
A Fault-Tolerant Java Virtual Machine

Jeff Napper, Lorenzo Alvisi, Harrick Vin∗

Abstract

We modify the Sun JDK1.2 to provide transparent fault-
tolerance for many Java applications using a primary-
backup architecture. We identify the sources of non-
determinism in the JVM (including asynchronous excep-
tions, multi-threaded access to shared data, and the non-
determinism present at the native method interface) and
guarantee that primary and backup handle them identi-
cally. We analyze the overhead introduced in our system
by each of these sources of non-determinism and compare
the performance of different techniques for handling multi-
threading.

1. Introduction

The Java programming language and its execution en-
vironment are designed for portability and safe code dis-
tribution. Java provides many features—such as strong
typing, remote method invocations (RMI), monitors, and
sandboxing—that allow programmers to develop complex
distributed systems; today, Java is used in a wide vari-
ety of distributed applications, including chat servers, web
servers, and scientific applications. Unfortunately, the Java
Runtime Environment (JRE) provides no direct support
for fault-tolerance. Hence, distributed applications writ-
ten in Java either ignore failures or achieve fault-tolerance
through approaches—such as transactional databases or
group technology—outside the scope of the JRE.

In this paper, we take a fundamentally different ap-
proach; we present the design and implementation of a
fault-tolerant Java Runtime Environment that tolerates fail-
stop failures. Our technique is based on the well-known
state machine approach [1, 2]. This approach involves (1)
defining a deterministic state machine as the unit of repli-
cation, (2) implementing independently failing replicas of
the state machine, (3) ensuring that all replicas start from
identical states and perform the same sequence of state tran-
sitions, and (4) guaranteeing the replication is transparent:
each output-producing transition should result in a single
output to the environment, rather than a collection of out-
puts, one for each replica.

Our approach is inspired by, and extends, the work
of Bressoud and Schneider on Hypervisor-based fault-
tolerance [3], which presents a strong case for achieving
transparent fault tolerance by 1) building a software layer

∗Authors’ address: Department of Computer Sciences, The
University of Texas at Austin, Austin, TX 78712. email:
jmn,lorenzo,vin@cs.utexas.edu. This work was supported in part by
a grant from Sandia National Laboratories and by the Texas Advanced
Research Program. Alvisi was also supported by the National Sci-
ence Foundation (CAREER award CCR-9734185), an Alfred P. Sloan
Fellowship, and the AFRL/Cornell Information Assurance Institute.

(the hypervisor) that implements a virtual state machine
over the underlying hardware and 2) implementing replica
coordination in the hypervisor. To demonstrate their ap-
proach, Bressoud and Schneider had to build an hypervisor
for (a subset of) the HP PA-RISC architecture. The obser-
vation that led us to begin this work is that Java’s virtual
machine is already specified and implemented—a fact we
leverage to simplify our task.

The state machine that we implement and replicate is de-
fined by the Java Virtual Machine (JVM) Specification [4].
The JVM is key to the portability of Java. Because the
JVM is defined independently of the hardware platform that
implements it, Java programs can run unmodified on any
platform that implements a JVM. Replicating the JVM state
machine allows Java applications to be made fault-tolerant
transparently. Modifying JVMs implemented on different
platforms allows us to keep Java’s “Write Once, Run Any-
where” promise, even in the presence of failures.

State machines must be deterministic for replication to
work. Unfortunately, the JVM is not deterministic. We must
therefore systematically identify and eliminate the effects of
non-determinism within the JVM. In doing so, we face the
same issues (asynchronous exceptions, output to the envi-
ronment, etc.) identified in [3]. In addition, however, we
must address a new challenge: multi-threading.

The specification of the JVM requires support for
multiple threads whose interleaving is, in general, non-
deterministic. Therefore, the same program, when run
on two different JVMs with identical initial states, might
cause different JVMs to make different sequences of state
transitions, depending on the specific interleaving enforced
at each JVM. We implement and evaluate two techniques
for eliminating the non-determinism introduced by multi-
threading. The first technique forces each replica to perform
the same sequence of monitor acquisitions; the second tech-
nique guarantees the same sequence of thread scheduling
decisions. In implementing these techniques, as well as the
others used to eliminate non-determinism in the JVM, we
modify mostly platform-independent code—we make plat-
form dependent changes only to optimize performance. Al-
though this paper reports our experience with the Sun JDK
1.2 community source release JVM running on the SPARC,
the techniques proposed are broadly applicable to other plat-
form and other JVM implementations.

Instantiating replica coordination for the JVM also gives
the traditional challenges of replica coordination a new, dis-
tinct flavor. Consider the problem of producing output to
the environment. The objective is to guarantee that the out-
put caused by a set of replicas is indistinguishable from that
produced by a single state machine that never fails. Achiev-
ing this objective in general is impossible, although it can be
attained in special circumstances, e.g., when output actions



are idempotent or when the environment can be queried
to determine whether a specific output completed (testable
output actions). Replicating the JVM’s execution engine
adds a new twist to this problem. The state machine does
not produce output to the environment directly: instead, the
execution engine invokes external procedures, called native
methods. Therefore, it is impossible for our JVM state ma-
chine to recognize which output actions are idempotent or
testable. We provide a mechanism by which native methods
can be annotated so that the state machine can recognize the
properties of native methods and take appropriate action.

Our replication scheme is based on a primary-backup
architecture. We use a “cold” backup, which simply logs
the recovery information provided by the primary and starts
processing it only if the primary fails. Keeping the backup
updated would require only minor modifications to our im-
plementation. Using the original implementation of the
JVM from Sun Microsystems as our performance baseline,
we measure the overhead incurred by each technique in ex-
ecuting SPEC JVM98, a suite of representative Java appli-
cations. We find that replicating the lock acquisitions re-
sults in 140% overhead on average, while replicating thread
scheduling incurs 60% overhead on average.

2. Background

Java programs are compiled into an architecture-
independent bytecode instruction set. The compiled code
is organized into classfiles, containing class definitions and
methods according to the Java Virtual Machine Specifi-
cation [4]. The JVM also defines standard libraries that
provide supporting classes for various tasks (e.g., data
containers, I/O, and windowing components). The JVM
and standard libraries comprise the Java Runtime Envi-
ronment (JRE). Java provides language-level support for
multi-threading, mutual exclusion (synchronized methods)
and conditional synchronization (wait and notify methods).
Threads share data objects using either methods on shared
objects or static class data members that are shared among
all instances of a class.

