage overhead introduced by page registers: 0.2%
 Size of virtual memory: irrelevant

15

Page Registers
Tradeoffs

Advantages:
 Size of translation table occupies a very small fraction of

physical memory
 Size of translation table is independent of VM size

Disadvantages:
 We have reverse of the information that we need….
 How do we perform translation ?
 Search the translation table for the desired page number

16

Inverted Page Tables
Searching for a Virtual Page

If the number of frames is small, the page registers can be
placed in an associative memory

Virtual page number looked up in associative memory
 Hit: frame number is extracted
 Miss: results in page fault

Limitations:
 Large associative memories are expensive
 Memory expansion is non-trivial

17

Dealing With Large Inverted Page
Tables
Using Hash Tables

Use a proven fast search technique: Hash Tables
Hash page numbers to find corresponding frame numbers in a
“frame” table with one entry per page frame

h(PID, p)

120 9

p o

116 9

f o
Physical

Addresses
Virtual

Addresses

PTBRPTBR

CPUCPU

Hash
Table
Hash
Table

PID

Inverted Page Table

1 0 page0

MemoryMemory

0

fmax– 1
fmax– 2

runningrunning
PID

+

18

Searching Inverted Page Tables
Using Hash Tables

Page registers are placed in an array

Page i is placed in frame f(i) where f is an agreed-upon
“hashing function”

To lookup page i, perform the following:
 Compute f(i) and use it as an index into the table of page

registers
 Extract the corresponding page register
 Check if the register contains i, if so, we have a hit
 Otherwise, we have a miss

19

Searching the Inverted Page Table
Using Hash Tables (Cont’d.)

Minor complication
 Since the number of pages is usually larger than the number of

slots in a hash table, two or more items may hash to the same
location

Two different entries that map to same location are said to
collide

Many standard techniques for dealing with collisions
 Use a linked list of items that hash to a particular table entry
 Rehash index until the key is found or an empty table entry is

reached
 …

20

Virtual Memory (Paging)
The bigger picture

A process’s VAS is its context
 Contains its code, data, and stack

Code pages are stored in a user’s file on disk
 Some are currently residing in memory; most are

not

Data and stack pages are also stored in a file
 Although this file is typically not visible to users
 File only exists while a program is executing

OS determines which portions of a process’s
VAS are mapped in memory at any one time

CodeCode

DataData

StackStack

File System
(Disk)

OS/MMU

Physical
Memory

21

Virtual Memory
Page fault handling

References to non-mapped pages
generate a page fault

Program
P’s

VAS

Disk

CPUCPU

Physical
Memory

Page
Table

0

Resume/initiate some other process
Map the missing page into memory
Restart the faulting process

Page fault handling steps:
Service the fault
Block the running process
Read in the unmapped page

22

Virtual Memory Performance
Page fault handling analysis

To understand the overhead of paging, compute the
effective memory access time (EAT)
 EAT = memory access time × probability of a page hit +

 page fault service time × probability of a page fault

Example:
 Memory access time: 20 ns
 Disk access time: 25 ms
 Let p = the probability of a page fault
 EAT = 20(1–p) + 25,000,000p

To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

23

Virtual Memory
Summary

Physical and virtual memory partitioned into equal
size units

Size of VAS unrelated to size of physical memory

Virtual pages are mapped to physical frames

Simple placement strategy

There is no external fragmentation

Key to good performance is minimizing page faults

