
Conditions on Input Vectors for Consensus Solvability
in Asynchronous Distributed Systems

ACHOUR MOSTEFAOUI

Irisa/Ifsic, Universit́e de Rennes, France

SERGIO RAJSBAUM

Instituto de Mateḿaticas, UNAM, Mexico

AND

MICHEL RAYNAL

Irisa/Ifsic, Universit́e de Rennes, France

Abstract. This article introduces and explores thecondition-basedapproach to solve the consensus
problem in asynchronous systems. The approach studiesconditionsthat identify sets of input vectors
for which it is possible to solve consensus despite the occurrence of up tof process crashes. The
first main result definesacceptableconditions and shows that these are exactly the conditions for
which a consensus protocol exists. Two examples of realistic acceptable conditions are presented,
and proved to be maximal, in the sense that they cannot be extended and remain acceptable. The
second main result is a generic consensus shared-memory protocol for any acceptable condition. The
protocol always guarantees agreement and validity, and terminates (at least) when the inputs satisfy
the condition with which the protocol has been instantiated, or when there are no crashes. An efficient
version of the protocol is then designed for the message passing model that works whenf < n/2, and
it is shown that no such protocol exists whenf ≥ n/2. It is also shown how the protocol’s safety can
be traded for its liveness.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
systems—distributed applications; network operating systems; C.4 [Performance of Systems]:
fault tolerance; reliability, availability, and serviceability; D.1.3 [Programming Techniques]:
Concurrent Programming—distributed programming; D.4.5 [Operating Systems]: Reliability—
fault-tolerance; F.1.1 [Computation by Abstract Devices]: Models of Computation—relations

A preliminary version of this article appeared inProceedings of the 33rd ACM Symposium on Theory
of Computing(Crete, Greece, July). ACM, New York, 2001, pp. 153–162.
Part of this work was done while S. Rajsbaum was at HP Research Lab, One Cambridge Center,
Cambridge, MA 02139.
Authors’ addresses: A. Mostefaoui and M. Raynal, IRISA, Campus de Beaulieu, Universite de
Rennes 1, Avenue du General Leclerc, 35042 Rennes Cedex, France, e-mail: raynal@irisa.fr;
S. Rajsbaum, Instituto de Matem´aticas, UNAM, Mexico.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax:+1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0004-5411/03/1100-0922 $5.00

Journal of the ACM, Vol. 50, No. 6, November 2003, pp. 922–954.

Conditions on Consensus Solvability 923

between models; computability theory; F.1.2 [Computation by Abstract Devices]: Modes of
Computation—parallelism and concurrency; alternation and nondeterminism; F.2.m [Analysis of
Algorithms and Problem Complexity]: Miscellaneous

General Terms: Algorithms, Reliability, Theory, Performance

Additional Key Words and Phrases: Asynchronous systems, consensus problem, crash failures, fault-
tolerance, message-passing, atomic registers, shared memory

1. Introduction

Context of the study.Agreement and coordination problems are crucial for the
design of fault-tolerant applications on top of asynchronous distributed systems
prone to failures. Among agreement problems,consensusis considered fundamen-
tal, and many papers have been written on both its practical and its theoretical aspects
[Attiya and Welch 1998; Lynch 1996]. It has gained a leadership position as it can
be seen as the “greatest common agreement subproblem.” Intuitively, this means
that particular agreement problems (e.g., atomic broadcast [Chandra and Toueg
1996], shared memory objects [Herlihy 1991]), can be implemented using a solu-
tion to the consensus problem. Informally, this problem can be defined in terms of
two requirements: each process proposes a value, and each correct process has to
(liveness) decide a value such that (safety) there is a single decided value, and the
decided value is a proposed value.

Consensus being such an important problem, it is remarkable that it cannot be
solved in an asynchronous system where only one process may crash (Fischer et al.
[1985] proved the result for message passing systems, and Loui and Abu-Amara
[1987] extended it to shared memory systems). Therefore, researchers started inves-
tigating ways of circumventing the impossibility result. Two main directions were
explored: relaxing the requirements of the consensus problem, and strengthening
the assumptions on the system. Of course, most interesting are problems weaker
than consensus that are still interesting for applications, and stronger computation
models that still reflect realistic distributed systems.

At least two ways of relaxing the consensus requirements have been investigated.
An active research area has been on ways of solving the problem using random-
ization, so that termination is achieved only with high probability (e.g., Ben-Or
[1983], or Aumann [1997] for a more recent work, and references herein). Another
approach is to require that processes agree with each other only approximately;
either processes must eventually decide on real values which are withinε of each
other (e.g., Dolev et al. [1986]), or processes can decide on at mostk distinct
proposed values (e.g., Chaudhuri [1993]).

Also, at least two ways of strengthening the assumptions on the system have been
considered. One major research direction consists of adding synchrony assumptions
to the system. This is motivated by the fact that real systems often have access
to approximately synchronized clocks, and can make use of timeouts to avoid
waiting for a message that has been lost, or for a process that has crashed. Partially
synchronous systems where delays and relative processor speeds are bounded have
been studied in works such as Dolev et al. [1987] and Dwork et al. [1988]. An
interesting direction is theUnreliable Failure Detectorconcept [Chandra and Toueg
1996], that abstracts away from the details of how a processor suspects a failure has
occurred, without referring to particular synchrony assumptions. This is achieved

924 A. MOSTEFAOUI ET AL.

by equipping processes with an oracle that provides them with a list of processes
suspected to have crashed. Several failure detector-based consensus protocols have
been designed (e.g., Chandra and Toueg [1996] and Mostefaoui and Raynal [1999]).
The other major research direction consists of assuming that the system includes
communication primitives that are stronger than point-to-point message channels
or read/write shared registers. A seminal paper in this approach is Herlihy [1991]
where it is shown that there are objects that can be used to solve wait-free (tolerating
any number of failures) consensus forn processes but not forn+ 1 processes, and
that some objects can be used to solve wait-free consensus for any number of
processes. For example, while read/write registers cannot be used to solve wait-
free consensus even for just two processes, test&set objects can be used to solve
wait-free consensus for two, and no more than two, processes.

