
1

Page Replacement Algorithms

2

Virtual Memory Management
Fundamental issues : A Recap

Key concept: Demand paging
 Load pages into memory only when a page

fault occurs

Issues:
 Placement strategies

 Place pages anywhere – no placement policy
required

 Replacement strategies
 What to do when there exist more jobs than

can fit in memory

 Load control strategies
 Determining how many jobs can be

in memory at one time

Operating SystemOperating System

“System Software”“System Software”

User Program 1User Program 1

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

...

Memory

3

Page Replacement Algorithms
Concept

Typically Σi VASi >> Physical Memory

With demand paging, physical memory fills quickly

When a process faults & memory is full, some page must be
swapped out
 Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?
Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

4

Page Replacement Algorithms
Evaluation methodology

Record a trace of the pages accessed by a process
 Example: (Virtual) address trace...

(3,0), (1,9), (4,1), (2,1), (5,3), (2,0), (1,9), (2,4), (3,1), (4,8)

 generates page trace
3, 1, 4, 2, 5, 2, 1, 2, 3, 4 (represented as c, a, d, b, e, b, a, b, c, d)

Simulate the behavior of a page replacement algorithm on the
trace and record the number of page faults generated

fewer faults better performance

5

Optimal Page Replacement
Clairvoyant replacement

Replace the page that won’t be needed for the longest time in
the future

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Time page
needed next

6

Optimal Page Replacement
Clairvoyant replacement

Replace the page that won’t be needed for the longest time in
the future

c a d b e b a b c d

a a a a a a a a a d
b b b b b b b b b b
c c c c c c c c c c

Faults • •

Pa
ge

Fr
am

es

d d d d e e e e e e

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

a = 7
b = 6
c = 9
d = 10

Time page
needed next

a = 15
b = 11
c = 13
d = 14

7

Local Page Replacement
FIFO replacement

Simple to implement
 A single pointer suffices

Performance with 4 page frames:

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

Physical
Memory0

2

3

Frame List

8

Local Page Replacement
FIFO replacement

Simple to implement
 A single pointer suffices

Performance with 4 page frames:

c a d b e b a b c d
a a a a e e e e e d
b b b b b b a a a a
c c c c c c c b b b

Faults • • • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

Physical
Memory0

2

3

Frame List

9

Least Recently Used Page Replacement
Use the recent past as a predictor of the near future

Replace the page that hasn’t been referenced for the longest
time

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

Time page
last used

10

Least Recently Used Page Replacement
Use the recent past as a predictor of the near future

Replace the page that hasn’t been referenced for the longest
time

c a d b e b a b c d
a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

a = 2
b = 4
c = 1
d = 3

Time page
last used

a = 7
b = 8
e = 5
d = 3

a = 7
b = 8
e = 5
c = 9

11

Least Recently Used Page Replacement
Implementation

Maintain a “stack” of recently used pages

c a d b e b a b c d
a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

c
c
a

c
a
d

c
a
d
b

a
d
b
e

a
d
e
b

d
e
b
a

d
e
a
b

e
a
b
c

a
b
c
d

LRU
page stack

Page to replace c d e
12

Least Recently Used Page Replacement
Implementation

Maintain a “stack” of recently used pages

c a d b e b a b c d
a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

c
c
a

c
a
d

c
a
d
b

a
d
b
e

a
d
e
b

d
e
b
a

d
e
a
b

e
a
b
c

a
b
c
d

LRU
page stack

Page to replace c d e

13

Least Recently Used Page Replacement
Alternate Implementation --- Aging Register

Maintain an n-bit aging register R = Rn-1Rn-2…R0 for each page
frame
 On a page reference, set Rn-1 to 1
 Every T units of time, shift the aging vector right by one bit

Key idea:
 Aging vector can be interpreted as a positive binary number
 Value of R decreases periodically unless the page is referenced

Page replacement algorithm:
 On a page fault, replace the page with the smallest value of R

14

Approximate LRU Page Replacement
The Clock algorithm

Maintain a circular list of pages resident in memory
 Use a clock (or used/referenced) bit to track how often a page is

accessed
 The bit is set whenever a page is referenced

Clock hand sweeps over pages looking for one with used bit = 0
 Replace pages that haven’t been referenced for one complete

revolution of the clock

func Clock_Replacement
begin
 while (victim page not found) do
 if(used bit for current page = 0) then
 replace current page
 else
 reset used bit
 end if
 advance clock pointer
 end while
end Clock_Replacement

resident bit
used bit
frame number

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 111Page 3: 1

15

d
c
b
a

c

Clock Page Replacement
Example

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table entries
for resident pages:

1

d
c
b
a

a
2

d
c
b
a

d
3

d
c
b
a

b
4

e
5

b
6

a
7

b
8

c
9

d
10

1
0
0
0

e
b
c
d

1
1
0
0

e
b
c
d

1
1
1
0

e
b
a
d

1
1
1
0

e
b
a
d

1
1
1
1

e
b
a
c

1
0
0
0

d
b
a
c

1
1
1
1

a
b
c
d

16

d
c
b
a

c

Clock Page Replacement
Example

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table entries
for resident pages:

1

d
c
b
a

a
2

d
c
b
a

d
3

d
c
b
a

b
4

d
c
b
e

e
5

•
d
c
b
e

b
6

d
a
b
e

a
7

•
d
a
b
e

b
8

c
a
b
e

c
9

•
c
a
b
d

d
10

•

1
0
0
0

e
b
c
d

1
1
0
0

e
b
c
d

1
0
1
0

e
b
a
d

1
1
1
0

e
b
a
d

1
1
1
1

e
b
a
c

1
0
0
0

d
b
a
c

1
1
1
1

a
b
c
d

17

Optimizing Approximate LRU Replacement
The Second Chance algorithm

There is a significant cost to replacing “dirty” pages

Modify the Clock algorithm to allow dirty pages to always survive
one sweep of the clock hand
 Use both the dirty bit and the used bit to drive replacement

resident bit
used bit
dirty bit

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 191Page 3: 1

0

0

1

0

1

Before clock
sweep

After clock
sweep

used dirty

0
0
1
1

0
1
0
1

used dirty

0
0
0

0
0
1

replace page

Second Chance Algorithm

18

d
c
b
a

c

The Second Chance Algorithm
Example

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table
entries

for resident
pages:

1

d
c
b
a

aw
2

d
c
b
a

d
3

d
c
b
a

bw
4

b
6

aw
7

b
8

00
00
10
00

a*

b*

e
d

00
10
10
00

a*

b*

e
d

11
10
10
00

a
b*

e
d

11
10
10
10

a
b*

e
c

00
10
00
00

a*

d
e
c

10
10
10
10

a
b
c
d

11
11
10
10

a
b
c
d

e
5

c
9

d
10

19

d
c
b
a

c

The Second Chance Algorithm
Example

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table
entries

for resident
pages:

1

d
c
b
a

aw
2

d
c
b
a

d
3

d
c
b
a

bw
4

d
e
b
a

b
6

d
e
b
a

aw
7

d
e
b
a

b
8

00
00
10
00

a*

b*

e
d

00
10
10
00

a*

b*

e
d

11
10
10
00

a
b*

e
d

11
10
10
10

a
b*

e
c

00
10
00
00

a*

d
e
c

10
10
10
10

a
b
c
d

11
11
10
10

a
b
c
d

d
e
b
a

e
5

•
c
e
b
a

c
9

•
c
e
d
a

d
10

•

20

The Problem With Local Page Replacement
How much memory do we allocate to a process?

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c

a b c d a b c d a b c d

Faults

Pa
ge

Fr
am

es 0
1
2

a
b
c

1 2 3 4 5 6 7 8 9 10 11 120
Requests
Time

–

21

The Problem With Local Page Replacement
How much memory do we allocate to a process?

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c

a b c d a b c d a b c d

a a a d d d c c c b b b
b b b b a a a d d d c c
c c c c c b b b a a a d

Faults • • • • • • • • •

Pa
ge

Fr
am

es 0
1
2

a
b
c

1 2 3 4 5 6 7 8 9 10 11 120
Requests
Time

–

a a a a a a a a a a a a
b b b b b b b b b b b b
c c c c c c c c c c c c
 d d d d d d d d d

 •
22

Page Replacement Algorithms
Performance

Local page replacement
 LRU — Ages pages based on when they were last used
 FIFO — Ages pages based on when they’re brought into

memory

Towards global page replacement ... with variable number of
page frames allocated to processes

The principle of locality

 90% of the execution of a program is sequential
 Most iterative constructs consist of a relatively small number of

instructions
 When processing large data structures, the dominant cost is sequential

processing on individual structure elements

23

Optimal Page Replacement
For processes with a variable number of frames

VMIN — Replace a page that is not referenced in the next τ
accesses

Example: τ = 4

c c d b c e c e a d

Faults

Pa
ge

s
in

 M
em

or
y Page a

Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

Page e -

t = 0

t = -1

24

Optimal Page Replacement
For processes with a variable number of frames

VMIN — Replace a page that is not referenced in the next τ
accesses

Example: τ = 4

c c d b c e c e a d
- - - - - - - - F -
- - - F - - - - - -
F • • • • • • - - -

Faults • • • • •

Pa
ge

s
in

 M
em

or
y

• • • - - - - - - F

Page a
Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

- - - - - F • • - -Page e -

t = 0

t = -1

25

Explicitly Using Locality
The working set model of page replacement

Assume recently referenced pages are likely to be referenced
again soon…

... and only keep those pages recently referenced in memory
(called the working set)
 Thus pages may be removed even when no page fault occurs
 The number of frames allocated to a process will vary over time

A process is allowed to execute only if its working set fits into
memory
 The working set model performs implicit load control

26

Working Set Page Replacement
Implementation

Keep track of the last τ references
 The pages referenced during the last τ memory accesses are

 the working set
 τ is called the window size

Example: Working set computation, τ = 4 references:

c c d b c e c e a d

Faults

Pa
ge

s
in

 M
em

or
y Page a

Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

Page e •

t = 0

t = -1

t = -2

27

Working Set Page Replacement
Implementation

Keep track of the last τ references
 The pages referenced during the last τ memory accesses are

 the working set
 τ is called the window size

Example: Working set computation, τ = 4 references:

c c d b c e c e a d
• • • - - - - - F •
- - - F • • • - - -
F • • • • • • • • •

Faults • • • • •

Pa
ge

s
in

 M
em

or
y

• • • • • • - - - F

Page a
Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

• - - - - F • • • •Page e •

t = 0

t = -1

t = -2