A state machine is a set of state variables and commands,
which respectively encode and modify the machine’s state.
A command reads a subset of the state variables, called the
read set, plus, possibly, other inputs obtained from the en-
vironment; it then modifies a subset of state variables called
the write set, and possibly produces some output to the envi-
ronment. For a given command, the read and write sets are
fixed. However, the values that these variables assume at
each invocation of the command can change. Henceforth,
we refer to these values as read-set values and write-set
values. The state machine approach requires each replica
be started from the same initial state and each replica to
execute an identical sequence of deterministic commands.
A deterministic command produces the same output and
write-set values when given the same read-set values. Under
these conditions, each correct replica undergoes the same
sequence of state transitions and produces the same outputs.

Table 1: Restrictions placed on applications and execution
environment.

R0: Fatal environment and JVM implementation exceptions are
not raised at all replicas.

R1: A thread must not invoke java.lang.Thread.stop.
R2: Native methods must produce only deterministic output to

the environment.
R3: Native methods must invoke other methods deterministi-

cally.
R4A: All access to shared data is protected by a monitor (i.e.,

Java’s synchronized keyword).
R4B: A thread has exclusive access to all shared variables while

scheduled.
R5: All native method output to the environment is either idem-

potent or testable.
R6: If a native method produces volatile state in the environment,

then a side effect handler is provided to recover the state.

3. The JVM as a State Machine

Modeling the JVM as a state machine raises several chal-
lenges. First, not all commands executed by a JVM are de-
terministic. Second, replicas of a JVM do not in general
execute identical sequences of commands. Third, the read
set for a given command is not guaranteed to contain iden-
tical values at all replicas. State machines typically model a
single thread of execution [3, 2] while the JVM is intrinsi-
cally multi-threaded, complicating replica coordination sig-
nificantly. Our approach to address these challenges instead
models the JVM as a set of cooperating state machines,
each corresponding an application thread. In particular, we
choose as our state machines a set of bytecode execution
engines (BEE) inside the JVM. Although BEEs do not ex-
plicitly exist as components of the JVM, we can conceptu-
ally associate a BEE with the set of functions that perform
bytecode execution and track the state of each thread. The
set of executing BEEs comprises the set of state machines
that together define a replica of our fault-tolerant JVM. We
assume that each BEE begins in an identical initial state.

The commands of the BEE state machine are bytecodes,
and the state variables are the values of memory locations
accessible to the BEE. Each BEE has exclusive access to its
own local state variables and may share with other BEEs
access to shared state variables. Our task is to ensure
that each BEE replica processes the same sequence of de-
terministic commands. Below we list the sources of non-
determinism that complicate this task and discuss how we
address each of them.

3.1. Asynchronous Commands

A command is asynchronous if it can appear anywhere in
the sequence of commands processed by a BEE. Replicas of
the same BEE might encounter a given asynchronous com-
mand at different points in their command sequences. In [3]
hardware interrupts are asynchronous commands. Although
there are interrupts in the JVM, they do not give rise to asyn-
chronous commands. For example, our JVM performs I/O
synchronously, and any I/O completion interrupt that corre-
sponds to a given bytecode is delivered before the execution



of that bytecode completes. Programmers can use Java’s
multi-threading to perform asynchronous I/O or events.

Asynchronous commands in the JVM correspond to
asynchronous Java exceptions that are not interesting
sources of non-determinism. All but one of these exceptions
are raised by fatal errors in the run-time environment (e.g.,
resource exhaustion) or in the implementation of the JVM
(e.g., locks in inconsistent states). Such errors are intrinsic
to the run-time environment of the application and would
repeat themselves if all replica environments were identical.
Our implementation must not replicate these exceptions, or
all replicas will deterministically fail. Replication is effec-
tive only if we assume that either such errors never occur
or that the replicas’ run-time environments are sufficiently
different. We assume the latter in R0 in Table 1.

The stand-out non-fatal asynchronous exception is deliv-
ered to a thread when it is killed by another thread. How-
ever, beginning with the Java Development Kit version 1.2,
use of this exception is deprecated. Applications that use
this method might not work on future releases of the JVM
and should be rewritten using condition variables. We there-
fore make restriction R1 in Table 1 upon applications pro-
hibiting the use of the deprecated exception.

3.2. Non-deterministic Commands

A command is non-deterministic if its write-set values or
its output to the environment are not uniquely determined by
its read-set values. The only non-deterministic bytecode ex-
ecuted by the JVM invokes a native method. Java includes
the Java Native Interface (JNI) [5] to invoke methods that
execute platform-specific code written in languages other
than Java. Native methods have direct access to the under-
lying operating system and other libraries. By accessing the
operating system, for instance, native methods implement
windowing components, I/O, and read the hardware clock.

Native methods therefore may take input values from the
environment as well as from the read set. In the conven-
tional state machine approach, replicas run an agreement
protocol to make their read sets and the input from the en-
vironment identical. It is generally impossible to have the
BEEs agree on input values from the environment, since in-
put is performed outside the control of the JVM. Instead,
we make sure that differences in input values (e.g., different
local clock values) do not result in different write-set values
for the command. In our case, this protocol simply forces
the backup to adopt the write-set values produced by the
primary. However, since native methods execute beyond the
purview of the JVM, an agreement protocol cannot ensure
that replicas executing a native method will behave identi-
cally. We must restrict the behavior of native methods by R2
and R3 in Table 1 to achieve identical results at all replicas.

R2 restricts the native method behavior visible to the
environment; however, it is often possible to relax this re-
striction and still obtain the same functionality provided by
the offending method. For example, a method that reads
the current time and then prints it could be split into two
methods. The first method reads the local time and writes it
to a local variable lc, which constitutes the method’s write
set. Our agreement protocol ensures that executing the first

1 class Example {
// Accessible from all threads.

2 static Formatter shared_data = null;
3 String toString() {

// Guard not protected by monitor!
4 if(null == shared_data) {
5 shared_data = new Formatter();
6 synchronized_method();

// code continues...

Figure 1: A common data race in Java. If the Formatter con-
structor and synchronized method are idempotent the data
race has no semantic effect.

method at the primary and the backup results in the same
value for lc. The second method, which prints the value of
lc, now produces deterministic output to the environment.

