Fundamental issues : A Recap

Virtual Memory Management

Page Replacement Algorithms

# Key concept: Demand paging

» Load pages into memory only when a page
fault occurs

+ Issues:
» Placement strategies
« Place pages anywhere - no placement policy
required
» Replacement strategies
% What to do when there exist more jobs than
can fit in memory
» Load control strategies

« Determining how many jobs can be
in memory at one time
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Page Replacement Algorithms

Evaluation methodology

+ Typically Z; VAS; » Physical Memory

+ With demand paging, physical memory fills quickly

+ When a process faults & memory is full, some page must be
swapped out

> Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?

Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

+ Record a trace of the pages accessed by a process

> Example: (Virtual) address trace...

(3.0). (19), (A1), (21), (5.3). (20), (19), (24), 3.1). (4.8)

> generates page trace

3,1,4,2,5,2,1,2,3,4 (representedas c,a,d, b, e, b,a, b, c,

Simulate the behavior of a page replacement algorithm on the
trace and record the number of page faults generated

fewer faults I:> better performance




Optimal Page Replacement

Clairvoyant replacement

Optimal Page Replacement
Clairvoyant replacement

+ Replace the page that won't be needed for the longest time in

+ Replace the page that won't be needed for the longest time in
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Least Recently Used Page Replacement
‘Use the recent past as a predictor of the mear future

Least Recently Used Page Replacement
‘Use the recent past as a predictor of the mear future

+ Replace the page that hasn't been referenced for the longest
time
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+ Replace the page that hasn't been referenced for the longest
time
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Least Recently Used Page Replacement
Implementation

Least Recently Used Page Replacement
Implementation

+ Maintain a "stack” of recently used pages
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+ Maintain a "stack” of recently used pages
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Least Recently Used Page Replacement
Alternate Implementation -- Aging Register

The Clock algorithm

Approximate LRU Page Replacement

+ Maintain an n-bit aging register R = R, R, ,..R, for each page
frame
» Ona page reference, set R, ; to 1
> Every T units of time, shift the aging vector right by one bit

+ Key idea:
> Aging vector can be interpreted as a positive binary number
> Value of R decreases periodically unless the page is referenced

+ Page replacement algorithm:
» On a page fault, replace the page with the smallest value of R

accessed

revolution of the clock
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+ Maintain a circular list of pages resident in memory
» Use a clock (or used/referenced) bit to track how often a page is

> The bit is set whenever a page is referenced
+ Clock hand sweeps over pages looking for one with used bit = 0
> Replace pages that haven't been referenced for one complete

func Clock Replacement
begin
while (victim page not found) do
if (used bit for current page = 0) then
replace current page
else
reset used bit
end if
advance clock pointer
end while
end Clock Replacement

Clock Page Replacement

Clock Page Replacement
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Optimizing Approximate LRU Replacement

The Second Chance Algorithm

The Second Chance algorithm Example
¢ There is a significant cost to replacing "dirty” pages
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The Second Chance Algorithm The Problem With Local Page Replacement
Example How much memory do we allocate to a process?
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The Problem With Local Page Replacement

How much memory do we allocate to a process?

Page Replacement Algorithms

Performance
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+ Local page replacement
» LRU — Ages pages based on when they were last used
» FIFO — Ages pages based on when they're brought into
memory
+ Towards global page replacement ... with variable number of
page frames allocated fo processes

The principle of locality

» 90% of the execution of a program is sequential

» Most iterative constructs consist of a relatively small number of
instructions

> When processing large data structures, the dominant cost is sequential
processing on individual structure elements

Optimal Page Replacement
For processes with a variable number of frames

Optimal Page Replacement
For processes with a variable number of frames

¢ VMIN — Replace a page that is not referenced in the next t
accesses

+ Example: 7= 4
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+ Example: 7= 4
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Explicitly Using Locality
The working set model of page replacement

Working Set Page Replacement

Implementation

+ Assume recently referenced pages are likely to be referenced
again soon...

+ ...and only keep those pages recently referenced in memory
(called the working set)
> Thus pages may be removed even when no page fault occurs
» The number of frames allocated to a process will vary over time

+ A process is allowed fo execute only if its working set fits into
memory
> The working set model performs implicit load control

+ Keep track of the last 7 references
» The pages referenced during the last = memory accesses are
the working set
> tis called the window size

+ Example: Working set computation, 7= 4 references:
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Working Set Page Replacement
Implementation

+ Keep track of the last 7 references
» The pages referenced during the last = memory accesses are
the working set
> tis called the window size

+ Example: Working set computation, 7= 4 references:
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