Fundamental issues : A Recap

Virtual Memory Management

Page Replacement Algorithms

Key concept: Demand paging

» Load pages into memory only when a page
fault occurs

+ Issues:
» Placement strategies
« Place pages anywhere - no placement policy
required
» Replacement strategies
% What to do when there exist more jobs than
can fit in memory
» Load control strategies

« Determining how many jobs can be
in memory at one time

User Program n

User Program 2

User Program 1
“System Software”

Operating System

Memory

Page Replacement Algorithms
Concept

Page Replacement Algorithms

Evaluation methodology

+ Typically Z; VAS; » Physical Memory

+ With demand paging, physical memory fills quickly

+ When a process faults & memory is full, some page must be
swapped out

> Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?

Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

+ Record a trace of the pages accessed by a process

> Example: (Virtual) address trace...

(3.0). (19), (A1), (21), (5.3). (20), (19), (24), 3.1). (4.8)

> generates page trace

3,1,4,2,5,2,1,2,3,4 (representedas c,a,d, b, e, b,a, b, c,

Simulate the behavior of a page replacement algorithm on the
trace and record the number of page faults generated

fewer faults I:> better performance

Optimal Page Replacement

Clairvoyant replacement

Optimal Page Replacement
Clairvoyant replacement

+ Replace the page that won't be needed for the longest time in

+ Replace the page that won't be needed for the longest time in

the future the future
Time o1 2 3 4 6 8 10 Time ofj1 2 3 4 5 6 7 8 9 10
Requests ¢c a d b b b d Requests ¢c a d b e b a b ¢ d
0|a Olala a a a a a a a a @
g,)ng 11]b g,)ng 1/ |\b b b b b b b b b b
S = S 3
AE 2 | AE 2lc|lc ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
314 3(d|d d d d(e) e e e e e
Faults Faults C C
a=17 a=15
Time page Time page b=6 b=11
needed next needed next c=9 c=13
d=10 d
Local Page Replacement Local Page Replacement
FIFO replacement FIFO replacement
* Simple to implemen'r 3 Mermmory * Simple o impleme"* 3 Memory
> A single pointer suffices > > A single pointer suffices 5
Frame List Frame List
+ Performance with 4 page frames: + Performance with 4 page frames:
Time oOj1 2 3 4 5 6 8 9 10 Time oj1 2 3 4 5 6 7 8 9 10
Requests ¢c a d b e b b ¢ d Requests ¢c a d b e b a b ¢ d
0 la ,0lala a a a @ e e e e @
QE 1 |b B2 1 |b|lo b b b b b (a) a a a
S 3 S 3
AE 2 |c A 2 |clec ¢ ¢ ¢ ¢ ¢ ¢ @ b b
3 |d 3ldld d d d d d d d (c) c
Faults Faults

Least Recently Used Page Replacement
‘Use the recent past as a predictor of the mear future

Least Recently Used Page Replacement
‘Use the recent past as a predictor of the mear future

+ Replace the page that hasn't been referenced for the longest
time

Time oj1 2 3
Requests c a d

0

Page
Frar%les

QU O o9

1
2
3

Faults

Time page
last used

+ Replace the page that hasn't been referenced for the longest
time

Time 0
Requests

0

10

Page
rames

F
QAL O S QIS+

d
a
b
@
c

QLD SIS
YRS I N
QAL D S QS0

5
e
a
b
©
d

SIS Y
RS N RS
QO SN |Ww

QU O o8

1
2
3

Faults

Time page
last used

Rﬁ?ﬁ’:“)w > o o o

L0 9
nwnnn
L — g
N 9
I n
L Yoo
\O U1 oo

Least Recently Used Page Replacement
Implementation

Least Recently Used Page Replacement
Implementation

+ Maintain a "stack” of recently used pages
Time 0|1 3 4 5 6 8 10
Requests G a d b b a b ¢ d
w 0 a|a a a a a a a a a a
Qe v |efle o b b b b b b b b
S <
Aas 2 clc c c c @ e e e e @
42
3 |lald a a4 a d d d (¢) ¢
Faults o °
pdgesmk EEEEEEEEEE
meose OOOOO0OOO0O