R3 restricts the ways in which a native method invokes
other methods. While executing outside of the state ma-
chine, a native method can invoke Java methods, causing the
BEE to execute commands. If a native method calls a Java
method non-deterministically (e.g., if the native method de-
cides to acquire a lock depending on the value of the lo-
cal clock) then the sequence of commands processed by a
BEE could be different at each replica. We rule out this
possibility by forbidding native methods from making non-
deterministic calls to Java methods.

We do not consider R3 a significant restriction, but rather
a better programming paradigm: to avoid debugging night-
mares, it is wise to restrict non-determinism in native meth-
ods to input methods. Just as R2, R3 might be upheld by
splitting an offending method into a non-deterministic input
method and a deterministic method. For instance, the clock
example would be handled by placing the clock read in a
different method and allowing our replicas to agree on the
local clock values before invoking the (now deterministic)
method that acquires a lock. Native methods must use the
JNI interface to invoke other Java methods; thus, a program
can be inspected for compliance with R3 by checking native
methods that use the JNI interface.

3.3. Non-deterministic Read Sets

Shared memory among threads creates the possibility of
deterministic commands reading different read-set values at
different replicas of a given BEE. We call a read set non-
deterministic if it contains at least one shared variable. Java
allows data to be shared both explicitly, by invoking meth-
ods on a shared object, and implicitly, through static data
references. We could keep track of all shared data or per-
form data race detection as in Eraser [6]. Generally the
bookkeeping necessary to determine which objects are ac-
tually shared can result in a significant source of overhead:
for example, an order of magnitude in time for Eraser.

We explore two restrictions to make this problem man-
ageable. One is to assume R4A in Table 1, which requires
every access to a shared variable be protected by a moni-
tor (i.e., that the program is free of data races). Another
way to achieve the same result is to assume R4B, which
requires a run-time environment that enforces exclusive ac-
cess to shared variables while a thread is scheduled (e.g., on
a uniprocessor). Relaxing both restrictions for the general



case might require a combination of the approaches above
and agreement on the shared data values.

A Java monitor guarantees exclusive access to shared
variables. In practice, the monitor allows the invoking BEE
to transform temporarily a shared variable into a local vari-
able. To a BEE that invokes a monitor and acquires its asso-
ciated lock, however, the values stored in these temporary
local variables appear to be non-deterministic since they
have been last modified by some arbitrary BEE. One way
to eliminate this non-determinism would be for the replicas
to agree on the values of the variables associated with ev-
ery lock they acquire. This approach is hard to implement,
however, because Java does not express or enforce the asso-
ciation between a lock and the variables it protects, leaving
this responsibility to the programmer through annotations
or using statistical measures.

Our solution is instead to achieve agreement on the se-
quence of BEEs that acquire each lock. Reaching agreement
on a lock acquisition sequence ensures that the correspond-
ing BEEs at the primary and the backup access the variables
associated with the lock in identical order. Combined with
identical initial values, identical lock acquisition sequences
guarantee all commands executed by corresponding BEEs
have identical read-set values.

Unfortunately, many real programs do not satisfy R4A:
even the JRE provided by Sun does not meet this restriction
for all shared data. In particular, static data members are of-
ten shared between threads without explicit shared method
invocations. As BEE replicas reach agreement on the se-
quence of lock acquisitions, these data races can cause the
state of the primary and backup to diverge, even when the
races do not affect the semantics of the program.

Figure 1 shows a use of static data members without
acquiring a lock. Object shared data, a static data
member, is shared by all Example objects. The guard
on line 4 is not protected by a monitor, which allows dif-
ferent thread schedules at the primary and the backup to
invoke synchronized method a different number of
times, preventing agreement on the sequence of lock ac-
quisitions. Testing our implementation of replicated lock
acquisitions required removing these race conditions in the
JRE by hand! Although the code in Figure 1 contains a data
race, we wanted to find a less labor-intensive way to handle
this common (mal)practice.

We also consider an approach for handling shared data
that does not rely on R4A, but assumes R4B instead. It
eliminates non-deterministic read sets by replicating at the
backup the order in which threads are scheduled at the pri-
mary. When R4B holds on a uniprocessor, the BEE whose
thread is being scheduled effectively changes all its shared
variables to local variables because no other BEE is al-
lowed to execute commands. By replicating the order in
which threads are scheduled, our implementation ensures
that when R4B holds the order of access to shared data is
replicated regardless of whether data races exist.

3.4. Output to the Environment

The state machine approach strives to hide replication
from the environment by requiring output to the environ-

ment to be indistinguishable from what a single correct
state machine would produce. To meet this requirement,
we distinguish between output to the environment that af-
fects volatile state (i.e., state that does not survive failure
of the state machine) and stable state (i.e., state that does).
A particular command can produce multiple outputs to the
environment, each of which is either volatile or stable.

Hiding replication of output is easy if the output is either
idempotent or testable. In the former, the output is indepen-
dent of the number of times the corresponding command is
executed, while in the latter the environment can be tested
to ascertain whether the output occurred prior to failure. For
example, seeking to an absolute offset in a file is an idem-
potent operation, while seeking to a relative offset is not.
If the current offset can be read, a relative seek becomes a
testable operation. Except for these cases, it is impossible
to maintain the “single correct machine” abstraction in the
presence of failures. For instance, in a primary-backup sys-
tem a backup cannot in general determine whether the pri-
mary failed before or after performing an output command,
and executing the command again could produce different
results. This impossibility result forces us to introduce a fur-
ther restriction R5 in Table 1 that requires all native method
output to the environment be either idempotent or testable.

Replication of volatile output might be necessary for cor-
rect operation. For example, the OS underneath the JVM is
considered part of the environment. Opening a file at the
primary creates OS state that disappears when the primary
fails and that the backup must replicate if it is to execute
correctly. Some volatile state could be restored simply by
replaying the output (i.e., if the methods are idempotent),
but volatile state generally requires special treatment. For
instance, replaying messages on a socket would not recover
the state at the backup because sending messages is in gen-
eral not an idempotent operation. An extra layer must be
added to make sending messages either an idempotent or
testable operation.

