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Abstract. A probabilistic method is proposed for 
reading remote clocks in distributed systems sub- 
ject to unbounded random communication delays. 
The method can achieve clock synchronization 
precisions superior to those attainable by previous- 
ly published clock synchronization algorithms. Its 
use is illustrated by presenting a time service which 
maintains externally (and hence, internally) syn- 
chronized clocks in the presence of process, com- 
munication and clock failures. 
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Introduction 

In a distributed system, external clock synchroniza- 
tion consists of maintaining processor clocks with- 

in some given maximum derivation from a time 
reference external to the system. Internal clock syn- 
chronization keeps processor clocks within some 
maximum relative deviation of each other. Exter- 
nally synchronized clocks are also internally syn- 
chronized. The converse is not true: as time passes 
internally synchronized clocks can drift arbitrarily 
far from external time. 

Clock synchronization is needed in many dis- 
tributed systems. Internal clock synchronization 
enables one to measure the duration of distributed 
activities that start on one processor and terminate 
on another processor and to totally order distrib- 
uted events in a manner that closely approximates 
their real time precedence. To allow exchange of 
information about the timing of events with other 
systems and users, many systems require external 
clock synchronization. For example external time 
can be used to record the occurrence of events for 
later analysis by humans, to instruct a system to 
take certain actions when certain specified (exter- 
nal) time deadlines occur, and to order the occur- 
rence of related events observed by distinct sys- 
tems. 

This paper proposes a new approach for read- 
ing remote clocks in networks subject to un- 
bounded random message delays. The method can 
be used to improve the precision of both internal 
and external synchronization algorithms. Our ap- 
proach is probabilistic because it does not guaran- 
tee that a processor can always read a remote clock 
with an a priori specified precision (such a guaran- 
tee cannot be provided when there is no bound 
on message delays). However, by retrying a suffi- 
cient number of times, a process can read the clock 
of another process with a given precision with a 
probability as close to one a desired. An important 
characteristic of our method is that when a process 
succeeds in reading a remote clock, it knows the 
actual reading precision achieved. 
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The use of the remote clock reading method 
is illustrated by describing a distributed time ser- 
vice which maintains externally synchronized 
clocks despite process, communication and clock 
failures. The service is implemented by a group 
of time servers which execute a simple probabilistic 
clock synchronization protocol. After presenting 
the protocol and its performance, we conclude by 
comparing it with other published clock synchroni- 
zation protocols. 

Message delays 
To synchronize the clocks of their host processors, 
time server processes communicate among them- 
selves by sending messages via a communication 
network. Since there is a one to one correspon- 
dence between time server processes and proces- 
sors, we do not distinguish between processes and 
processors. For example, when we say "the clock 
of process P"  we mean "the clock of the processor 
on which P runs". 

In distributed systems the task of synchronizing 
clocks is made difficult (among other things) by 
the existence of unpredictable communication de- 
lays. Between the moment a process P sends a mes- 
sage to a process Q and the moment Q receives 
the message, there is an arbitrary, random real time 
delay. A minimum rain for this delay exists. It can 
be computed by counting the time needed to pre- 
pare, transmit, and receive an empty message in 
the absence of transmission errors and any other 
system load. In general, one does not know an 
upper bound on message transmission delays. 
These depend on the amount of communication 
and computation going on in parallel in the system, 
on the possibility that transmission errors will 
cause messages to be retransmitted several times, 
and on other random events, such as page faults, 
process switches, the establishment of new commu- 
nication routes, or a freeze of the activity of a pro- 
cess caused by a human operator who pushes the 
'halt '  button on the panel of the processor hosting 
that process. 
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Fig. 1 

Measurements of process to process message 
delays in existing systems indicate that typically 
their distribution has a shape resembling that illus- 
trated in Fig. 1. This distribution has a maximum 
density at a mode point between the minimum de- 
lay min and the median delay, usually close to min, 
with a long thin tail to the right. For instance, 
a sample measurement of 5000 message round trip 
delays between two light-weight MVS processes 
(running on two IBM 4381 processors connected 
via a channel-to-channel local area network) per- 
formed at the Almaden Research Center (Dong, 
private communication, June 1988), indicates a me- 
dian round trip delay of 4.48 ms situated between 
a minimum delay of 4.22 ms and an average ob- 
served delay of 4.91 ms. While the maximum ob- 
served delay in this experiment (during which no 
route changes or 'halt '  button pushes occurred) 
was very far at the right: 93.17 ms, 95% of all ob- 
served delays were shorter than 5.2 ms. 

Previous work 
Most published clock synchronization algorithms 
(e.g., Cristian et al. 1985; Dolev et al. 1984; Lam- 
port 1987; Lamport  and Melliar-Smith 1985; Lun- 
delius-Welch and Lynch 1988; Schneider 1987; 
Srikanth and Toneg 1987) assume the existence of 
an upper bound max on real time message trans- 
mission delays. If the delays experienced by deliv- 
ered messages are smaller than max with probabili- 
ty 1, these algorithms keep clocks within a maxi- 
mum relative deviation greater than max-min with 
probability one. It is known (Lundelius and Lynch 
1984) that the closeness with which clocks can be 
synchronized with certainty (i.e., with probabil- 
ity one) is limited: n clocks cannot be synchron- 
ized with certainty closer than (max-min)(1-  1/n), 
even when no failures occur and clocks do not 
drift. 

Other authors (e.g., Gusella and Zatti 1987; 
Marzullo 1984) adopt the premise that message de- 
lays are unbounded, and use as upper bounds on 
synchronization message delays the timeout delays 
employed for detecting communication failures be- 
tween processes. Such timeouts are introduced by 
system designers to prevent situations in which 
some process P waits forever for a message from 
another process Q that will never arrive (for exam- 
ple because of a failure of Q). Since message delays 
are unbounded, it is understood that a small per- 
centage of messages may need more than a given 
timeout delay to travel between processes, i.e., there 
is a chance that "false" communication failures are 
detected. This is the price paid for letting systems 
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subject to unbounded message transmission delays 
continue to work despite process failures and mes- 
sage losses. To reduce the likelihood of "false" 
alarms, a timeout delay is conservatively estimated 
from network delay statistics to ensure that mes- 
sage delays are smaller than the chosen timeout 
with a very high probability p (typically p > 0.99). 
If such a timeout delay is denoted by "maxp",  the 
best synchronization precision achievable by the 
algorithms proposed in Gusella and Zatti (1987) 
and Marzullo (1984) can be characterized as being 
4 (maxp-min). 