Some papers try to circumvent the consensus impossibility result combining the
two previous approaches, to benefit from the best of “both worlds.” Combining
failure detection and randomization is explored in Aguilera and Toueg [1998] and
Mostefaoui et al. [2000]. Combining relaxation of the termination requirement with
stronger assumptions on the system, so that processes rely on “luck” to terminate,
is explored in Aspnes [2000].

Results presented in the article.This article introduces and investigates a new
approach to tackle the consensus problem. This approach considers the set of pos-
sible vectors of values that can be proposed by the processes, and focuses on
conditions that identify sets of vectors allowingn processes to solve the consensus
problem despite up tof process crashes, in a standard asynchronous model. The
intuition that underlies the approach is simple and natural. To illustrate it, let us
consider the extreme case where it is a priori known that all the processes propose
the same value. Then, consensus is trivially solved (at no cost!), each process de-
ciding the value it proposes. As a less trivial example, consider the condition “more
than a majority of the processes propose the same value.” It is not hard to see that
consensus can be solved in this case, whenf = 1. It is plausible to imagine an
application that in some real system satisfies this condition most of the time; only
when something goes wrong, the processes proposals get evenly divided.

More generally, for a given set of input valuesV, and particular values ofn
and f , a condition is defined to be the set of all vectors overV that can be pro-
posed by the processes under normal operating conditions. We are interested in
protocols that (1) solve consensus when such a condition holds, and (2) are al-
ways safe. Safe means that the protocol guarantees agreement (and a decided
value is a proposed value), whether the proposed input vector is allowed by the
condition or not. In addition, the protocol must terminate in well-behaved sce-
narios (e.g., failure-free runs) even if the input vector is not in the condition.
This is the best we can hope for, since the consensus impossibility result says
we cannot require that a consensus protocol terminates always, for every input
vector. By guaranteeing that safety is never violated, the hope is that such a pro-
tocol should be useful in applications (e.g., Guerraoui and Raynal [2003] and
Lamport [1998]).

After having introduced thecondition-basedapproach, we present our first main
result: a generic condition-based consensus protocol. This protocol uses a predicate
P and a functionS, that have to be instantiated for each particular conditionC.
Intuitively, the predicateP tells a process if the input vector could belong toC

Conditions on Consensus Solvability 925

(in general, due to failures and asynchrony, the process is able to find out only
part of the input vector), and if so,S tells it what value to decide. This protocol
has various desirable features. First, it is simple and efficient, and its parameters
P andS can be efficiently computed from the conditionC. If the conditionC it
is based on contains the actual input vector and there are at mostf crashes then
the protocol solves the consensus problem. When the actual input vector does not
belong toC the protocol still terminates in many cases, guaranteeing agreement;
it terminates when no process crashes, or when one process decides. Thus, the
protocol is attractive from both theoretical and practical points of view.

Clearly, our protocol could not possibly work witheverycondition. For example,
the condition that includes every input vector reduces the problem to the original
consensus problem, which we know by Fischer et al. [1985] that cannot be solved.
Our second main result is identifying the class of conditions for which the proposed
protocol solves the consensus problem, calledacceptable conditionsand observing
that it is an efficiently decidable class. Moreover, we prove that if there isanypro-
tocol solving the consensus problem for a conditionC, thenC must be acceptable.
Thus, it is somewhat surprising that such a simple and efficient protocol as the one
we propose, solves the problem for any condition for which a solution does exist.

Our characterization is in terms of an intermediate notion that we callcondition
legality. This notion is based on a graph defined by the input vectors of the condition,
as explained below. Given a conditionC (and a value off andV), we show that
the four following assertions are equivalent: (A1) C is acceptable, (A2) there exists
a consensus algorithm forC, (A3) there exists annonsafealgorithm that solves
consensus provided it only gets inputs belonging toC, (A4) C is legal. We prove
this by proving the implicationsA1 ⇒ A2 ⇒ A3 ⇒ A4 ⇒ A1. The part
A2 ⇒ A3 is trivial, since the requirements for a nonsafe algorithm are weaker
than for its safe counterpart. More interestingly, the characterization implies that
A3⇒ A2, which means that the safety requirement (2) above does not limit the set
of conditions for which a condition-based consensus protocol exists. We present
also a direct proof of this fact: we describe how to transform a protocol that solves
consensus assuming that only inputs in a conditionC are given, to a protocol that
also allows inputs outside ofC and guarantees the safety requirement.

An intuition for the characterization can be seen through the legality definition.
Basically, the input vectors are represented as vertices of a graph, where two input
vectors are connected if they differ in at mostf entries. Hence, a particular condition
C defines disconnected components of this input graph, by eliminating input vectors
outside ofC. Different conditions define different ways to produce disconnected
components. A condition islegal if each connected component of its associated
graph, has a value that appears in all the input vectors of that component. The
intuition is that, according to the particular condition it is supplied with, the generic
protocol maps each connected component to an output vector with all entries equal
to the same value—a value that occurs in each input vector of the corresponding
component.

The protocol is first described in a very simple model (following a methodology
advocated in Gafni [1998]): a shared memory model with atomic snapshots. Then,
an efficient implementation is discussed for a message passing system withf < n/2,
that avoids automatic, but less efficient translations such as those of Attiya [2000]
and Attiya and Rachman [1998]. It is also shown that no such protocol exists when
f ≥ n/2.