Our protocol uses a novel interface, called side effect
handlers, to replicate the lost volatile state of the primary.
Native methods can create volatile state as an effect of pro-
ducing output to the environment. Using JNI, any applica-
tion may call native methods supplied by the application.
Our interface allows an application programmer to include
methods that replicate the volatile state of the primary cre-
ated by the additional native methods. For example, through
the interface we have included methods to handle file I/O in
the standard JRE libraries. Restriction R6 in Table 1 re-
quires applications to use this interface whenever they in-
voke a native method that creates volatile state.

4. Implementation

Sun’s JVM provides two implementations of multi-
threading. The native threads version provides thread
scheduling in the underlying OS, while the green threads
version implements a user-level thread library for a unipro-
cessor inside the JVM. Since R4A depends upon the appli-
cation’s use of locks and not the low-level thread implemen-
tation, both libraries can take advantage of techniques that
achieve replica coordination by replicating the sequence of



lock acquisitions. Indeed, multi-processor applications run-
ning with native threads on an SMP can take immediate ad-
vantage of the technique described in Section 4.2.

Enforcing R4B, however, requires changes in the thread
library. Since our first goal is to maximize portability, we
have focussed on implementing a replicated thread sched-
uler for green threads. Our approach could be extended to
native threads (see [7])—we leave this as future work.

We add two system threads to the JVM. One performs
failure detection to allow the backup to initiate recovery.
The other is concerned with the transfer of logging infor-
mation, either by sending it (at the primary) or by receiving
it (at the backup). These additional threads join the several
system threads that perform tasks such as garbage collec-
tion and finalizing objects. We next discuss how our imple-
mentation addresses the challenges (non-deterministic com-
mands, non-deterministic read sets, and output to the envi-
ronment) that we identified in Section 3.

4.1. Nondeterministic Commands

We checked by direct inspection and categorized all na-
tive methods in the standard libraries of the JRE: fewer that
100 native methods are non-deterministic. We store the
signature of these methods, composed of their class name,
method name, and argument types, in a hash table. Gener-
ally, every time a native method is invoked at the primary,
its signature is checked against those stored in the hash ta-
ble. If there is a match, then the method’s return values
(including arguments, if they are modified) and the excep-
tions raised are sent to the backup, which keeps an identical
hash table. Before executing a method during recovery, the
backup checks if it is stored in the hash table. If so, the
backup always uses the corresponding return values and ex-
ceptions, whether or not it actually invokes the method. If
the method is indeed invoked in order to reproduce volatile
output, the backup discards the generated return values and
exceptions. The side effect handlers discussed later provide
an extra layer to handle specific cases where the return value
may reflect volatile environment state (e.g. returning a file
descriptor from a file open command).

4.2. Nondeterministic Read Sets

Data races and scheduling differences among the JVM’s
threads can make read sets containing shared variables re-
turn different values at the primary and the backup. We use
two different approaches to make read sets deterministic.

Replicated Lock Synchronization. The first approach
relies on the assumption R4A that all shared data is pro-
tected by locks that, if correctly acquired and released, en-
sure mutual exclusion. Under this assumption, we create a
mechanism that guarantees that threads acquire locks in the
same order at the primary and at the backup.

Replicating the order in which threads acquire locks re-
quires identifying the locking thread, the lock, and the rel-
ative order of each lock acquisition. We store this informa-
tion in a lock acquisition record, which is a tuple of the form
(t id, t asn, l id, l asn) where:

t id is the thread id of the locking thread.

t asn is the thread acquire sequence number recording the
number of locks acquired so far by thread t id.

l id is the lock id.
l asn is the lock acquire sequence number recording the

number of times lock l id has been acquired so far.

These records are created by the primary, but they are
used during recovery by the backup. Therefore, for each
thread and lock, the primary needs to generate virtual t ids
and l ids that are unambiguous across replicas. For in-
stance, although in the JVM each lock is uniquely asso-
ciated with an object, the primary cannot simply use the
object’s address as the lock’s l id, because this address is
meaningless at the backup. Further, any scheme that as-
signs ids according to the order in which events—such as
thread and object creation—occur at the primary is danger-
ous, since these events might be scheduled differently at the
primary and the backup.

We then define recursively the id of a thread t as consist-
ing of two values: i) the id of the parent thread of t (the par-
ent of the first thread has by convention t id = 0) and ii) an
integer that represents the relative order in which t is created
with respect to its siblings. This definition is well founded
because, although the absolute order in which t is created
does depend on the order in which threads are scheduled,
t’s parent spawns its descendants in the same relative order
at the primary and the backup, independent of scheduling.

To assign a lock its l id, we observe that threads execute
deterministic programs. Hence, the sequence of locks ac-
quired by a thread with a given virtual t id is identical at
the primary and the backup. We can then uniquely identify
a lock by specifying the t id and the t asn of the first thread
that acquires the lock at the primary. We get an even sim-
pler l id as follows. When the primary acquires a lock for
the first time, it assigns to the lock a locally unique value
(our l id is simply a counter); it then creates an id map,
which is a tuple of the form (l id, t id, t asn) that associates
the l id with the appropriate t id and t asn. Each map is
then logged at the backup.

During failure-free execution, whenever the primary ac-
quires lock l id, it generates a corresponding lock acquisi-
tion record and logs it at the backup. If the primary fails,
then the backup’s threads use the logged id maps and acqui-
sition records to reproduce the sequence of lock acquisitions
performed by the corresponding threads at the primary.

When a backup thread t tries to acquire a lock with id l,
it checks if the log contains a lock acquisition record with
t id = t and l id = l, and t asn equal to the current value
of t’s acquire sequence number. If such a record r exists,
then t waits for its turn for acquiring lock l—that is, t waits
until l’s acquire sequence number is equal to the value of
l asn stored in r, acquires the lock, and removes r from the
log. If the log contains no such record, then t waits until the
log contains no more lock acquisition records (indicating
the end of recovery at the backup) before it acquires lock l.

The case in which a backup thread t attempts to acquire
a lock that still has no l id requires special treatment. First,
t checks if it is its responsibility to assign the id to the lock.
The thread looks for an id map with t id = t and match-
ing t asn; a match implies that, before the primary failed,



thread t at the primary assigned to that lock the l id stored
in the id map. If a match is found, the corresponding map is
removed from the log and the id of the lock is set to l id.