+ Maintain a "stack” of recently used pages

Time 0]1 2 3 4 5 6 7 8 10
Requests G a d b e b a b ¢ d
w 0 a|a a a a a a a a a a
[N}
1 b|b b b b b b b b b b
- @
Aas 2 clc c c c @ e e e e
=
3 \d|la a a d d d d (¢) ¢
Faults o . .
LRU
page stack =
Page to replace D

Least Recently Used Page Replacement
Alternate Implementation -- Aging Register

The Clock algorithm

Approximate LRU Page Replacement

+ Maintain an n-bit aging register R = R, R, ,..R, for each page
frame
» Ona page reference, set R, ; to 1
> Every T units of time, shift the aging vector right by one bit

+ Key idea:
> Aging vector can be interpreted as a positive binary number
> Value of R decreases periodically unless the page is referenced

+ Page replacement algorithm:
» On a page fault, replace the page with the smallest value of R

accessed

revolution of the clock

Page7:

Page 3: n“ Page 0: nn

resid¢nt bit ? T
used pit ———
fram¢ number

Page 4: nm

+ Maintain a circular list of pages resident in memory
» Use a clock (or used/referenced) bit to track how often a page is

> The bit is set whenever a page is referenced
+ Clock hand sweeps over pages looking for one with used bit = 0
> Replace pages that haven't been referenced for one complete

func Clock Replacement
begin
while (victim page not found) do
if (used bit for current page = 0) then
replace current page
else
reset used bit
end if
advance clock pointer
end while
end Clock Replacement

Clock Page Replacement

Clock Page Replacement

Example
Time 0|1 2 3 4 5 6 7 8 9 10
Requests c a d b @ b a @ d
0Ola la a a a
22 1 (bbb b b
S <
A 2 |c |c ¢ ¢ ¢
31d |d d d d
Faults
1
1|a
Page table entries s
for resident pages:
1|c
1|{d

Example
Time o|1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b d
Ola Ja a a a @ e e e e @
Qg L | |6 b b b b b b b b b
S <
A 2 |c |Jc ¢ ¢ ¢ ¢ ® @ a a a
3|ld|ldddd d d d d (¢) c
Faults
1
1|a 1ef|[1fe||[1|e||l|e]]|l|e]]|l|d
| 1] 5 on| [1]a] [o]a] [1]a][1]2] [0]a
f sid ages:
or residentpages: [olc| [o] <] [1]a] [1]a] [1]a] [0]a
1|d 0|d||0|d||0|d||O|d||1|c||Ofc

Optimizing Approximate LRU Replacement

The Second Chance Algorithm

The Second Chance algorithm Example
¢ There is a significant cost to replacing "dirty” pages
Time o1 2 3 4 5 6 7 8 9 10
+ Modify the Clock algorithm to allow dirty pages to always survive Requests c a* d b e b av b ® d
one sweep of the clock hand
> Use both the dirty bit and the used bit to drive replacement 0 ala a a a
P
%’g 1b|b b b b
<
Page 7:[1]1]0] 0] Second Chance Algorithm A 2] cle e c ¢
Before clock After clock 3 d|d d d d
Pafe L[5] Paee:[[PI0] 7] o e Fauls
age 1: age 4: 3 aults
used dirty used dirty ;
0 0 replace page 0la
0 1 0 0 Page table 0l b
Page 3: [I]1]1] 9 | Pageo: [ITITI] 4] 1 o0 0 0 ; entries
7 1 1 0 1 or resident |10 ¢
i i ages:
o 7 | P o
dirty it
The Second Chance Algorithm The Problem With Local Page Replacement
Example How much memory do we allocate to a process?
Time 0 1 2 3 4 5 6 7 8 9 10 Time 0 1 2 3 4 5 6 7 8 9 100 11 12
Sts b d b d b d
— c a" d b e b av b d }llequests a c a c a @
Olala a a a a a a a a a % 0 |a
@ [P
g1 |ofloo b0 b b b b b @ 2E |
ShE g
A 2| clc c ¢ ¢ @ e e e e e 2 |
3|d|ldddd d a4 d d () c Faults
Faults M M M I
1 0 a
Pase table A4 1] a| [oo]a?] Joofa’] [11] a 1] a| [ooa” %g 1 |b
age table 0 o o * <
entries |10] & 11| b | [00]5"| 10|67 [10(b 10|67| [10] d s 2 e
for resident |10] ¢ 10| ¢ | [10] e | [10] e] [10] e 10| e | [00] e 3]-
PSS o2 10]] [0o[@] [00] @] [00[2 10] ¢ |oo] ¢ e—