Assumptions on clocks, processes, 
and communication 

Each time server process has access to the hard- 
ware clock H of its host processor. To simplify 
our presentation, we assume these clocks have a 
much higher resolution than the time intervals (e.g., 
process to process communication delays) which 
must be measured. For example, if the delays ob- 
servable are of the order of milliseconds, we assume 
the hardware clocks have a microsecond resolu- 
tion. A clock H is correct if it measures the length 
t - t '  of any real time interval [t', t] with an error 
of at most p( t - t ' ) ,  where p is the maximum clock 
drift rate from external (or real) time specified by 
the clock manufacturer: 

(1 --p)(t--t')<_H(t)--H(t')<_(1 +p)(t--t'). (C) 

In the above formula, it is implicit that the de- 
lay t -  t' is long enough so that the worst case error 
in measuring its length caused by the discrete clock 
granularity is negligible compared to that due to 
drift. For most types of quartz clocks, the constant 
p is of the order of 10-6. For example the worst 
actual drift rate measured for the microsecond res- 
olution clocks existing on the IBM 4381 processors 
in our laboratory is 6 ,10  _6 (Dong, private com- 
munication, June 1988). Since p is such a small 
quantity, we ignore in this paper terms of the order 
of p2 or smaller (e.g., we equate ( l + p )  -1 with (1 
- p )  and (1 _ p ) - i  with (1 +p)). A clock failure oc- 
curs if the clock correctness condition (C) is violat- 
ed. Examples of clock failure types are: crash fail- 
ures (i.e., the clock stops), timing failures (e.g., a 
change in the frequency of the quartz oscillator 
driving the clock counter causes the clock value 
to be incremented too fast or too slowly), and arbi- 
trary, or Byzantine, failures (e.g., the clock counter 
displays a nonmonotonic time because some of its 
bits are stuck at 0 or at 1). To simplify our presenta- 

tion, we assume initially that processor clocks are 
correct. We relax this assumption later, by showing 
how one can detect and handle arbitrary clock fail- 
ures. 

We assume that message delays between pro- 
cesses are unbounded. As we will see later, the closer 
the distribution of such delays resembles that illus- 
trated in Fig. 1 (i.e., the closer the median delay 
is to rain), the better our probabilistic clock syn- 
chronization algorithms perform. What is remark- 
able, however, is that their correctness does not de- 
pend on any assumption about the particular 
shape of the message delay density function. We 
also assume that, to let processes continue to work 
despite process failures or message losses, a timeout 
delay maxp is chosen. The adoption of such a time- 
out delay divides observable network behaviors 
into two classes. A communication path (P, Q) be- 
tween processes P and Q is said to function correct- 
ly if any message sent by P is delivered uncorrupted 
to Q within maxp time units. If a message accepted 
at one path end is never delivered at the other 
end or is delivered after more than maxp time units, 
the path suffers a late timing or performance failure 
(Cristian et al. 1985). We assume that communica- 
tion channels between processes can only be af- 
fected by performance failures. 

Processes undergo state transitions in response 
to message arrivals and timeout events generated 
by timers. To simplify our presentation we assume 
that between the occurrence of a timeout and the 
invocation of the associated timeout handler there 
is a null (process scheduling) delay and that process 
timers advance at the same rate as the clocks of 
the underlying processors. Thus, a correct process 
which at real time t sets a timer to measure W 
time units, is awakened in the real time interval 
[ t+(1-p)W,,  t+(1 +p)W].  We say that a process 
behaves correctly if in response to trigger events 
(such as message arrivals or timeout occurrences) 
it behaves in the manner specified. The specifica- 
tion prescribes the state transitions which should 
occur as well as the time intervals within which 
these transitions should occur. If, in response to 
some trigger event, a process never performs its 
specified state transition or undergoes it too early 
or too late (i.e., outside the time interval specified), 
the process is said to suffer a timing failure (Cristian 
et al. 1985). Processes which crash, omit to send 
certain messages, respond too slowly to trigger 
events (because of excessive load or slow timers), 
or time out too early (because of timers running 
at speeds greater than 1 + p) are examples of timing 
failures. We assume that processes can suffer only 
timing failures. 
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A t t e m p t i n g  to read a r e m o t e  c l o c k  

To read the clock of a process Q, a process P sends 
a message ("time = ? ' )  to Q. When Q receives the 
message it replies with a message ( " t i m e = " ,  T) 
where T is the time on Q's clock. If P does not  
receive a reply because of a failure, its a t tempt  at 
reading Q's clock fails. Assume that  P receives a 
reply and let D be half of the round trip delay 
measured on P' clock between the sending of the 
( " t i m e = ? " )  message and the reception of the 
("time = ", T) message. 

Theorem. I f  the clocks of processes P and Q are 
correct, the value displayed by Q's clock when P 
receives the ("time = ", T) message is in the interval 
[ T + m i n ( 1  - p ) ,  T+2D(1  + 2 p ) - m i n ( 1  +p)] .  

Proof Let t be the real-time when P receives the 
( " t i m e = " ,  T) message from Q and CQ(t) be the 
value displayed by Q's clock at that  time. Let 
min + e, min + fi, e > 0, fl > 0, be the real time delays 
experienced by the ("time = ?") and ("time = ", 7) 
messages, respectively, and let 2d be the real time 
round trip delay: 

2 d = 2  rain + c~+fi. (1) 

Since e and fl are positive, (1) implies: 

0 < f l < 2 d - 2  min. (2) 

F r o m  the definition of fi, and the fact that  Q's clock 
can run at any speed in the interval [ 1 - p ,  1 + p ] ,  
we can infer that, at real time t, Q's clock satisfies 
the condition: 

C e (t) { [ T +  (min + fl)(1 - p), T +  (min + fi)(1 + p)]. 
(3) 

By combining (2) and (3) we obtain: 

Cq(t)~[T+min(1 --p), T + ( 2 d - m i n ) ( 1  +p)] .  (4) 

Since the clock that  P uses to measure the round 
trip delay can drift at a rate of at most  p from 
real time, it follows that  

d<D( l+p) .  (5) 

By substituting (5) into (4) we get (after some sim- 
plifications): 

C o (t) e [ T+  min (1 -- p), 
T + 2 D ( l + 2 p ) - m i n ( l + p ) ] .  [] (6) 

The above theorem indicates that  P can deter- 
mine an interval which contains Q's clock value 
if it measures the round trip delay 2D. Since possi- 
ble scenarios such as e = 2 ( d -  rain), fl = 0 and e = 0, 
f i = 2 ( d - m i n )  are indistinguishable to P, and we 

assume that  P does not  know the drift rate of Q's 
clock or its own clock, the value CQ(t) can be any 
point in this interval. In other words: 
[ T + m i n ( 1  --p), T + 2 D ( 1  + 2 p ) - - m i n ( 1  +p)]  is the 
smallest interval which P can determine in terms 
of T and D that  covers Q's clock value. 

Since P has no means of knowing exactly where 
Q's clock is in the interval (6), the best it can do 
is to estimate CQ(t) by a function C~(T, D) of what 
it knows, that  is, T a n d  D. In doing so, the actual 
error that  P makes is: 

I C~(T, D) = Co(t) I. 