If a match is not found, then either (i) the lock was as-
signed its l id at the primary by a different thread t′, or (ii)
no primary thread logged an id map for the lock before the
primary failed. Thread t handles these two cases by waiting,
respectively, until either t′ assigns the l id at the backup or
until the log contains no more maps, in which case t can
safely assign a new l id to the lock.

This approach only replicates the lock acquisition se-
quence, which may require extra synchronization when or-
dering is important. If multiple threads are interacting with
the environment (e.g., reading or writing a log) and the
interleaved order is important, then synchronization is re-
quired to ensure an identical order between the primary and
the backup even if the synchronization is not required for
correctness at the primary.

Replicated Thread Scheduling. The second approach
relies on the assumption R4B that the scheduling lock pro-
tects all shared data. Whenever the primary interrupts the
execution of a thread t to schedule a new thread, it sends a
thread scheduling record to the backup, which uses it dur-
ing recovery to enforce the primary’s schedule. A record is
comprised of (br cnt, pc off, mon cnt, l asn, t id), where:

br cnt counts the control flow changes (e.g., branches,
jumps, and method invocations) executed.

pc off records the bytecode offset of the PC within the
method currently executed by t.

mon cnt counts the monitor acquisitions and releases per-
formed by t.

l asn records the lock acquisition sequence number when t
is rescheduled while waiting on a lock.

t id is the thread id of the next scheduled thread.

The basic scheme for tracking how much Java code t
executed before being rescheduled is simple, and it is im-
plemented by the first two entries in the schedule record.
Rather than counting the number of bytecodes, which would
add overhead to every instruction, we instrumented the JVM
to increment br cnt for each branch, jump, and method in-
vocation. Further, since the program counter address is
meaningless across replicas, we store in pc off the last byte-
code executed by t as an offset within the last method ex-
ecuted by t. Unfortunately, in our implementation this re-
quires an update to the thread object after executing every
bytecode because it is hard to determine, when t is resched-
uled, where the JVM is storing its program counter, whose
value is needed to calculate pc off.

A first complication over this simple scheme arises when
t is rescheduled while executing a native method. Native
methods are opaque to the JVM: we have no way of deter-
mining precisely when t is rescheduled. Often this is not a
problem: when repeating t’s schedule during recovery, the
backup reschedules t right before the native method is in-
voked. This is unacceptable, however, if t, while execut-
ing within the native method, acquires one or more locks:
reproducing the lock acquisition sequence is necessary for

correct recovery, because it is this sequence that determines
the value of shared variables. Fortunately, whenever a lock
is acquired or released, control is transferred back inside the
JVM. Our implementation intercepts all such events, inde-
pendent of their origin, allowing us to correctly update the
value stored in mon cnt. In this case, instead of reschedul-
ing t during recovery before invoking the native method, we
allow t to execute within the native method until it performs
the number of lock acquisitions stored by the primary in
mon cnt.

Further complications come from the interaction of ap-
plication threads and system threads. System threads do
not correspond to a BEE executing application code, and
several do not execute Java code at all (e.g., the garbage
collector). As was the case for native threads, we cannot
reproduce scheduling events that involve system threads. 1

Ignoring system thread scheduling creates problems when
application and system threads share resources, such as the
heap, because both types of threads can contend for the
same locks.

In particular, interaction with system threads might result
in either of two events occurring during the recovery of an
application thread t:

1. t is forced to wait at the backup for a lock that was
acquired without contention at the primary. In this
case, t runs the risk of being rescheduled by the backup
before it can complete the sequence of instructions ex-
ecuted by its counterpart at the primary. We solve
this problem by adding a separate scheduler thread
and a private runnable queue (as in user-level thread
libraries) to guarantee that t will continue to be sched-
uled, without being interleaved with other application
threads, until necessary.

2. t acquires without contention at the backup a lock
for which it was forced to wait at the primary. So,
while t was rescheduled at the primary, it might not be
rescheduled at the backup. It is easy to use mon cnt to
enforce the correct scheduling.

Threads can also perform wait operations on a monitor,
blocking the thread until a corresponding notify or notifyAll
is performed. If multiple threads are awakened, we need
to guarantee that they will acquire the monitor in the same
order at the primary and the backup. To do so, we store the
l asn of the monitor lock as part of the thread scheduling
record.

A final subtle point arises when the backup completes
recovery, i.e. when it finishes processing the sequence of
thread scheduling records logged by the primary before fail-
ing. The last scheduling record in this sequence contains
the t id t′ of the next thread that the primary intended to
schedule—the primary failed before recording at the backup
the scheduling record for t′. Nevertheless, the backup must
schedule t′ because at the primary t′ might have interacted

1Replicating thread scheduling at the OS level in the native threads li-
brary would allow us to handle all threads, but at the cost of reduced porta-
bility. Further, we would still have to modify the JVM to handle other
sources of non-determinism.



with the environment. t′ will execute at the backup until
these interactions are reproduced.

4.3. Garbage Collection

Garbage collection in Sun’s JVM is both asynchronous
and synchronous. Any thread can synchronously collect
garbage by invoking a JRE native method. Asynchronous
garbage collection is performed periodically by a garbage
collector thread and during memory allocation when mem-
ory pressure indicates collection is needed. Since garbage
is unused memory by definition, we initially avoided repli-
cating the behavior of the asynchronous collector thread.
However, asynchronous garbage collection can be a source
of non-deterministic read sets. Indeed, both soft references
and finalizer methods create paths for non-deterministic in-
put to application threads.

Soft references are used to implement caches. By
fudging the definition of garbage, the referenced objects
are guaranteed to be garbage collected before an out-of-
memory error is returned to the application. Because R0
prevents such an error from being raised at all replicas, col-
lection of soft references might occur at different times at
different replicas. For instance, the primary might find an
object in its cache, while the backup might not, leading the
execution of primary and backup to diverge. 2 Although we
could replicate the behavior of the asynchronous garbage
collector by recording when it locks the heap, we use a
much simpler solution: all soft references are simply treated
as strong references, which represent active objects and are
therefore never collected. This shortcut has no effect on our
experiments because there is never enough memory pres-
sure to dictate the collection of soft references.