The Problem With Local Page Replacement

How much memory do we allocate to a process?

Page Replacement Algorithms

Performance

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Requests a b c d a b c d a b ¢ d
|
08 0 a|a a @ d d @ c c b) b b
=N N) bbb (@ a a (@ a da() «
[aVR
2 clec c c c c @ b b @ a a @
Faultb
|
0 a|a a a a a a a a a a a
n
%g 1 |b]b b b b b b b b b b b
AS 2 c]c c c c c c c c c c c c
=
3 |- @ d d
Faults -

+ Local page replacement
» LRU — Ages pages based on when they were last used
» FIFO — Ages pages based on when they're brought into
memory
+ Towards global page replacement ... with variable number of
page frames allocated fo processes

The principle of locality

» 90% of the execution of a program is sequential

» Most iterative constructs consist of a relatively small number of
instructions

> When processing large data structures, the dominant cost is sequential
processing on individual structure elements

Optimal Page Replacement
For processes with a variable number of frames

Optimal Page Replacement
For processes with a variable number of frames

¢ VMIN — Replace a page that is not referenced in the next t
accesses

+ Example: 7= 4

10

Q (W
S|
wn
~
=}

Requests c c

Page a
g
Page b | -

g
Page c | -
Paged |
g
Pagee | -

¢ VMIN — Replace a page that is not referenced in the next t
accesses

+ Example: 7= 4

Time 0 3 4 5 7 9 10
Requests ¢c ¢ d b ¢ e c a d

= Pagea | o I - - - - - o o o @ -
2 g Pageb | - | - > = @ s - D R
S0G Pagec | - @ . . o . . B - - _
b I @

=] & r=-1

= Pagee| - | - - B B = @ . . - -
Faults O

Explicitly Using Locality
The working set model of page replacement

Working Set Page Replacement

Implementation

+ Assume recently referenced pages are likely to be referenced
again soon...

+ ...and only keep those pages recently referenced in memory
(called the working set)
> Thus pages may be removed even when no page fault occurs
» The number of frames allocated to a process will vary over time

+ A process is allowed fo execute only if its working set fits into
memory
> The working set model performs implicit load control

+ Keep track of the last 7 references
» The pages referenced during the last = memory accesses are
the working set
> tis called the window size

+ Example: Working set computation, 7= 4 references:

Time 0

10

QU (W

Requests c c

Pagea | 2
Page b | -
Page c | -
Page d
Page e

Pages

in Memory

Faults

Working Set Page Replacement
Implementation

+ Keep track of the last 7 references
» The pages referenced during the last = memory accesses are
the working set
> tis called the window size

+ Example: Working set computation, 7= 4 references:

Time o1 2 3 4 5 6 7 8 9 10
Requests ¢c ¢ d b ¢ e ¢ e a d
o Pagea | o | ° o o o = - - @ .
2 g Page b - - @ © o o = = =
508 Pagec e e e e e e e e .
Q“E Page d 0 O O O S - - - @
= Pagee = = = = @ . . . °
Faults C ° ° ° °