P minimizes the maximum error it can make in 
estimating CQ(t) by choosing C~(T, D) to be the 
midpoint of the interval (6): 

C~(T, D) = T+D(1  + 2 p ) -  min p. (7) 

For  this choice of C~(T, D), the maximum error 
e that  P can make when reading Q's clock is half 
the length of the interval (6): 

e = D ( l  + 2p)--min. (8) 

Any  other estimate choice leads to a bigger maxi- 
m u m  error. We refer to the expression (7) as "P ' s  
reading of Q's clock" and to (8) as "P ' s  reading 
error"  or "P ' s  reading precision". 

R e a d i n g  a r e m o t e  c lock  with 
a spec i f ied  prec is ion  

Formula  (8) can be interpreted as follows: the 
shorter the round trip delay is, the smaller P's error 
in reading Q's clock is. Thus, if P wants to achieve 
a reading error smaller than a certain specified 
maximum error (or precision) e, it must  discard 
any reading at tempt  for which it measures an actu- 
al round trip delay greater than 2 U, where 

U = (1 - 2p)(~ + min). (9) 

Indeed, by (8), such clock readings can lead to actu- 
al reading errors greater than ~. For  this reason, 
we call a round trip delay smaller than  2 U success- 
ful, and refer to 2 U as the timeout delay necessary 
for achieving the reading precision e. When the 
process P observes a successful round trip, we say 
that  it reaches rapport with Q. 

The closer U is to rain, the better P's reading 
precision is. However, since in the worst case P's 
timer can run at a rate as fast as 1 +p ,  P must  
chose a t imeout delay greater than  

Umin = rain(1 + p), (10) 

to ensure that  between the sending of a message 
and its reception there is a real time delay of at 
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least min. To achieve the best possible precision 
for which there exists a positive probability of rap- 
port, P must chose a timeout delay as close to 
Umi, as possible. For  such a limit timeout delay, 
formula (8) implies that the best reading precision 
achievable by a clock reading experiment is 

emi n = 3p min. (11) 

The first two p s correspond to the relative drift 
between Q's clock and P's clock while the 
("time = ", T) message travels between Q and P, 
and the third p corresponds to P's error in setting 
its timeout delay so that it measures at least min 
real time units. 

Let p be the probability that P observes a round 
trip delay greater than 2 U. The larger U is, the 
smaller p will be. Conversely, the smaller U is, the 
larger p will be. Thus, there exists a fundamental 
trade-off between the precision achievable when at- 
tempting to read a remote clock and the probabili- 
ty 1 - p  of success. The better the desired precision 
is, the smaller is the probability of success. Conver- 
sely, the worse the precision is, the greater is the 
probability of success. In the limiting case, if a max- 
imum real time message delay max is known, by 
settling for a remote clock reading precision of 
max(1 + 3 p ) - m i n  (corresponding to a timeout de- 
lay of max(1 +p)), one obtains a deterministic re- 
mote clock reading algorithm (similar to the ones 
used by the synchronization algorithms presented 
in Cristian et al. (1986), Dolev et al. (1984), Lam- 
port (1987), Lamport  and Melliar-Smith (1985), 
Lundelius-Welch and Lynch (1988), and Srikanth 
and Toueg (1987)) which always achieves rapport. 
The price for such a choice is poor precision. 

Consider now a certain specified precision e and 
the associated probability p that a reading attempt 
fails. For  this precision, the probability that process 
P reaches rapport with process Q can be increased 
if several clock reading attempts are allowed before 
P gives up. To achieve a certain degree of indepen- 
dence between successive attempts, these should be 
separated by a minimum waiting delay W. This 
delay must be chosen so as to ensure that if P 
and Q stay connected and correct, then any tran- 
sient network traffic bursts that may effect their 
communication disappear within Wclock time un- 
its with high probability. (A solution to the prob- 
lem of how to adapt to slower, nonbursty, network 
load changes is sketched later.) To avoid P at- 
tempting, ad infinitum, to read Q's clock when Q 
is permanently partitioned from P or has crashed, 

o n e  must decide on a maximum value k for the 
number of successive attempts that P is allowed 

to make. For a given choice of k, allowing for up 
to k reading attempts increases the probability of 
success to 1 _pk. Since p < 1, this probability can 
be made arbitrarily close to 1 by choosing a suffi- 
ciently large k. 

For large values of k and a choice of W that 
ensures independence between successive reading 
attempts, Bernoulli's law yields that the average 
number of reading attempts needed for achieving 
rapport is ( 1 - p ) - 1 .  Since each attempt costs two 
messages, it follows that the average number of 
messages ti for achieving rapport is 

2 
ti = (1 - p)" (12) 

Formulae (8) and (12) indicate the existence of a 
continuum of different clock reading algorithms in- 
dexed by different timeout delays U: from aggres- 
sive but risky algorithms indexed by U's close to 
min which are capable of achieving high precisions 
by possibly using a very large number of messages, 
to low risk "deterministic" algorithms indexed by 
U's close to max which achieve poor precisions 
by using a small number of messages. 

A distributed time service 

The probabilistic clock reading method described 
above can be used to improve the precision achiev- 
able by most of the internal clock synchronization 
algorithms surveyed in Schneider (1987) by letting 
time servers read probabilistically the remote clock 
values used as inputs to the convergence functions 
mentioned there. Instead of exploring this avenue, 
we devote the rest of the paper to describing a 
simple distributed time service which provides ex- 
ternal clock synchronization. 

The goal is to keep clocks synchronized to an 
official source of external time signals, such as the 
Universal Time Coordinated (UTC) signals broad- 
cast by the WWV radio station of the National 
Bureau of Standards. Commercially available re- 
ceivers (e.g., Kinemetrics/Truetime 1987) can re- 
ceive such signals. The receivers can be attached 
to processors via dedicated busses. To guard 
against a physical receiver failure, it is possible to 
pair physically independent receivers into a self- 
checking receiver unit, by continuously comparing 
their results, and interpreting any disagreement 
among them as a failure of the pair (Kinemetrics/ 
Truetime 1987). If no multiple failures occur, a self- 
checking receiver either displays correctly the ex- 
ternal time or signals an error. We assume that 
all radio receivers used by the time service are self- 
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checking. We also assume that, for reasons of econ- 
omy, only certain processors, called masters, have 
time receivers attached to them. The other proces- 
sors are referred to as slaves. To simplify our pre- 
sentation we initially assume the existence of a un- 
ique, continuously available, master time source. 
Issues related to the implementation of this master 
time source by a group of redundant physical mas- 
ters are discussed later. To further simplify the pre- 
sentation, we do not distinguish between real (or 
atomic) time and astronomical UTC time, that is, 
we ignore problems related to the existence of year- 
ly UTC time discontinuities known as "leap sec- 
onds". (For a discussion of the differences between 
these two time references, see Kopetz and Ochsen- 
reiter (1987)). We furthermore assume that the offi- 
cial source of external time is reliable and that its 
signals are always available for reception by the 
radio receivers attached to master processors. The 
investigation of the issues related to maintaining 
synchronization in the presence of erroneous exter- 
nal time signals or in the absence of such signals 
constitutes a research topic in its own right. 