926 A. MOSTEFAOUI ET AL.

This article also investigates two particular conditions,C1 andC2. Both are very
natural, and are proved to be acceptable. ConditionC1 is the following one. Given
an input vectorI , let a be the most often proposed value, and letb be the second
most often proposed value. Let #1st(I) (#2nd(I)) be the number of timesa (b) has
been proposed. Then,C1 accepts all vectorsI with #1st(I)−#2nd(I) ≥ f + 1. It is
shown that, whenC1 is satisfied, consensus can be solved by having each process
decide the value it sees the most often. ConditionC2 assumes that the proposed
values are ordered and is the following: the largest proposed valuev is proposed
by at least (f + 1) processes. In this case, all processes can see this value, and can
decide on it. Many other conditions can be defined, butC1 andC2, are in a sense
dual and realistic. Moreover, we prove that a slightly refined version ofC1, and
C2 are maximal in the sense that any attempt to extend them results in a condition
which is not acceptable.

Related work. Following the publication of an extended abstract of this article
[Mostefaoui et al. 2001], several works have continued exploring the condition-
based approach. In this article we seek to establish the foundations of the condition-
based approach, mainly from the computability point of view, and applied to the
consensus problem in asynchronous systems. The case of synchronous systems is
explored in Mostefaoui et al. [2003] and Zibin [2003]. All the following works
are for asynchronous systems. Efficiency aspects of the approach are studied in a
companion paper [Mostefaoui et al. 2001b] where it is shown that the acceptable
conditions form a hierarchy, more precisely, the efficiency of the consensus proto-
cols depends of the position of the condition in the hierarchy. In Attiya and Avidor
[2002] and Mostefaoui et al. [2002] the condition-based approach is applied tok-set
agreement problems. In this article, we give two natural examples of conditions for
consensus,C1 andC2. Other conditions are explored in Mostefaoui et al. [2001a].
A formulation of conditions in terms of error correcting codes has been proposed
in Friedman et al. [2002].

The idea of considering restricted set of inputs to a problem is very natural and
has appeared in various contexts; just to mention a few examples, it has appeared
in on-line algorithms [Azar et al. 1993], adaptive sorting [Castro and Wood 1992],
etc. Agreement problems with a restricted set of inputs vectors were considered
in Taubenfeld et al. [1994] and Taubenfeld and Moran [1996], where possibility
and impossibility results in a shared memory system and a hierarchy of problems
that can be solved with up tof failures but not for (f + 1) failures are introduced.
More generally, an approach for designing algorithms in situations where there
is some information about the typical conditions that are encountered when the
respective problem is solved is presented in Berman and Garay [1998]. In this article,
the consensus problem in a synchronous setting is analyzed taking as parameter
the difference between the number of 0’s and 1’s in the input vector.

The foundation underlying the proposed condition-based approach can be for-
malized using topology (e.g., Herlihy and Rajsbaum [1999]). Our setting is not
exactly that of the previous topology papers, because those considerdecision tasks
where processes have to terminate always, with an output vector satisfying the task
specification. We can call our notion of problemsafe task,where in addition to the
requirements of a decision task, processors are required to satisfy a safety property
when inputs are illegal, without necessarily terminating. From this point of view,
our article is a study of the class of all safe tasks, with a particular kind of output

Conditions on Consensus Solvability 927

vectors: all decisions are equal. Thus, our result is an efficiently decidable char-
acterization of thef -fault tolerant solvability of these safe tasks. In Section 3.2,
we explore the relation between safe tasks and decision tasks, and show that our
notion of safe task is equivalent (for consensus solvability) to a common notion of
decision task.

In general, the study off -fault tolerant decision tasks requires higher dimensional
topology (except for the case off = 1 which uses only graphs [Biran et al. 1990a]),
and leads to undecidable characterizations [Gafni and Koutsoupias 1999; Herlihy
and Rajsbaum 1997] (NP-Hard forf = 1 [Biran et al. 1990b]). We are able to derive
an efficiently decidable characterization of the acceptable conditions (and hence
of solvability of consensus safe tasks) using only graph connectivity, due to the
simplicity of the allowed output vectors (all entries are equal). For the necessary
part of the characterization we use ideas introduced in Biran et al. [1990a] and
Moran and Wolfstahl [1987] forf = 1, and apply them for anyf .

Organization of the article. The paper is made up of 10 sections. After this
introduction, Section 2 introduces the computation model, and the consensus prob-
lem. Section 3 presents the condition-based approach. Section 4 defines the generic
condition-based consensus protocol, proving that it works for all acceptable condi-
tions. Section 5 shows the other direction of this claim, providing a characterization
of the conditions allowing to solve the consensus problem. Section 6 studies the
conditionsC1 andC2. Section 7 shows the maximality ofC1′ (a refined version
of C1) andC2. Section 8 explains the adaptation to the message passing model.
Section 9 describes the possibility of trading safety for liveness. Finally, Section 10
concludes the article.

2. Preliminaries

2.1. THE MODEL. For most of the article we consider the usual asynchronous
shared-memory system withn, n > 1, processesp1, . . . , pn, where at mostf , 0≤
f < n, processes can crash. The shared memory consists of single-writer, multi-
reader atomic registers. The executions are assumed to be linearizable [Herlihy and
Wing 1990]. For details of this model, see any standard textbook such as Attiya
and Welch [1998] and Lynch [1996]. In Section 8, we extend some of our results
to a message-passing model.

