Virtual Address Translation
‘Using TLBs to Speedup Address Translation

Dealing With Large Page Tables
Multi-level paging

Cache recently accessed page-to-frame translations in a TLB
» For TLB hit, physical page number obtained in 1 cycle
» For TLB miss, translation is updated in TLB
» Has better than 99% hit ratio Il (why?)

Physical . °
ysical

A T
0| 100 k . Addresses /—> j
Key Value J
{ D / 7 |
TLB P
X—>

Page Table u

+ Add additional levels of
indirection fo the page table
by sub-dividing page number

into kparts Second-Level
> Create a “tree" of page Page Tables :
tables _/
Virtual Address pZI ™~
!

1 P2 P3 o
BN To

=)

P

D ——

First-Level Page Tables

Page Table

1 Third-Level

Dealing With Large Page Tables
Multi-level paging

Virtual Address Translation
Using Page Registers (aka Inverted Page Tables)

+ Example: Two-level paging

0
PP ':EDEEED Virtual Physical
20 1 o | Addresses Addresses
| N
BR —> page table S
i
p ﬂ ')2 I
(SRR, | M N -
First-Level Second-Level
Page Table Page Table

+ Each frame is associated with a register containing
> Residence bit: whether or not the frame is occupied
> Occupier: page number of the page occupying frame
> Protection bits

+ Page registers: an example
> Physical memory size: 16 MB
> Page size: 4096 bytes
> Number of frames: 4096

> Space used for page registers (assuming 8 bytes/register): 32
Kbytes

> Percentage overhead infroduced by page registers: 0.2%
> Size of virtual memory: irrelevant

Page Registers
Tradeoffs

Inverted Page Tables
Searching for a Virtual Page

+ Advantages:

> Size of translation table occupies a very small fraction of
physical memory

> Size of translation table is independent of VM size

+ Disadvantages:
> We have reverse of the information that we need....
> How do we perform translation ?
> Search the translation fable for the desired page number

+ If the number of frames is small, the page registers can be
placed in an associative memory

+ Virtual page number looked up in associative memory
> Hit: frame number is extracted
> Miss: results in page fault

+ Limitations:
> Large associative memories are expensive
» Memory expansion is non-trivial

Tables
Using Hash Tables

Searching Inverted Page Tables
Using Hash Tables

+ Use a proven fast search technique: Hash Tables
+ Hash page numbers to find corresponding frame numbers in a

“frame" table with one entry per page frame

PID p l o i i ljl I:EDEOEDI |
- Virtual Physical
running ZFOHITI]FFFITH Addresses Addresses | =55 1

| -

=1
PID |00} page | fou=2 -

Inverted Page Table

+ Page registers are placed in an array

+ Page iis placed in frame f(i) where f is an agreed-upon
“hashing function”

+ To lookup page i, perform the following:

> Compute f(i) and use it as an index into the table of page
registers

> Extract the corresponding page register
> Check if the register contains i, if so, we have a hit
» Otherwise, we have a miss

Searching the Inverted Page Table
Using Hash Tables (Cont’d.)

Virtual Memory (Paging)
The bigger picture Code

+ Minor complication

> Since the number of pages is usually larger than the number of
slots in a hash table, two or more items may hash to the same
location

+ Two different entries that map o same location are said to
collide

¢ Many standard techniques for dealing with collisions
> Use a linked list of items that hash to a particular table entry

» Rehash index until the key is found or an empty table entry is
reached
Y

L Data
Aprocess's VAS is its context

» Contains its code, data, and stack

Stack

+ Code pages are stored in a user's file on disk

» Some are currently residing in memory; most are
not

+ Data and stack pages are also stored in a file
» Although this file is typically not visible to users
> File only exists while a program is executing

OS determines which portions of a process's

VAS are mapped in memory at any one time OS/MMU

Physical
Memory
B

Virtual Memory .
Page fault handling Physical

Memaory

Virtual Memory Performance
Page fault handling analysis

+ References o non-mapped pages

generate a page fault

Page fault handling steps:

Service the fault Page
Block the running process Table

Read in the unmapped page
Resume/initiate &’ine gﬂg’er process

Map the missing page into memory /' IProeram
Restart the faulting process _'q_p!Q

VAS

Disk

+ To understand the overhead of paging, compute the
effective memory access time (EAT)

» EAT = memory access time x probability of a page hit +
page fault service time x probability of a page fault

+ Example:
» Memory access time: 20 ns
> Disk access time: 25 ms
> Let p = the probability of a page fault
> EAT = 20(1-p) + 25,000,000p

+ To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

Virtual Memory
Summary

+ Physical and virtual memory partitioned into equal
size units

+ Size of VAS unrelated to size of physical memory
+ Virtual pages are mapped to physical frames

+ Simple placement strategy

+ There is no external fragmentation

+ Key to good performance is minimizing page faults