Continuously adjustable clocks 

Some processor architectures enable the speed of 
a hardware clock to be changed by software while 
others do not. Since the former make clock man- 
agement dependent on the particular commands 
available for changing clock speeds, in this paper 
we chose to discuss the latter alternative. To com- 
pensate for the fact that the speed of a hardware 
clock /-/ is not adjustable, a logical clock C with 
adjustable speed is implemented in software. The 
value of C is defined as the sum of the local hard- 
ware clock H and a periodically computed adjust- 
ment function A: 

C(t)=-H(t)+A(t). 

To avoid logical clock discontinuities (i.e., jumps) 
A must be a continuous function of time. For sim- 
plicity we consider only linear adjustment func- 
tions 

A( t )=m,H( t )+N,  

where the m and N parameters are computed per- 
iodically as described below. If, at local rapport 
time L, a slave estimates that the master clock dis- 
plays time M, M + L ,  the goal is to increase (if 
M > L) or decrease (if M < L) the speed of the slave 
clock C so that it will show time M +~ (instead 
of L + c~) ~ clock time units after rapport, where 

is a positive clock amortization parameter. Since 
at the beginning and end of the amortization peri- 

od the slave clock displays the values 
L = H ( I + m ) + N  and M + ~ = ( H + ~ ) ( I + m ) + N ,  
respectively, where H is the hardware clock value 
at rapport, by solving the above system of equa- 
tions we conclude that the parameters m,N must 
be set to 

m=(M-L)/c~, N = L - ( 1  +m)*H (A) 

for the e clock time units following rapport. After 
the ~ amortization period elapses, at local time 
E = M + e, the slave clock C can be allowed to run 
again at the speed of the local hardware clock until 
the next rapport by setting m to 0 and (to ensure 
continuity of C) N to E -  H', where H' is the value 
displayed by the hardware clock at the end of the 
amortization period. 

The master-slave synchronization protocol 

The time service is implemented by a group of dis- 
tributed time server processes, one per correctly 
functioning processor in the system. The master 
server running on the master processor M keeps 
the master logical clock CM within a maximum 
deviation em (external-master) of external (or real) 
time. A slave server S keeps its logical clock C 
within a maximum deviation ms (master-slave) 
from the master clock. In this way the maximum 
deviation e s of a slave from external time will be 
era+ms and the maximum relative deviation of 
two slaves will be s s = 2 ms. 

Since the protocol used for synchronizing a 
master clock to the clock of an attached self-check- 
ing receiver is similar to that used for synchroniz- 
ing a slave clock to a master clock, we only describe 
the latter in detail. The main difference between 
the two protocols lies in the variability of observed 
round trip delays. While a variability of the order 
of milliseconds is reasonable for master slave com- 
munications, variabilities much smaller can be 
achieved for the communication between a master 
time server and the self-checking receiver attached 
via a dedicated bus (for instance by ensuring that 
the master server does not relinquish control of 
the master CPU during a receiver clock reading 
attempt). By formula (8) this yields a very high 
receiver clock reading precision. If this high read- 
ing precision is supplemented by the adoption of 
a high master clock resynchroniza~ion frequency, 
the e m constant can be kept so small that it is 
reasonable to assume in what follows that a master 
clock runs at the same speed as the external time. 

The absence of master drift, the fact that for 
current local area network technology round trip 
delays smaller than 10 s are the rule, and that a 
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drift rate p of the order of 10 - 6  o r  less makes 
terms of the form dp-where d is a round trip delay- 
insignificant, allows us to simplify the formulae (6)- 
(9) as follows. When a slave S receives a successful 
round trip of length 2D from the master M, the 
master clock CM is in the interval [-T+min, T 
+ 2 D - mini : 

CM (t) e [ T+  rain, T+  2 O -- mini. (6') 

By estimating the value of the master clock as being 
the midpoint of this interval 

CS (T,, D) =- T+ D (7') 

the maximum reading error that S can make is 

e = D - min. (8') 

The protocol followed by a slave S relies upon the 
above simplified formulae. The remainder of this 
section presents this protocol informally and ana- 
lyzes its behavior. A detailed description is given 
in the Appendix. 

To keep synchronized with a master, a slave 
S attempts periodically to reach rapport. Each at- 
tempt at rapport consists of at most k attempts 
at reading the master clock, where successive read- 
ing attempts are separated by W clock time units. 
We assume W > 2 U ,  i.e., a slave knows whether 
its previous reading attempt has succeeded when 
it is time to try again reading. If during an attempt 
to reach rapport all k reading attempts fail, S must 
leave the group of synchronized slaves (such a de- 
parture can be followed by a later rejoin). Consider 
now that one of the reading attempts results in 
a round trip delay 2 D < 2 U  allowing S to reach 
rapport with M. At rapport, the speed of the slave 
logical clock C is set according to the equations 
(A) for the next t~ real time units, ( 1 -  p) ~ _< t~ _< (1 
+p)c~, so that during amortization, say t real time 
units after rapport, O<t<_t~, the worst case dis- 
tance d between the slave clock C and the master 
clock is 

d=(1 - t / t ~ )ms+t / t~e+p t ,  (9') 

where e is the reading error and ms is the worst 
case distance between C and CM at rapport. The 
term p t in (9') reflects the fact after rapport the 
slave clock C continues to drift from CM. During 
amortization d is required to stay smaller than ms, 
i.e., 

(1 - t / t ~ ) m s + t e / t ~ + p t < m s .  (10') 

By rewriting (10') we get 

e+pt~ <_ms. (11') 

We show later that if amortization ends before a 
next attempt at rapport, (11') is satisfied. 

Since the slave clock continues to drift from 
the master clock after amortization ends, it follows 
that for any t>t~, the distance between C and CM 
can be as large as e + p t. To keep C and CM within 
ms of each other, i.e., 

e + pt  <ms, (12') 

it is sufficient to ensure that after each rapport 
(with error e) the real time delay to the next rapport 
d n r is smaller than 

d n r = p - l ( m s - e ) .  (13') 

If at most k reading attempts are allowed (during 
which the slave S can drift from the master by 
as much as pkw, where w = ( l + p ) W i s  the maxi- 
mum real time which can elapse between successive 
reading attempts), it follows that the maximum real 
time delay dna between a rapport and the next 
attempt at rapport must be 

d n a = p - l ( m s - e ) - ( 1  +p) kW. (14') 

Since S must measure this delay with its own timer 
(which can run as fast as 1 +p), S must set the 
timer measuring the delay to the next attempt at 
rapport conservatively to 

D N A = ( 1 - p )  d n a = p - l ( 1 - p ) ( m s - e ) - k W . .  (15') 