The shared memory is organized into arrays. Thej th entry of an arrayX[1 · · n]
can be read by any processpi with an operationread(X[j]). Only pi can write
to thei th component,X[i], and it uses the operationwrite(v, X[i]) when it wants
to write valuev. To simplify the description of our algorithms, we assume that
processes can take atomic snapshots of any of the shared arrays: withsnapshot(X)
a processpj atomically reads the content of all the registers of the arrayX. This
assumption is made without loss of generality, since it is known [Afek et al. 1993]
that atomic snapshots can be wait-free implemented from single-writer multi-reader
registers (although there is a cost in terms of efficiency: the best known simulation
hasO(n logn) complexity [Attiya and Rachman 1998]).

In addition to the shared memory, each process has a local memory. The subindex
i is used to denotepi ’s local variables.

2.2. THE CONSENSUSPROBLEM. The classic consensus problem has been in-
formally stated in the introduction: every correct processpi proposesa valuevi

928 A. MOSTEFAOUI ET AL.

and all correct processes have todecideon the same valuev, that has to be one of
the proposed values. More precisely, there is a setV of values that can be proposed
by the processes,⊥ 6∈ V, and|V| ≥ 2. Each process starts an execution with an
arbitrary input value fromV, the value it proposes, and has to irrevocably decide
some value. We sayan f -fault tolerant protocol solves the consensus problemif
all its executions satisfy the following properties:

—Validity. A decided value is a proposed value.
—Agreement. No two processes decide differently.1

—Termination. If no more thanf processes crash, each correct process eventually
decides some value.

A consensus problem isbinarywhen|V| = 2. Otherwise, it ismultivalued. The set
V may be a priori known by the processes or not.

3. The Condition-Based Approach

Given a distributed problem, thecondition-basedapproach analyzes restrictions
of the problem to subsets of its inputs. For each such restriction we obtain a new
distributed problem, which is possibly easier than the original problem, since a
protocol has to deal only with a subset of the possible inputs; indeed, a protocol
that solves the original problem also solves the restricted problem. We are interested
in computability and efficiency aspects of this approach:

—Given an unsolvable problem, for what restrictions of its inputs does the problem
become solvable?

—Given a solvable problem, for what restrictions of its inputs the problem becomes
easier to solve?

In this article, we consider only the first question, for restrictions of the consensus
problem. In Mostefaoui et al. [2001b], we investigate the second question, and in
Mostefaoui et al. [2002], we consider restrictions of the set agreement problem.

As explained in the Introduction, the motivation for the condition-based approach
is to study problems in environments where not all inputs have the same probability
of occurring. If we can identify a set of inputs that arrive much more frequently
than others, it might be possible to design a protocol that solves the problem more
efficiently. Now, to be more useful in practice, it is desirable to design a protocol
that solves the restricted problem in asafeway. Namely, we want the protocol to
be able to deal with the other inputs, which, although improbable, can nevertheless
occur from time to time. In those rare situations we do not want the protocol to
output arbitrary values. Also, if there are no faults, we would like the protocol to
terminate even in those rare situations.

We proceed in the next section to define formally the condition-based approach
for consensus, and its safe version. In the following section, we define it for general
problems, and prove that a safe version of a subproblem is solvable if and only if
the nonsafe version is solvable.

1 This property is sometimes named “Uniform Agreement,” in contrast to the “agreement” property
requiring only that no two correct processes decide differently. These two properties are equivalent
in the asynchronous systems we consider [Guerraoui 1995].

Conditions on Consensus Solvability 929

3.1. CONSENSUS AND THECONDITION-BASED APPROACH. The input values of
a protocol define a vector with one component per process, representing its private
(unknown to the other processes) input to the computation. In particular, for the
consensus problem, the proposed values in an execution are represented as aninput
vector,such that thei th entry contains the value proposed bypi , or⊥ if pi did not
take any steps in the execution. We usually denote withI an input vector with all
entries inV, and withJ an input vector that may have some entries equal to⊥. If
at most f processes can crash, we consider only input vectorsJ with at most f
entries equal to⊥, calledviews.LetVn be the set of all possible input vectors with
all entries inV, andVn

f be the set of all the vectors with at mostf entries equal to
⊥. For I ∈ Vn, letI f be the set of possible views, that is, the set of all input vectors
J with at most f entries equal to⊥, and such thatI agrees withJ in all the non-⊥
entries ofJ. For a setC, C ⊆ Vn, let C f be the union of theI f ’s over all I ∈ C.
Thus, in the consensus problem, every vectorJ ∈ Vn

f is a possible input vector.
In thecondition-basedapproach, we consider subsetsC of Vn, calledconditions,

that represent the common input vectors of a particular distributed application. We
are interested in conditionsC that, when satisfied (i.e., when the proposed input
vector does belong toC f), make the consensus problem solvable, despite up tof
process crashes. In the classic consensus problem, the trivial conditionC = Vn is
assumed, and this problem is unsolvable for everyf ≥ 1 [Fischer et al. 1985], and
trivially solvable for f = 0. Other conditions make the problem solvable for every
value of f , such asC1 andC2 mentioned in the introduction (studied in more detail
in Section 6).

We say that anf -fault tolerant protocol solves the consensus problem for a
condition Cif in every execution whose input vectorJ belongs toVn

f , the protocol
satisfies the following properties:

—Validity. A decided value is a proposed value.
—Agreement. No two processes decide different values.
—Guaranteed Termination. If (1) J ∈ C f and no more thanf processes crash,

or (2.a) all processes are correct, or (2.b) a process decides, then every correct
process decides.