Another possible source of non-determinism is improper
use of finalizer methods. These methods are intended to
allow objects to reclaim resources that cannot be freed au-
tomatically by the garbage collector (e.g., if memory was
allocated in a native method). The Java language specifica-
tion states that finalizer methods are invoked on objects be-
fore the memory allocated to the object is reused, but does
not specify exactly when, allowing different behaviors at
the primary and the backup. Our current implementation
assumes that finalizer methods only free unused memory or
perform other deterministic actions on local memory. Since
no data is shared between the thread that runs the finalizer
on dead objects and any threads that previously used those
objects, no new source of non-determinism is introduced.
However, it is possible to write improper finalizer methods
that do more than free unused memory: in fact, they can
perform arbitrary actions, possibly with non-deterministic
side effects. Although we don’t currently replicate the invo-
cation of finalizers, it would be easy to do so using one of
the approaches discussed in Section 4.2.

4.4. Environment Output

We deal with output commands in native method through
a novel approach based on what we call side effect handlers

2Similar arguments also apply to weak references [8], which we treat
similarly.

(SE handlers). SE handlers are used to store and recover
volatile state of the environment and to ensure exactly-once
semantics for output commands. A handler consists of five
separate methods that are called at various stages of execu-
tion at each replica.

register This method registers with the JVM information
about the native methods that the handler will man-
age, including the signature of the method, whether
the method is a non-deterministic command and/or an
output command, and whether its arguments should be
logged (i.e., if they are also output arguments).

test The backup calls this method to test during recovery
whether an output command succeeded. For example,
the first output command after recovery is terminated
is uncertain—we cannot in general decide whether the
command has completed. test is called on an uncer-
tain command to determine whether a testable output
completed before failure, guaranteeing exactly-once
semantics. Commands for which the test method is
not defined are considered idempotent and are simply
replayed.

log The primary calls this method after executing an out-
put command. The system provides log with the argu-
ments to the native method that performed the output
(including the class instance object), the return value
from the native method, and extra information about
the internal state of the JVM. log saves and returns in a
message all state necessary to recover the output of the
command. For example, on a file write this message
might store the file descriptor and the amount written
(or the current file pointer offset).

receive The backup calls this method to receive the state
stored by the primary through the log method. Before
saving the state, receive can compress it: for example,
receive could compress the results of several file writes
into one offset for the file pointer.

restore The backup calls this method during recovery. It
is invoked only once. restore recovers the volatile
state affected by output commands. If receive has
compressed the results of multiple commands, restore
might be able to recover the appropriate state directly
instead of replaying the commands. For example, to
recover an open file restore would open the file and set
the file pointer to the appropriate offset.

Each SE handler can manage a set of related native meth-
ods. For example, we have one handler for all native file
I/O methods. The handlers we have written for the stan-
dard libraries are automatically added to the system during
startup. Applications can incorporate their own handlers us-
ing the same functions. Using SE handlers allowed us to
add support for file I/O in the standard libraries. The same
approach can be used by application writers to incorporate
user-supplied output commands.

5. Experiments

Our experimental setup consists of two Sun E5000
servers, each with 15 400MHz UltraSPARC II cpus and



Table 2: Properties of benchmarks pertinent to our implementation.

Implementation Event jess jack compress db mpegaudio mtrt
Both Intercepted NM 64088 631295 419 96011 10031 1473

NM Output Commits 763 34 102 703 10 133
Replicated Logged Messages 4873592 12833046 2355 53492759 14717 701738

Lock Locks Acquired 4809503 12201750 1935 53396747 4685 700264
Acquisition Objects Locked 4515 505223 102 15612 21 161

Largest l asn 1410798 746136 633 5286641 1955 34738
Replicated Logged Messages 64089 631296 420 96012 10032 30638

Thread Scheduling Avg. Reschedules 0 0 0 0 0 29163

2GB memory running SunOS 5.8 connected by a 100 Mbps
Ethernet. The primary runs on one machine and logs events
at the backup running on the other. On performing an out-
put, the primary waits until the backup acknowledges hav-
ing logged all events up to the output event. The backup
keeps its log in volatile memory.

Sun’s JVM does not include the source code for Just-In-
Time (JIT) bytecode compilation, which dynamically con-
verts methods from bytecodes into native machine code in-
structions. Without the source we cannot use JIT compila-
tion because we cannot include our modifications to some
bytecode executions (e.g., interception of native method in-
vocations). Hence, all of our experiments are performed in
interpreted mode (i.e., without JIT compilation). JIT com-
pilation reduces the execution time of CPU intensive code
but has little effect on communication, which is our pri-
mary source of overhead. Hence, although the overhead
on a JVM using JIT compilation is hard to predict, we be-
lieve that probably it wouldn’t change significantly except
for compress, which is 2 times faster on Sun’s HotSpot JVM
with JIT compilation. The other benchmarks vary from 20%
faster to 20% slower execution time, probably resulting in
comparable changes to the overhead.

To estimate the costs of adding fault tolerance to the
JVM, we run the SPEC JVM98 benchmark on the repli-
cated lock acquisition implementation, the replicated thread
scheduling implementation, and the original Sun JVM. The
programs in the benchmark vary widely in their character-
istics. Compress is a CPU-intensive Lempel-Ziv compres-
sion application. Jack is a parser generator which is run on
input to generate a parser for itself. Db contains a memory-
resident database that is queried multiple times. Jess is an
expert shell system that computes on a set of common puz-
zles with progressively larger rule sets. Mpegaudio decom-
presses MPEG-Layer 3 audio files. Mtrt is the only multi-
threaded application in the benchmark and consists of a ray-
tracer rendering a scene of a dinosaur. Though Mtrt is the
only multi-threaded application, several other apps (notably
Db) contain much synchronized code. We did not include
results for javac (included in SPEC JVM98) because we
could not get the application to run on Sun’s original JVM.

Table 2 summarizes the properties of the benchmark ap-
plications with respect to our implementation. Database
queries in Db result in the most lock acquisitions by far,
while Jack locks more unique objects. All applications have
few intercepted native methods and even fewer output com-

jess jack compress db mpegaudio mtrt
0

1

2

3

4

5

E
xe

cu
tio

n 
T

im
e 

(n
or

m
al

iz
ed

)

TS primary
TS backup
Lock primary
Lock backup

Figure 2: Comparison of our implementations using green
threads normalized to our JVM without replication. The TS
columns represent our replicated thread scheduler imple-
mentation, and the Lock columns represent the replicated
lock acquisition implementation. The execution times of
each benchmark are (in secs): jess (167), jack (182), com-
press(541), db (354), mpegaudio (419), mtrt (163).

mits. The largest l asn shows that the lock acquisitions are
skewed—few locks are responsible for most acquisitions.
The average number of reschedules in the last row shows
that though many locks are acquired in all of the bench-
marks, only Mtrt actually requires them for multi-threading.