Note that the time interval which elapses between 
a rapport  and the beginning of the next attempt 
at rapport  is variable, since it is a function of the 
round trip delay 2D observed at the last rapport. 
If D is close to min, the tight synchronization pre- 
cision achieved allows the delay to the next attempt 
at rapport to be as long as: 

DNAmax = p-  ~ (1 - p) ms - kW. (16') 

When rapport is achieved with a round trip delay 
that is barely acceptable (i.e., the reading error is 
close to U - m i n )  the delay to the next attempt 
can be as short as 

DNAmi,=p-~(1 - p ) ( m s + m i n -  U ) - k w .  (17') 

We constrain amortization to end before a next 
attempt at rapport, i.e., 

< D N A m i  n. (18') 

Condition (18') implies (11'), that is, if amortization 
ends before a next attempt at rapport then C and 
CM stay within ms during amortization. To keep 
logical clocks monotonic, the amortization period 
must also be chosen so that the speed change pa- 
rameter m of (A) satisfies the relation m > - 1 .  For  
this, it is sufficient to chose ~ greater than ms + U 
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-min (see (23') for more details). Since the amorti- 
zation parameter e is positive 

0_<cr (19') 

we infer from (17') and (19') that 

ms > U - m i n  +ok(1  +p)  W. (20) 

Thus, for a given choice of the U, k, and W con- 
stants, the smallest master slave maximum devia- 
tion that can be achieved is 

m S m i  n = U - -  min + p k (1 + p) W. (21') 

For aggressive risky algorithms for which U is 
close to min, maximum deviations as small as 
p k (1 + p)W can be achieved at the expense of many 
synchronization messages (recall p is of the order 
of 10-6). For sure "deterministic" algorithms for 
which U is close to an assumed maximum delay 
max, we get synchronization precisions slightly 
worse than m a x - m i n  with only two messages per 
synchronization, a result comparable to the pre- 
cisions achievable by previously published deter- 
ministic synchronization algorithms (Cristian et al. 
1986; Dolev et al. 1984; Lamport  1987; Lundelius 
and Lynch 1984; Lamport  and Melliar-Smith 
1985; Schneider 1987; Srikanth and Toueg 1987). 

The clock reading method described naturally 
tolerates communication failures: up to k - 1  suc- 
cessive performance failures can be masked if they 
are followed by a successful rapport. The existence 
of variable delays between successive slave syn- 
chronizations is a useful property, since it will tend 
to uniformly spread the synchronization traffic 
generated by independent slaves in time. 

Performance: two numerical examples 

To illustrate the synchronization precisions achiev- 
able by our time service, we analyze in this section 
its performance in the context of a simple system 
of two 4381 processors (Dong, private communica- 
tion, June 1988), assuming one plays the role of 
master and the other one the role of slave. 

If we chose 2 U to be the median round trip 
delay 2 U =4.48 milliseconds, the probability p of 
an unsuccessful round trip is 0.5. By (12) this yields 
an average number ff of messages per successful 
rapport of ti--4. Assuming that a probability of 
losing synchronization of 10 .9 is acceptable, we 
find that at least k = 30 successive attempts at rap- 
port should be allowed ((0.5)3o< 1 0 - 9 ) .  Assuming 
a worst case drift rate of p = 6 . 1 0  -6, a waiting 
time constant between successive reading attempts 
W of 2 seconds, formulae (16') and (17') indicate 
that it is possible to achieve a maximum master 

slave deviation ms of i millisecond. The minimum, 
average, and maximum delays between successive 
synchronization are 63, 67, and 108 seconds, re- 
spectively. Thus, for this choice of U, p, k, and 
W,, a slave stays within a maximum deviation of 
ms = 1 millisecond from a master with probability 
greater than 1-10 -9 by sending on the average ff 
= 4 messages every 1.11 minutes. 

A more conservative choice of 2 U ' =  5.2 milli- 
seconds, yields a probability p' of an unsuccessful 
round trip of 0.05 and an average number g' of 
messages per successful rapport of 2.1. For this p', 
to achieve a probability of successful rapport 
greater than 1-10 -9, k must be chosen to be at 
least 7 (i.e., ((0.05)7< 10-9)). Since for this choice 
of U', the reading error is 0.98 milliseconds, we 
settle for the goal of achieving a maximum master 
slave deviation of ms' = 2  milliseconds. Assuming 
as in the previous example p = 6 .  ! 0 -  6, and W= 2 
seconds, we find that to achieve the 2"milliseconds 
maximum deviation, a slave must o n  the average 
spend 2.1 messages to reach rapport with a master 
every 231 seconds (3.85 minutes). The minimum 
and maximum delays between successive resyn- 
chronizations are 230 and 273 seconds, respective- 
ly. 

The above example precisions compare favora- 
bly with the best precision of at most 44.47 milli- 
seconds achievable by the deterministic synchroni- 
zation algorithms described in Cristian et al. (1986), 
Dolev et al. (1984), Lamport  and Melliar-Smith 
(1985), Lundelius and Lynch (1984), Marzullo 
(1984), Schneider (1987), Srikanth and Toueg 
(1987). 

Extensions 

In this section we relax two of the assumptions 
made earlier: the existence of a continuously avail- 
able master processor and the existence of reliable 
clocks that never fail. We also mention how to 
handle slave failures, how one can improve syn- 
chronization accuracy by taking advantage of past 
local clock drift statistics and how to adapt to a 
variable system load. 

D e a l i n g  w i t h  m a s t e r  s e r v e r  f a i l u r e s  

With a unique master server, the master time ser- 
vice fails when the unique process implementing 
it fails. The probability of a master service failure 
can be reduced if the service is implemented by 
a group of redundant master servers, all synchro- 
nized within e m of external time. There are several 
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ways in which such a group can be structured. We 
mention three alternatives. 

Active Master Set. In this arrangement each slave 
multicasts ("time-- ?") requests to all masters, each 
master answers each time request, and slaves pick 
up the first answer that arrives. With such a strate- 
gy, synchronized slaves will stay within 
e s = e m + m s of external time, but since some slaves 
might be synchronized to one master, and some 
others to another, the relative deviation among 
slaves ss becomes 2es, instead of 2ms as before. 
This solution leads to an increase in message cost: 
2m messages per attempt at rapport, where m is 
the number of members in the master group. Note, 
however, that if all processors are on a broadcast 
local area network, this number can be reduced 
to m + l .  

Ranked Master Group. To reduce the message cost, 
one can use a synchronous membership protocol 
(Cristian 1988) to rank the group of active masters 
into a primary synchronizer, back-up, and so on. 
With such an arrangement slaves would send their 
requests only to the primary. This results in a mes- 
sage cost per attempt at rapport of 2. Let C be 
the upper bound on the failure detection time guar- 
anteed by the synchronous master membership 
protocol (C is a function of the timeout delay maxp 
chosen for detecting communication failures 
(Cristian 1988)) and let A be the time needed to 
inform the slaves that all subsequent time requests 
should be sent to a new master. If W is chosen 
greater than C+A, a slave cannot distinguish be- 
tween a master failure and an excessive synchroni- 
zation message delay, so the maximum deviations 
es and ss stay as before, i.e., es=em+ms,  ss=2es. 
If Wis chosen smaller than C+A, then one has 
to adopt a higher upper bound on the maximum 
number of successive attempts at rapport and the 
analysis of the probability of achieving rapport be- 
comes slightly more complex. 