The first two are the validity2 and agreement requirements of the classic consen-
sus problem, and are independent of a particular conditionC. The third require-
ment, requires termination under “normal” operating scenarios, including inputs
belonging toC, and failure-free executions. Part (1), requires termination even in
executions where some processes crash initially and their inputs are unknown to the
other processes. This is represented by a viewJ with⊥ entries for those processes.
Termination is required if it is possible that the full input vector belongs toC, that
is, if J can be extended to an input vectorI ∈ C. Part (2) defines two well-behaved
scenarios where a protocol should terminate even if the input vector does not belong
to C.3

2 That is, if J ∈ Vn
f then the decided value is equal to one of the entries inJ. In Attiya and Avidor

[2002], a process is allowed to decide a valuea not in J provided every extension ofJ in C containsa.
3 One could envision other termination requirements for inputs not inC. In fact, Theorem 4.8 describes
other scenarios where our protocol terminates. More about this in the Conclusion section.

930 A. MOSTEFAOUI ET AL.

3.2. SAFE VS. NONSAFEVERSIONS OF APROBLEM. In this article, we are inter-
ested in characterizing the conditionsC for which there exists anf -fault tolerant
protocol that solves the consensus problem. This is asafeversion of the problem
because the protocol is required to deal also with input vectors not inC. Consider
thenonsafeversion of the problem where it is assumed that the protocol never gets
inputs outside ofC. This means that the protocol satisfies agreement, validity and
termination in every execution of the protocol whose input vectorJ belongs to
C f (and these are the only input vectors allowed). We show here that consensus is
solvable forC in the safe version of the problem if and only if it is solvable for
the nonsafe version of the problem. It is not hard to generalize this result for set-
consensus [Chaudhuri 1993] and other convergence tasks [Borowsky et al. 2001;
Herlihy and Rajsbaum 1997], but for the purposes of this article it is sufficient to
present the result for consensus only.

This equivalence of safe and nonsafe versions of the problem4 implies that the
additional safety requirements to condition based consensus (to deal with inputs not
in C) do not change the characterization of solvable conditions. Thus, the condition-
based approach for consensus (and for other agreement tasks, since the proof is
similar) can in principle be studied with techniques that have been developed for
decision tasks. For instance, to find out if consensus is solvable for a given condition,
in the wait-free case, we could use the characterization theorem of Herlihy and
Shavit [1999] that tells which decision tasks are wait-free solvable. However, this
is in general undecidable [Gafni and Koutsoupias 1999; Herlihy and Rajsbaum
1997]. As we show in this article, for condition-based consensus problems, there
is a simple decidable solvability characterization, for any value off .

We proceed to show how to transform a protocol that solves the nonsafe version
of consensus forC, into a protocol that solves it safely. We use a similar technique
later on in our general condition-based consensus protocol.

THEOREM 3.1. Consensus is solvable for C if and only if it is solvable for the
nonsafe version of the problem.

PROOF. If there is anf -fault tolerant protocol solving consensus for a condition
C, then the same protocol nonsafely solves consensus forC, since the requirements
for nonsafe consensus are weaker. Next we prove that if there is a protocolP solving
nonsafely consensus forC, there is also a safe solution.

The argument consists of modifying the nonsafe protocolP as follows (for the
purpose of the proof, we do not make any efforts of making it efficient). The idea
is to executeP while the input vector belongs toC. If at some point it is discovered
that it does not belong toC, P should not be executed anymore, sinceP was not
designed to deal with inputs outside ofC. If a process discovers that the input does
not belong toC, it announces to everybody that it is unable to decide usingP, and
the control jumps to a subroutine that waits until (i) somebody decides (and if so
decides that value), or until (ii) every process announces that it is unable to decide
usingP. In case (ii), the full input vectorI is known and the process decidesF(I)
using some fixed functionF that returns one of the values inI , such as say max.

4 This equivalence does not hold for other forms of non-safe tasks, such as the one in Attiya and
Avidor [2002], where a processpi is allowed to decide a valuea not in the input vectorJ whenever
pi knows thata must be proposed (if nobody fails), that is, if every extensionI of J in C containsa.

Conditions on Consensus Solvability 931

Function SafetyRoutine

(1) repeat forall j ∈ [1· ·n] do Wi [j] ← read(O[j]) enddo;
(2) if (∃ j : Wi [j] 6= ⊥,>) then return (Wi [j]) endif
(3) until (⊥ 6∈ Wi) endrepeat;
(4) forall j ∈ [1· ·n] do Yi [j] ← read(I [j]) enddo;
(5) return (F(Yi))

FIG. 1. Safety routine (for a process when it discovers that the input does not belong toC).

In more detail, in the modified protocol,P′, a processpi first writes its input
value to a shared variable,I [i] (assumed not to be used byP, and initialized with
⊥), before executingP. Then pi executesP, and whenpi decides on a value, it
writes it to a shared variableO[i] (assumed not to be used byP, and initialized
with ⊥). While pi is executingP, each time it executes an instruction ofP, it first
snapshots the shared arrayI [1· ·n]. If it contains a viewJ in C f (or J contains more
than f entries equal to⊥), it continues executingP. Otherwise, it stops executing
P, does not decide according toP, and writes> to O[i], and jumps to the code in
Figure 1.

When the process is about to take a decision according toP, say d, it first
snapshots the shared arrayI [1· ·n] of the input values written so far. If the outcome
is a viewJ, andJ ∈ C f , then the process decidesd and writes the value toO[i].

To prove the correctness ofP′, first notice thatvalidity follows easily from the
fact thatP satisfies validity, and thatF returns one of the values in its argument.