We implemented replicated lock acquisition for both
the green threads library supporting user-level threads on
uniprocessors and the native threads library supporting
multi-threading on an SMP. We only implemented thread
scheduling for green threads. We found the overheads ex-
hibited by the two implementations of replicated lock ac-
quisitions to be qualitatively similar. We thus only report
results from our implementation using green threads. All
experiments are performed on lightly loaded machines run-
ning in multi-user mode; experiments were repeated until
95% confidence intervals were within 1% of the mean.

Figure 2 shows the overall execution times of the bench-
mark applications using each of our replication approaches
normalized to the corresponding times without any repli-
cation. The primary columns are the execution times of
the primary logging events to the backup, while the backup
columns give the times for the backup to replay events from
the log. Although our implementation was not tuned ag-
gressively (we only optimized some in the replicated thread



jess jack compress db mpegaudio mtrt
0

1

2

3

4

5

E
xe

cu
tio

n 
T

im
e 

(n
or

m
al

iz
ed

)

Pessimistic Overhead
Misc. Overhead
Lock Acquire Overhead
Communication Overhead
Original JVM

Figure 3: Normalized overhead for replicated lock acquisi-
tion implementation using green threads library.

jess jack compress db mpegaudio mtrt
0

1

2

3

4

5

E
xe

cu
tio

n 
T

im
e 

(n
or

m
al

iz
ed

)

Pessimistic Overhead
Misc. Overhead
Rescheduling Overhead
Communication Overhead
Original JVM

Figure 4: Normalized overhead for replicated thread
scheduling implementation using green threads library.

scheduler), we observed under 100% overhead for most
applications. Replicating lock acquisitions has an average
of 140% overhead (skewed by Db) for green threads, well
above the replicated thread scheduling’s 60% average.

The overhead for replicated lock acquisitions (Figure 3)
ranges from 5% (Mpegaudio) to 375% (Db). The large over-
head in Db is a result of processing its more than 53 million
lock acquisitions. In Figure 3, Communication Overhead
represents the time spent sending messages to the backup,
and Lock Acquire Overhead measures the time spent stor-
ing information on lock acquire. Pessimistic Overhead rep-
resents the time spent waiting for acknowledgments from
the backup on output commit events.

In our implementation lock acquisition messages are
very small (36 bytes). The primary buffers such messages
and sends them to the backup either periodically or on an
output commit; in the latter case, the primary sends the
buffered messages and waits for an acknowledgment. Sim-
ilarly, the backup only sends an acknowledgment message
after processing a burst of incoming logging messages.

The sources of overhead for the replicated thread
scheduling implementation are detailed in Figure 4. Com-
munication Overhead and Pessimistic Overhead are as in
Figure 3, while Rescheduling Overhead measures time

spent updating counters and storing scheduling decisions.
The overhead varies from 100% (Jack) to 15% (Compress).

Replicating thread scheduling yields a lower communi-
cation overhead than replicating lock acquisition: only Mtrt
logs any thread schedule records to the backup. Further, to
reduce the number of records created, a record is sent only
when a new thread is scheduled. All other benchmarks are
single-threaded; hence, they do not involve transmission of
any records. The replicated lock acquisition implementa-
tion does not take advantage of this single-threaded case,
sending many unnecessary messages.

For such applications, we expect replicated thread
scheduling to incur smaller overhead than replicated lock
acquisition. In practice, however, we observe that this is
not always the case (see Figure 2), because storing thread
progress incurs significant overhead. As seen in Figure 4,
the overhead of replicated thread scheduling is dominated
by the Misc. Overhead, which captures the overhead result-
ing from extra bookkeeping. In an earlier version of our im-
plementation, the bookkeeping overhead for the replicated
thread scheduler overwhelmed any communication advan-
tages. To reduce these costs, we were forced to add about
12 instructions that update counters and keep track of the
virtual machine’s PC to the hand-written optimized assem-
bly loop that executes bytecodes at the heart of the JVM. We
believe significant additional reductions could be achieved
by optimizing the code further. Also, using a deterministic
scheduler as in the Jikes RVM [9, 10] or Jalapeño [11] might
result in lower overhead substantially because the progress
indicators would be simplified.

The two approaches to handling multi-threading present
different tradeoffs. Replicating lock acquisitions may be
less effective if a thread acquires or releases objects several
times before being rescheduled. Further, replicating thread
scheduling handles automatically the single-threaded case
as no extra messages are sent. Nonetheless, replicating lock
acquisitions is still a compelling approach because it works
on multiprocessor systems, and may provide better perfor-
mance, as in the case of Mtrt.

As communication overhead is the dominant source of
overhead in our experiments, the amount of communication
for a given application created by each technique is an ef-
fective predictor of their performance.

6. Related Work

Replica coordination[1, 2] can be implemented at any
level of a system’s architecture, from the application
level [12]all the way down to the hardware [13]. Systems
that implement replica coordination at intermediate levels
include TFT [14] (at the interface above the operating sys-
tem) and [3], in which replica coordination is implemented
above a virtual machine that exports the same instruction
set architecture as HP’s PA-RISC.

We first reported on our fault-tolerant JVM in [15]. Since
then, we have become aware of other concurrent and in-
dependent effort that address some of the same issues dis-
cussed in this paper. Basile and others report on replicating
multi-threaded applications in [16]. They develop a leader-
follower replicated lock acquisition algorithm that assumes



R4A and a Byzantine failure model for a webserver applica-
tion. Their algorithm for replicated lock acquisition is sim-
ilar to ours; however, they do not explore scenarios where
R4A doesn’t hold.

Recently, Friedman and Kama have also explored the
idea of modifying the JVM (in their case, the Jikes
RVM [9]) to achieve transparent fault-tolerance [10] using
semi-active replication. Although we share the same goals,
our approaches differ in three fundamental ways. First, their
approach only applies to systems where R4A holds, while
we explore multiple ways to handle the non-determinism
introduced by multi-threading. Second, they do not address
applications with non-deterministic native methods, though
they do address I/O within the JRE. Finally, they report
experiments using JIT, while all our experiments are per-
formed in interpreted mode because we require access to
the source code for JIT.