Active Master Ring. A third solution would use 
a master membership protocol to order all active 
masters on a virtual ring. To send a time request 
a slave chooses an active master at random. If no 
answer arrives within 2 U, the slave asks the next 
active master on the ring, and so on. The message 
cost of each attempt at rapport is 2 as in the 
Ranked Master Group case, but the maximum de- 
viations es and ss stay the same as in the Active 
Master Set architecture, irrespective of the relation 
between Wand C +A, where A corresponds in this 
case to the worst case time needed to inform all 
slaves of a master group membership change. 

Detect ing clock fai lures 

Let UM, min~t be the parameters of the probabilis- 
tic algorithm run by a master M to synchronize 
its clock CM to the clock CR of its attached receiver 
R. The maximum difference which can exist be- 
tween C~t and M's estimate of CR at rapport is 

maxad j~=e~  + em. (22') 

The first term eM = Uu-minM represents the maxi- 
mum error in reading CR while the second term 
accounts for the maximum distance which might 
exist between CR and C~t at rapport. If a previously 
synchronized master M detects at rapport that the 
distance between Cu and its estimate of C R is 
greater than maxadj~t, a master clock failure has 
occurred (recall our assumption that the source of 
external time signals is reliable and that receivers 
are self-checking). Upon detecting the failure of its 
local clock, a master server leaves the active master 
group after reporting the failure to an operator. 

Similarly, if a master M and a slave S are cor- 
rect and synchronized within ms, the maximum 
difference at rapport between the clock C of the 
slave and the slave's estimate of CM is 

ma x a d j s = ( U -  min) + ms + 2em. (23') 

The last term is added because S can successively 
synchronize to different masters that are 2 e m apart 
from each other. A slave which at rapport detects 
that its clock is more than maxadjs apart from 
a master, detects either a master or a local clock 
failure. Assuming that masters synchronize more 
frequently than slaves, if a master clock failure has 
occurred, the master will detect the failure before 
the next rapport with the slave. Thus, a slave de- 
tects a local clock failure if it observes twice in 
a row that its distance to the same master clock 
is greater than maxadjs. Upon detecting the fail- 
ure of its clock, a slave leaves the group of synchro- 
nized time servers after reporting the failure to an 
operator. 

Bet ter  bounds on the actual drift rate 
o f  a slave 

The delay between successive resynchronizations 
of a slave (see (15')) can be increased by using better 
lower and upper bounds on the actual drift rate 
PA of a slave's hardware clock than the manufac- 
turer specified lower and upper bounds - p ,  p. This 
will have the desirable consequence of decreasing 
the number of messages which must be sent per 
slave per time unit for synchronization purposes. 
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It is possible to compute estimates of the actual 
drift rate PA as well as upper and lower bounds 
for Pa under a variety of different assumptions. For 
example one might assume that PA is a constant, 
or the PA is a time varying function possessing a 
first derivative that is bounded by constant from 
above and below, etc. In what follows we limit our- 
selves to discussing the problem of approximating 
Pa and determining lower and upper bounds for 
it under the assumption that it is a constant. 

By definition 

Hi -- Ho 
PA-- ] 

t~-- t o 

where t i denotes the real time at which the i'th 
rapport is achieved, i=1,  ..., and Hi=H(t i )  de- 
notes the value of the slave hardware clock at the 
i'th rapport. A slave can read Hi but cannot read 
t~. It is however possible to estimate t~ as being 
the value displayed by the master clock at rapport: 
M i =  TiA-Di, where T~ is the clock value sent by 
the master and Di is half the round trip delay ob- 
served at the i'th rapport. In estimating h by M~, 
a slave makes an error of at most e i=D~-min ,  
that is: 

M i  - -  ei <_ ti <-- M i  -t- e i . 

The above set of inequalities (i= O, 1 . . . .  ) implies 

Hi -- Ho Hi--  Ho 
1 <  1 

Mi -- Mo + ei + eo ti -- to 

< Hi - Ho 1. 
- M i - -  M o  - e i  - e o  

This leads us to define the i'th upper and lower 
bound drift estimates pp"~ and ppi, as: 

{ H i - H o  1}, 
pmax = min p~_,x, Mi - Mo - ei -- eo 

{ .  H i - H o  1 }  
ppin = max PF:3, Mi - M0 + ei + eo 

where p,~,X=p and p~in= _p .  These bounds on 
PA can be used to compute a longer delay to the 
next attempt at achieving the i + l ' th rapport  by 
using the formula (15") below instead of (15'): 

D NA,  i = fi~ 1 (1 -- #i) (ms -- ei) -- k W, 

where fii=max{lp~'i"l, ]p~"Xl}. (15") 

Self-adjusting logical clocks 

Since for each i, we know upper and lower bounds 
pm~X, pmi. on the actual drift rate p~, it is natural 
to define the i'th estimate Pi of PA as the midpoint 

of the interval [pro,x, pmi,] : 

p,_ �89 +pm..). 

One can easily verify that 

lim (pmin-pm"x)=0 and hence: lim (pA-p i )=0 .  
i ~ o o  i ~ o o  

The successive estimates p~ of the actual drift rate 
PA can be used to define a sequence of "virtual" 
hardware clocks V H i - ( 1 - p ~ ) H ,  such that when 
i increases to oo the speed of VHi converges to- 
wards I. Indeed, the drift rate vp~ of VH i is vp~ 
=(PA-Pi) ,  and since Pi converges towards Pa, it 
follows that vp~ converges towards 0. For this rea- 
son, we call the sequence of clocks VHi self-adjust- 
ing. 

Self-adjusting clocks not only improve the ac- 
curacy with which delays can be measured, but 
can also cause drastic reductions in the clock syn- 
chronization related message traffic. Define the i'th 
self-adjusting logical slave clock Ci as being (1 
+ m)VHi  + N during the amortization period fol- 
lowing the i'th rapport, and as VH~ between the 
end of the amortization and the i+  l ' th rapport. 
To compute the delay between successive resyn- 
chronizations of C i we need to know an upper 
bound vpi for Ivpil. This can be computed as fol- 
lows. Since pmi, < Pa --< pp,X, it follows that 

P~""-  Pi <-- P A-- Pi <-- pm,X__ Pi" 

Thus, 

[PA--Pi[- max {[P~ in --Pi[, [P~n~x-- Pil} 
= � 8 9  m ~ .  - -  

Pi  ) = vP i "  

By substituting vpi for p in (15'), we get: 

DNA,  i, = 2 (p?,X _ p ~ n i n ) -  1 

(1 - l ( p m ~ x - p m i ~ ) ) ( m s - e O - k W .  (16") 

Note that since pmi. pp~X converges towards 0 
as better estimates of the actual drift rates become 
known, the delays between successive resynchroni- 
zations can increase apparently without bound. In 
practice these delays have to stay bounded if one 
wants to ensure upper bounds on clock failure de- 
tection times by tests such as (23'). To determine 
the new resynchronization delays corresponding to 
the use of self-adjusting clocks, one might also want 
to take into account terms of the order of p2 or 
smaller, ignored (for simplicity reasons) in this 
paper. 