Agreement property ofP′ for input vectors inC f follows from agreement ofP,
and the fact that in this case, the processes runP and do not jump to the safety
routine. If the inputJ is not in C f , it may still be the case that a process sees
a view of J that does belong toC f . Any two such process will have views of
the input vector that are ordered by containment, and hence corresponding to an
execution ofP where the input vector belongs toC f . Thus, they decide on the same
value, by the agreement property ofP. Moreover, a process that sees a view of
J (possibly J itself) that does not belong toC f , will jump to the safety routine,
which guarantees that the decision value will be equal to a decision taken by a
process in the first case. Or if there is no such process, and every process sees
a view of J that does not belong toC f , they will all decide according toF , the
same value.

Guaranteed Termination is proved in a similar way. Processes that see an input
vector that belongs toC f terminate becauseP satisfiesTermination. Other processes
terminate if either some process decides inP, or no process was able to decide in
P and nobody fails (so everybody writes its input value toI).

4. Acceptability and a Generic Protocol

We start by identifying a class of conditions, called acceptable conditions, and then
describe a protocol that solves consensus for any conditionC in this class. Given a
conditionC for n processes, a fault-tolerance parameterf , and a set of input values
V, P is a predicate defined onVn

f , andS is a function defined on (not necessarily
all of) Vn

f . A conditionC is acceptable if there existP andS satisfying the three
conditions defined below. Our condition-based consensus protocol works for any
acceptable conditionC, when instantiated with correspondingP andS.

932 A. MOSTEFAOUI ET AL.

The following notation will be useful in the rest of the article. Consider the partial
order on vectors ofVn

f defined as followsJ1≤ J2 if ∀k : J1[k] 6= ⊥ ⇒ J1[k] =
J2[k]. Then|J| denotes the number of entries inJ different from⊥.

4.1. ACCEPTABILITY. Here we define the three acceptability properties such
that, if a conditionC has a predicateP and a functionS that satisfy them, then
C is acceptable. Intuitively, our protocol usesP andS to solve consensus for an
acceptableC, and the acceptability properties help it to enforce theGuaranteed
Termination, Agreement, and Validity requirements of condition-based consensus.
In the first acceptability property, a process uses its current viewJ of the input
vector to test (by evaluatingP(J)) if the input vector could belong toC. Thus,P
returns true at least for each vectorJ with at most f unknown entries, and such
that J can be extended to a vectorI , I ∈ C. The second property states that if two
processes decide based on their viewsJ1, J2, usingS, and J2 contains at least
as many inputs asJ1 (and agree in the non-⊥ coordinates), then the decision will
be the same, providedP(J1), P(J2) hold. The third property enforces the validity
requirement of consensus. Given a conditionC, the properties that itsP andShave
to satisfy are formally defined as follows:

—Property TC→P: I ∈ C⇒ ∀J ∈ I f : P(J).
—Property AP→S: ∀J1, J2 ∈ Vn

f : (J1 ≤ J2) ∧ P(J1) ∧ P(J2) ⇒ S(J1) =
S(J2).

—Property VP→S: ∀J ∈ Vn
f : P(J)⇒ S(J)= a non-⊥ value ofJ.

Definition 4.1. A conditionC is f -acceptableif there exist a predicateP and
a functionSsatisfying the propertiesTC→P, AP→S andVP→S for f . Any suchP, S
are said to beassociatedwith C for f .

When clear from the context, we sometimes omit mentioning the parameterf .
Notice that acceptability (although motivated by the three consensus require-

ments) is a purely combinatorial property of the setC. For example, it is not hard
to check that there are noP, S satisfying the three acceptability properties for
C=Vn when f 6= 0. Indeed, if such aC was an acceptable condition, then the pro-
tocol proposed next would solve the consensus problem despite process crashes,
contradicting the impossibility result of Fischer et al. [1985].

Our first main result is the following theorem. It is proved in the next section, by
presenting a generic protocol and proving it correct.

THEOREM 4.2. If C is f -acceptable, then there exists an f -fault tolerant pro-
tocol solving consensus for C.

4.2. THE PROTOCOL. The protocol in Figure 2 solves consensus for anyf -
acceptable conditionC with associated parametersP andS. It has to be instantiated
with P and S. In addition, the protocol has to be instantiated with a functionF
fromVn toV which returns a fixed, arbitrary value of the input vectorI . Any such
function will do. Thus,F does not depend on the particular values ofP andS. The
protocol uses shared registers and local variables. Those are first introduced. Then,
the protocol behavior is described and proved correct.

Shared memory. The shared memory is made up of two arrays of atomic
registersV [1· ·n] and W[1· ·n], both initialized to [⊥, . . . ,⊥]. Their meaning

Conditions on Consensus Solvability 933

Function SM Consensus(vi)

(1) write(vi ,V [i]);
(2) repeat Vi ← snapshot(V) until (#(Vi [j] 6= ⊥) ≥ (n− f)) endrepeat;
(3) if P(Vi) then wi ← S(Vi) elsewi ←> endif;
(4) write(wi ,W[i]);
(5) repeat forall j ∈ [1 · · n] do Wi [j] ← read(W[j]) enddo;
(6) if (∃ j : Wi [j] 6= ⊥,>) then return (Wi [j]) endif
(7) until (⊥ 6∈ Wi) endrepeat;
(8) forall j ∈ [1 · · n] do Yi [j] ← read(V [j]) enddo;
(9) return (F(Yi))

FIG. 2. A generic condition-based consensus protocol.

is the following:

—V [i] is the shared register wherepi deposits its input valuevi (line 1).
—W[j] is the shared register wherepi deposits (in line 4)pj ’s estimate of the

decision value (w j). If the local view ofpj does not allow for the possibility that
the input vector is inC then pj ’s estimate is set to a default value> 6∈ V ∪ {⊥}
(line 3).