Earlier work on debugging multi-threaded applications
addressed non-determinism. LeBlanc and Mellor-Crummey
first introduced recording lock synchronization and shared
memory accesses for debugging replay [17]. More recently,
Choi and Srinivasan apply this approach to Java in the De-
jaVu tool for debugging assuming R4A in [18] and R4B
in [11]. DejaVu records logical thread intervals wherein
a thread performs non-deterministic events such as moni-
tor entry/exit and shared variable accesses. The intervals
include thread schedules for the underlying deterministic
thread scheduler of the Jalpeño JVM.

As our focus is fault-tolerance, our implementation dif-
fers in several ways. First, we include a general approach to
handling application-provided native methods. Second, De-
jaVu does not address output to the environment. Third, the
Jalapeño scheduler reschedules at deterministic yield points,
simplifying thread execution progress tracking.

Their trace sizes are much smaller than ours by clever
use of intervals, but the overhead incurred is still 40%-80%,
comparable to ours without pessimism. Our implementa-
tion could benefit from the use of intervals. For the multi-
threaded Mtrt application there would only be 56 intervals
instead of 700258 lock acquisitions—four orders of magni-
tude fewer events, resulting in a significant saving in space
and probably also time.

To the best of our knowledge, replicating lock acqui-
sitions for handling multi-threading was first proposed by
Goldberg, et al., for Mach applications in [19]. When repli-
cating lock acquisitions, correctness depends on the absence
of data races. By augmenting the type system, Boyapati
and Rinard developed race-free Java programs which meet
R4A [20]. Data race detection mechanisms [21, 6] could
also be used to verify R4A holds for a given program.

Our implementation of replicated thread scheduling is
based on Slye and Elnozahy [7]. They record thread
progress during normal execution using a count of control
flow changes (branches, jumps, function calls). Our solu-
tion differs in two ways: 1) the JVM cannot track all control
flow changes (e.g., while executing a native method) and 2)
we do not recover all threads (e.g., the garbage collector).

7. Conclusions
We build a fault-tolerant JVM using the state machine

approach. We implement and evaluate two techniques
for eliminating the non-determinism introduced by multi-
threading. The first technique allows the threads at the
backup to reproduce the exact sequence of monitor acqui-
sitions performed by the threads at the primary. The sec-
ond technique replicates at the backup the thread schedul-
ing decisions performed at the primary. Our results suggest
that this is a viable solution for providing transparent fault-
tolerance to Java applications.

References
[1] L. Lamport, “Time, clocks, and the ordering of events in

distributed systems,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, July 1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: A tutorial,” ACM Computing
Surveys, vol. 22, no. 4, pp. 299–319, Dec 1990.

[3] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault
tolerance,” in Proceedings of SOSP 15, Dec 1995.

[4] T. Lindholm and F. Yellin, The JavaTM Virtual Machine Spec-
ification, 2nd Ed. Addison-Wesley, April 1999.

[5] S. Liang, The JavaTM Native Interface: Programmer’s Guide
and Specification. Addison-Wesley, June 1999.

[6] S. Savage et al., “Eraser: A dynamic race detector for multi-
threaded programs,” ACM TOCS, vol. 15, no. 4, pp. 391–411,
October 1997.

[7] J. H. Slye and E. Elnozahy, “Support for sotware interrupts
in log-based rollback recovery,” IEEE TOCS, vol. 47, no. 10,
pp. 1113–1123, October 1998.

[8] P. Chan, R. Lee, and D. Kramer, The Java Class Libraries:
2nd Ed, Vol 1 Supplement for the JavaTM 2 Platform, Std Ed,
v1.2. Addison-Wesley, June 1999.

[9] IBM, “Jikes RVM,” 2002. [Online]. Available:
http://www.ibm.com/developerworks/oss/jikesrvm/

[10] R. Friedman and A. Kama, “Transparent fault-tolerant JVM,”
Department of Computer Science, The Technion, Tech. Rep.
CS-2002-19, Dec 2002.

[11] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides,
“A perturbation-free replay platform for cross-optimized
multithreaded application,” in Proceedings of IPDPS, 2001.

[12] K. P. Birman, “The process group approach to reliable dis-
tributed computing,” Communications of the ACM, vol. 36,
no. 12, pp. 37–53, 1993.

[13] J. Bartlett, J. Gray, and B. Horst, “Fault tolerance in tandem
computer systems,” in The Evolution of Fault-Tolerant Sys-
tems, A. Avizienis, H. Kopetz, and J.-C. Laprie, Eds. Vi-
enna, Austria: Springer-Verlag, 1987, pp. 55–76.

[14] T. C. Bressoud, “TFT: A Software System for Application-
Transparent Fault Tolerance,” in Proceedings of FTCS 28,
June 1998, pp. 128–137.

[15] J. Napper, L. Alvisi, and H. Vin, “A fault-tolerant java virtual
machine,” University of Texas, Dept. of Computer Sciences,
Tech. Rep. TR02-56, May 2002.

[16] C. Basile, Z. Kalbarczyk, K. Whisnant, and R. Iyer, “Active
replication of multithreaded applications, Tech. Rep. UILU-
ENG-02-2201, March 2002.

[17] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging par-
allel programs with instant replay,” IEEE Transactions on
Computers, vol. C-36, no. 4, pp. 471–482, April 1987.

[18] J. Choi and H. Srinivasa, “Deterministic replay of java multi-
threaded applications,” in SIGMETRICS Symposium on Par-
allel and Distributed Tools, August 1998, pp. 48–59.

[19] A. Goldberg, A. Gopal, K. Li, R. Strom, and D. F. Bacon,
“Transparent Recovery of Mach Applications,” in Usenix
Mach Workshop, 1990, pp. 169–183.

[20] C. Boyapati and M. Rinard, “A parameterized type system
for race-free Java programs,” in Proceedings of OOPSLA,
Tampa Bay, FL, October 2001.

[21] G.-I. Cheng et al., “Detecting data races in cilk programs that
use locks,” in Proceedings of ACM SPAA, 1998.