Dealing with slave server failures 
A slow slave, which takes too long to read its mes- 
sages or to time out, eventually discovers that the 
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distance between its clock and a master clock has 
become unacceptable when it evaluates the test 
(23'). Early slave timing failures (e.g., caused by fast 
slave timers) lead to an increase in network syn- 
chronization traffic. The occurrence of such failures 
can be detected by the master group, if the masters 
keep track of the last time each slave has asked 
for the time. If a slave asks too often, the masters 
could simply ignore it. The faulty slave will then 
fail to synchronize and will eventually leave the 
group of synchronized servers. 

Adapting to changing system load 

Another extension consists in making the choice 
of the acutal U-indexed slave synchronization algo- 
rithm used in a system at a given moment depen- 
dent on the system load. We sketch here a possible 
way to take into consideration system load when 
deciding on a round trip acceptability threshold 
U. The intention is that U should increase when 
load increases and should decrease when load de- 
creases. This can be achieved in the following way. 
If at least one slave experiences k ' < k  successive 
unsuccessful attempts at reaching rapport with a 
master, it should announce to the master group 
that all slaves have to adopt a higher timeout delay 
U'(U'> U) known in advance. The masters could 
then agree on this and diffuse a decision that begin- 
ning with some time in the future everybody has 
to switch to the new round trip acceptability 
threshold U' and, hence, to bigger master-slave 
maximum deviations. The effect will be to increase 
the maximum master slave clock deviation when 
the system load increases. 

To decrease the maximum clock deviation 
when load is light, a slave processor could commu- 
nicate to the master group the fact that it measures 
round trip delays that are consistently smaller than 
U", for some U" < U known in advance. If the mas- 
ters receive such messages from all slave proces- 
sors, they could diffuse the information that begin- 
ning with some time in the future, everybody 
should decrease their round trip acceptability 
threshold to U". The effect will be to decrease the 
master slave clock deviation when the system load 
decreases. 

Conclusions 
A new probabilistic approach for reading remote 
clocks was proposed and illustrated by presenting 
a synchronization algorithm that achieves external 
clock synchronization. The new approach allows 

one to achieve precisions better than the best pre- 
cision bound ( m a x - m i n ) ( 1 - 1 / n )  guaranteeable 
by previously published deterministic algorithms 
(Cristian et al. 1986; Dolev et al. 1984; Lamport  
1987; Lundelius and Lynch 1984; Lamport  and 
Melliar-Smith 1985; Lundelius-Welch and Lynch 
1988; Schneider 1987; Srikanth and Toueg 1987). 
(Specialized hardware can be used to reduce the 
difference between max and min (Kopetz and Och- 
senreiter 1987), but the inherent limitation of deter- 
ministic protocols remains unchanged.) When in- 
dexed by a conservative parameter U, such as a 
communication failure detection timeout delay 
maxp, our external clock synchronization algo- 
rithm also achieves a relative deviation at rapport 
2 (maxp-mi n )  smaller than the best precision 
4 (maxp-mi n )  achievable by previously published 
algorithms based on communication failure detec- 
tion timeouts (Gusella and Zatti 1987; Marzullo 
1984). One of the key observations of this paper 
is that no relation needs to exist between clock 
synchronization and communication detection ti- 
meout delays. Synchronization algorithms indexed 
by timeout parameters U close to min can in theory 
achieve synchronization precisions close to 3 pmin, 
where p and min are of order of 10 - 6  and 10 -3 
seconds, respectively, for commercially available 
clocks and local area networks. One can envisage 
that by estimating actual clock drift rates and using 
self-adjusting clocks one could achieve precisions 
even better than the above bound. 

Besides improving synchronization precision, 
the new approach has other properties worth men- 
tioning. Since a probabilistic approach does not 
assume an upper bound on message transmission 
delays, it can be used to synchronize clocks in all 
systems, not only those which guarantee an upper 
bound on message delays. A probabilistic time ser- 
vice such as the one sketched previously distributes 
uniformly the clock synchronization traffic in time, 
avoiding the periodic synchronization traffic bursts 
produced by the existence of synchronization 
points in previously known synchronization algo- 
rithms. The service is simple to implement (see Ap- 
pendix) and robust. Likely process and communi- 
cation failures are tolerated. Clock failures are de- 
tected and processes with faulty clocks are shut 
down. Finally the time service described is efficient: 
it uses a number of messages that is linear in the 
number of processes to be synchronized. 

While deterministic synchronization protocols 
always succeed in synchronizing clocks, the proba- 
bilistic approach proposed in this paper carries 
with it a certain risk of not achieving synchroniza- 
tion. In view of the impossibility result of Lundelius 
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and Lynch (1984) that deterministic clock synchro- 
nization algorithms cannot synchronize the clocks 
of n processes closer than ( m a x - m i n ) ( 1 -  i/n), this 
seems to be an unavoidable price for wanting to 
achieve a higher precision. As the desired precision 
becomes higher, more messages are sent and the 
risk of not achieving synchronization becomes 
higher. Conversely, as the desired precision be- 
comes lower, the risk of not achieving synchroniza- 
tion becomes lower and fewer messages need to 
be sent. Actually, the U-indexed family of master- 
slave synchronization algorithms presented 
achieves a continuum between, at one end, sure "de- 
terministic" protocols (indexed by large Us close 
to maxp or max) that achieve poor precision with 
a high probability and a small number of messages, 
and "aggressive" protocols (indexed by small Us 
close to min) capable of achieving very high pre- 
cision but which carry with them a significant risk 
of not achieving synchronization even when sub- 
stantial numbers of messages are exchanged. In 
practice, one needs to choose a parameter U that 
achieves the right balance between precision and 
message overhead, and reduces the risk of losing 
synchronization to a level that is acceptably small. 