Local variables. Each processpi manages three arrays of local variables where
it stores a local copy of its current view of the state of the shared memory.

—Vi [1 · · n] is an array wherepi builds its local view.
A processpi can find out the current state of proposals by invokingsnapshot(V).
At line 2, #(Vi [j] 6= ⊥) denotes the number of non-⊥ entries of Vi . We
say that a process gets its “local view,” when it gets an array where at least
(n − f) values are different from⊥ (so the local view of a process is unique,
if any).

—Wi [1 · · n] is an array contains the decision value estimates of each processpj .
—Yi [1 · · n] is an array used bypi to store the values proposed by each process.

The protocol has a three-part structure.

Part 1 (lines1–2). A processpi first writes its input valuevi to its entry of the
shared arrayV . Then pi repeatedly snapshotsV until at least (n − f) processes
(including itself) have written their input values inV ; its viewVi contains the result
of the last snapshot, whereVi [j] is the input value ofpj , or⊥ if pj has not yet
written its input value.

Part 2 (lines 3–4). Now, pi enters its wait-free, condition-dependent, part of
the protocol. With its viewVi , it tries to make a decision, by evaluatingP(Vi). If
true, pi will be able to decideS(Vi) = wi after having written the value it decides
wi (or > if it could not decide) in the shared arrayW[i] to help other processes
decide in the next part.

Part 3 (lines5–9). Finally,pi enters a loop to look for a decision value (i.e., a
value different from⊥,>) provided by a processpj (possibly itself) in the shared
arrayW[j]. If, while waiting for a decision,pi discovers that every process has
written a value toW, and no process can directly decide (all these values are>),
pi concludes that every process has deposited its initial value in the shared arrayV

934 A. MOSTEFAOUI ET AL.

in line (1). Then,pi readsV (line (8)) to get the full input vector, and proceed to
decide according to the fixed, deterministic ruleF .

4.3. CORRECTNESS. We proceed to prove Theorem 4.2 by showing that the
generic protocol solves the consensus problem for any acceptable conditionC,
assuming it has been instantiated with associatedP, S. That is, we show that it
satisfiesValidity, Agreement andGuaranteed Termination.

Termination

LEMMA 4.3. The protocol satisfies part(1) of Guaranteed Termination (namely,
if the input vector J∈ C f and there are at most f crashes, then each correct
process decides in line6).

PROOF. Let pi be a correct process. As there are at least (n− f) correct pro-
cesses,pi does not block forever at line 2, and consequentlypi gets a local viewVi ,
Vi ≤ J. SinceJ ∈ C f , alsoVi ∈ C f , and it follows from TC→P that P(Vi) is true,
and from line (3) thatwi 6= ⊥,>. Hence,W[i] 6= ⊥,>. Consequently, at line (6),
Wi [i] 6= ⊥,> holds, and this allowspi to decide in this line.

LEMMA 4.4. The protocol satisfies part(2) of Guaranteed Termination (namely,
if (2)(a)all processes are correct, or(2)(b) a process decides, then every correct
process decides).

PROOF. Let us first assume that all processes are correct. They all execute line
(1), and hence they all exit the loop of line (2). If all processes evaluate to false
P in line (3), then they all eventually read> everywhere in line (5), and they all
eventually decide in line (9).

Let us assume that a processpi decides. Thenpi exits the loop of line (2), and
hence at leastn − f processes execute line (1). Thus, every correct process exits
the loop of line (2). Now, ifpi decides in line (6), then some processpj finished
executing line (4) with a value different from⊥,>. Thus, every correct process will
eventually see this value in line (5), and decide in line (6) (if not before). Otherwise,
pi decides in line (9), and hence it sees> everywhere in its local arrayWi , which
implies that every process has executed line (4) writing>. And every correct process
will eventually see all these values, and terminate also in line (9).

Agreement

LEMMA 4.5. Either all processes that decide do it in line(6) or in line (9).

PROOF. We consider two cases. A processpi decides in line (6) in the first case,
and in line (9) in the second case.

—In the first case, processpi sees a value different from⊥,> in line (6), and hence
for somej , W[j] 6= ⊥,>. As W[j] is initialized to⊥, andW[j] is written only
once, no processor will ever see a value> for position j in line (6). Now, a
process exists the loop in line (7) only when it sees> in all the positions of its
variableW, and therefore no process will exit the loop in this line. It follows that
if a process decides, it will do it in line (6).

—In the second case, a process does exit the loop in line (7), and hence every
process has evaluated to falseP in line (3) and written> in the shared arrayW
in the next line. Thus, no process will decide in line (6).

Conditions on Consensus Solvability 935

LEMMA 4.6. The protocol satisfiesAgreement (no two processes decide differ-
ent values).

PROOF. Let us consider two processespi and pj that decide. By Lemma 4.5,
they decide in the same line.

—Let us assume that both processes decide at line (6):pi decidesWi [`] = w`,
while pj decidesWj [k] = wk. It follows that there exist two local viewsV`
andVk such thatp` has computedS(V`) = w` 6= ⊥,>, while pk has computed
S(Vk) = wk 6= ⊥,>. This means that bothP(V`) andP(Vk) are satisfied (I1).

The last invocations ofsnapshot(V) in line (2) by p` andpk have defined their
local viewsV` andVk, respectively. Moreover, since snapshots can always be
ordered by containment, we concludeV` ≤ Vk or Vk ≤ V` (I2). It follows from
(I1), (I2) and the property AP→S thatS(V`) = S(Vk), that is,w` = wk.

—Assume that bothpi and pj decide at line (9). In that case, each processp` has
executed line (4) and consequentlyW[`] 6= ⊥. As p` executes line (1) before
line (4), it follows thatV [`] = v` when pi (or pj) executes line (8). Hence,
Yi = Yj = (v1, . . . , vn). Since both processes apply the same deterministic
function F to the same vector, they get the same result value.

