
1

C for Java Programmers

Don Porter
CS372H Spring 2007

Same Basic Syntax
 Data Types: int, char

 void - (untyped pointer)
 Can create other data types using typedef

 No Strings - only char arrays
 Last character needs to be a 0

Not ‘0’, but ‘\0’

struct - C’s object
 struct foo {
 int a;
 void *b;
 void (*op)(int c); // function pointer
 } foo_t; // <------type declaration
 Actual contiguous memory
 Includes data and function pointers

More on Function Pointers
 C allows function pointers to be used as

members of a struct or passed as
arguments to a function

 Continuing the previous example:

void myOp(int c){ /*…*/ }
/*…*/
foo_t *myFoo = malloc(sizeof(foo_t));
myFoo->op = myOp; // set pointer
/*…*/
myFoo->op(5); // Actually calls myop

2

No Constructors or Destructors
 Must manually allocate and free

memory - No Garbage Collection!
 void *x = malloc(sizeof(foo_t));

 sizeof gives you the number of bytes in a
foo_t - DO NOT COUNT THEM YOURSELF!

 free(x);
Memory allocator remembers the size of

malloc’ed memory
 Must also manually initialize data

 Custom function
 memset(x, 0, sizeof(x)) will zero it

Memory References
 ‘.’ - access a member of a struct

 myFoo.a = 5;
 ‘&’ get a pointer to a variable

 foo_t *fPointer = &myFoo;
 ‘->’ - access a member of a struct, via a

pointer to the struct
 fPointer->a = 6;

 ‘*’ - dereference a pointer
 if(5 == *intPointer){…}

 Without the *, you would be comparing 5 to the
address of the int, not its value.

Memory References, cont.
 ‘[]’ - refer to a member of an array

 char *str = malloc(5 * sizeof(char));
 str[0] = ‘a’;
 Note: *str = ‘a’ is equivalent
 str++; increments the pointer such that

*str == str[1]
str

str[0] str[1] str[2] str[3] str[4]

str+1 str+2 str+3 str+4

The Chicken or The Egg?
 Many C functions (printf, malloc, etc)

are implemented in libraries
 These libraries use system calls
 System calls provided by kernel
 Thus, kernel has to “reimplement”

basic C libraries
 In some cases, such as malloc, can’t use

these language features until memory
management is implemented

3

Referring to Assembly from C
 “extern” keyword imports a variable or

function
 Can call a labeled code region as a

function if it implements proper calling
convention
 In most cases, though, you will just inline

a “call” instruction

For more help
 man pages are your friend!

 (not a dating service)!
 Ex: ‘man malloc’, or ‘man 3 printf’

Section 3 is usually where libraries live - there
is a command-line utility printf as well

 Use ‘apropos term’ to search for man
entries about term

 The C Programming Language by
Brian Kernighan and Dennis Ritchie is
a great reference.