The new view cast on clock synchronization 
in this paper prompts a number of questions which 
can lead to further research. We mention here sev- 
eral. How is it possible to improve the accuracy 
of some of the internal clock synchronization algo- 
rithms surveyed in Schneider (1987) by using pro- 
babilistic remote clock reading methods? What 
lower bounds exist for probabilistic synchroniza- 
tion algorithms? How can the accuracy of clock 
synchronization be improved if one knows the dis- 
tribution obeyed by message delays? How can one 
estimate bounds on the actual drift rate of hard- 
ware clocks if this rate is a function of time? And 
finally, how can one design algorithms which adapt 
to variable system load? 
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Appendix 

Detailed description of the master slave protocol 

A detailed description of a slave time server under the simplify- 
ing unique master assumption is given in Figs. 2 and 3. To 
simplify this presentation, we do not give a detailed description 
of the master time server, since it is similar to a slave server 
and we do not use self-adjusting logical slave clocks. In what 
follows, we refer to l inej  of Fig. i as (i.j). 
The round trip acceptability threshold U, the maximum number 
of successive reading attempts k, waiting time between reading 
attempts W,, the amortization delay c~, and the maximum devia- 
tion m s  are parameters of the protocol (2.1). Once U is chosen, 
the probability p that, under worst case load conditions, a round 
trip delay is greater than 2 U is also determined. The constant 
k must be chosen to ensure that the probability pk of observing 
k successive round trip delays greater than 2 U is acceptably 
small (typically two or more orders of magnitude smaller then 
the instantaneous crash rate of the underlying processor). We 
assume that the constant Wis chosen greater than the accept- 
able round trip delay 2 U. 

The slave protocol uses three timers (2.5): a "Synch" timer 
for measuring delays between successive synchronization at- 
tempts, an "At tempt"  timer for measuring delays between suc- 
cessive master clock reading attempts, and an "Amor t "  timer 
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1 task Slave(U:Time, k:Int, W,c~,ms:Time); 
2 const min: Time; 
3 master: processor; 
4 var T,T',T",D,N: Time; try: Integer; m: Real; 
5 Synch,Attempt,Amort: Timer; 
6 synchronized: Boolean; H: hardware-clock; 

7 synchronized~-false; Synch.set(0); 
8 cycle 
9 when lreceive("tirne?") do send-local-time; 

10 when Synch.timeout 
11 do t r y ~ l ;  T ' ~ H ;  
12 send("time = ?",T') to master; Attempt.set(W); 
13 when receive("time = ",ET,T") 
14 d o / f T ' + T "  then iterate f i ;  
15 T ~ H ;  D ~ ( T - -  T')/2; 
16 / f D > U  then iterate f i ;  
17 Attempt.reset; compute-adjustment; 
18 S y n c h . s e t ( p - l ( l - p ) ( m s + m i n - D ) - k W ) ;  
19 when Attempt.timeout 
20 d o / f  try_>k then synchronized~false;  "leave" f / ;  
21 t r y ~ t r y  + 1; T ' ~ H ;  
22 send(" time = ?",T') to master; Attempt.set(W); 
23 when Amort.t imeout do m o O ;  N ~ N - - H ;  
24 endcycle 

Fig. 2 

for measuring amortization periods. There are two kinds of 
operations that are defined on a timer T: set and reset. The 
meaning of a 
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Fig. 3 

procedure send-local-time; 
/f synchronized 
then lsend(" time = ",H + N + m * H) 
else lsend(" undefined") 
fi; 

procedure compute-adjustment;  
i f  synchronized 
then if-n okadj then synchronized*-false; " leave"f i ;  

m ~( (ET + D)--  (T + N + m �9 T))/e; 
N ~ N - - m * T ;  Amort.set(c0; 

else m ~ 0 ;  N ~ ( E T + D ) - T ;  
synchronized~true;  

fi;  

T.set(6) invocation is "ignore all previous T.set invocations and 
signal a T.timeout event 6 clock time units from now". The 
meaning of a T.reset invocation is "ignore all previous T.set 
invocations". Thus, if after invoking T.set(100) at local time 
200, a new T.set(100) invocation is made a local time 250, there 
is no T.timeout event at time 300. If no other T.set or T.reset 
invocation is made before time 350, a T.timeout event occurs 
at local time 350. 

A local Boolean variable "synchronized" (2.6) is true when 
the local clock is synchronized to the master clock and is false 
when the local clock can be out of synchrony with respect to 
the master clock. The local logical time is undefined when "syn- 

chronized" is false (3.4). To prevent any confusion between mes- 
sages pertaining to old and current clock reading attempts in 
the presence of performance failures each message is identified 
by the value of the local hardware clock H when the message 
is sent. This ensures that the identifiers of messages are unique 
with extremely high probability. For  example, if we assume a 
typical hardware clock of 64 bits, the probability that some 
"o ld"  message still existing undelivered in the communication 
network because of a performance failure - is confused with 
a recently sent message by the test (2.14) is smaller than 5 
x 10-x8, even if we make the unrealistic assumption that  mes- 

sages can stay undelivered in the network for all the time needed 
to wrap around a clock: approximately 58 centuries for a clock 
whose low level bit is incremented every micro-second. Another  
variable " t ry"  counts the number  of unsuccessful master clock 
reading attempts (2.4). 

After initializing the "synchronized" local variable, an at- 
tempt to synchronize with the master is immediately scheduled 
(2.7). When the Synch.timeout event occurs (2.10), the counter 
for unsuccessful attempts " t ry"  is initialized and a message iden- 
tified by the local hardware clock value T' is sent to the master 
(2.12). The master responds to this message by sending its logical 
clock value (4.3). To simplify our presentation, we assume that 
a master clock is always synchronized to external time (the 
absence of synchrony with external time at the master can be 
handled in a manner similar to the absence of synchrony with 
the master at a slave). When a master response 

1 task Master; 
4 var N: Time; m: Real; H: Hardware-clock; 

2 cycle 
3 when receive ( " t ime= ?", T)from s 
4 do send("t ime= " , H + N + m . H , T )  to s 
5 endcycle; 

Fig. 4 

arrives (2.13), if the received and locally saved message identi- 
fiers match (2.14) the message is accepted, otherwise it is dis- 
carded (the iterate command terminates the current iteration 
of the loop (2.8-2.24) and begins a new iteration). Unacceptably 
long round trips are discarded (2.16). Unsuccessful reading at- 
tempts cause Attempt.t imeout events (2.19). Indeed, the "At- 
tempt"  timer is set by each new attempt at reaching rapport 
(2.12, 2.22) and is reset only when rapport  is reached (2.17). 
If k successive unsuccessful attempts occur (2.20), a slave can 
no longer be sure that its clock is within ms from the master 
clock and must leave the group of synchronized slaves. Such 
a departure can be followed by a later rejoin. 

Consider now that  a matching answer which arrives in 
less than 2 U time units leads to a successful rapport  and causes 
the "At tempt"  timer to be reset (2.17). If the slave logical clock 
was not  previously synchronized, it is bumped to the estimate 
(7') of the master time (3.11). If the slave was previously synchro- 
nized, and the adjustment to be made passes the resonableness 
test "okad j"  (3.8) defined in (23'), the speed of the local logical 
clock C is set so as to reach the slave's estimate of the master 
clock within ~ clock time units (3.9 3.10) following equation 
(A). After amortization ends (2.23) the logical slave clock is 
let again to run at the speed of the hardware clock until the 
next rapport  (2.17). 