Validity

LEMMA 4.7. The protocol satisfiesValidity (a decided value is a proposed
value).

PROOF. There are two cases according to the line at which a process decides.

—Let us first consider the case of a processpi that decides at line (6) by returning
the valueWi [j]. As we haveWi [j] = w j 6= ⊥,>, we conclude thatVj , the local
view of pj , is such thatP(Vj) is true andw j = S(Vj). The validity follows from
the property VP→S, associated withP andS.

—Let us now consider the case of a processpi that decides at line (9). Then, we
have∀ j : Wi [j] 6= ⊥ (line (7)) from which we conclude that each processpj
has deposited its valuev j into V [j]. Hence, we haveYi = [v1, . . . , vn] at line 8.
As F outputs a value ofYi , the validity property is satisfied.

This completes the proof of Theorem 4.2.

4.4. MORE ONTERMINATION. We have shown in Lemmas 4.3 and 4.4 that, for
any given f -acceptable conditionC with associatedP, S, the generic protocol of
Figure 2 terminates in all cases described by theGuaranteed Termination property.
Actually, there are other situations where correct processes terminate, even if the
input vector does not belong toC or the number of failures exceedsf .

First, it is easy to conclude from the protocol text that if all the processes deposit
a value in the shared arrayW (i.e., each process executes line (4)), then the correct
process decide, no matter what the number of failures is (processes that crash will
do so after line (4)), and even if the input vector does not belong toC.

Second, consider an input vectorI that does not belong toC, but that it contains
a vectorJ, J ∈ I f , with an extensionI ′ in C: J ≤ I ′ ∈ C. There are executions
where the protocol will terminate, even if some processes know that the input vector
I is not inC. Correct processes will terminate in all executions where at least one

936 A. MOSTEFAOUI ET AL.

process does not know thatI is not in C. More precisely, correct processes will
terminate in all executions where the local viewVj of a processpj in line (2) is
equal toJ, andpj executes line (4) (so at this pointpj considers possible that the
input vector isI ′ instead ofI). This follows from the code and because Property
TC→P implies thatP(J) is true.

After the previous discussion it is not hard to prove the next theorem.

THEOREM 4.8. P-More Termination. All correct processes decide if and only if
(a) all the processes execute line(4), or (b) the local view of a process pi that
executes line(4) has an extension in C.

The termination conditions of this theorem are about a particular protocol, while
theGuaranteed Termination conditions are about the consensus problem. Notice that
these two conditions are related as follows:

—Guaranteed Termination (2a) or (1) implies (a) or (b), and
—Guaranteed Termination (2b) implies (a) or (b)”

For an example of the second termination situation in the theorem, consider
the following situation:V ={0, 1, 2}, n= 6, f = 2, I = [1, 1, 0, 0, 2, 2], and the
condition is C2 (this condition, presented in the Introduction and studied in
Section 6.3, favors the maximal value present in the vector). More precisely,
I ∈C2 iff [a= max(I) ⇒ #a(I)> f] (where #a(I) denotes the number of
occurrences ofa in the vectorI). Thus,I 6∈ C2. Assume that a processpj gets the
local view Vj = [1, 1, 0, 0,⊥,⊥]. Since I ′ = [1, 1, 0, 0, 1, 0] is an extension of
Vj that belongs toC2, pj evaluatesP(Vj) = trueand decides the valueS(Vj) = 1
accordingly. Consequently, all the correct processes also decide.

These additional termination situations are interesting from both practical and
theoretical points of view, showing that the correct processes “almost always”
terminate in this protocol. Interestingly, the more entries of a local viewVj that
are equal to⊥, the more possibilities forVj to have an extension that belongs to
C and hence for processes to terminate. Less information—slow processes—can
help processes decide! For example, notice that in conditionC2 andC1′ described
below, a process that gets a local view withf entries equal to⊥ alwaysdecides.

5. A Characterization of the Conditions for Consensus Solvability

In this section we prove our second main result, the converse to Theorem 4.2:

THEOREM 5.1. If there exists an f -fault tolerant protocol solving consensus
for C, then C is f -acceptable.

Proving this theorem completes a characterization of the conditions allowing a
consensus solution. We prove this theorem using an alternative form of the accept-
ability definition, called legality. The final result is stated in Theorem 5.7 (which
implies Theorem 5.1).

5.1. THENOTION OFLEGALITY. Given a conditionC and a value forf , consider
the graphGin(C, f) (close to the graph defined in Biran et al. [1990a] forf = 1):
Its vertices areC f , that is, the input vectorsI of C plus all their views,J ∈ I f . Two
views J1, J2 ∈ C f are connected by an edge iffJ1≤ J2. Hence, two verticesI 1,
I 2 of C are connected (by a path) if their Hamming distanced(I 1, I 2)≤ f .

Conditions on Consensus Solvability 937

The graphGin(C, f) is made up of one or more connected components, namely,
G1, . . . ,Gx.

Definition 5.2. A conditionC is f -legal if, for each connected component of
Gin(C, f), all the vertices that belong to this component have at least one input
value in common.

LEMMA 5.3. Let C be a finite condition. It is decidable in polynomial time if
C is f -legal.

PROOF. Let us consider the graphH (C, f) whose vertices are the vectors ofC
and there is an edge connectingI 1 andI 2 if d(I 1, I 2)≤ f . The vertices ofH (C, f)
are the subset of vertices ofGin(C, f) that do not include any entries equal to⊥.
Two vertices are connected inH (C, f) if and only if the corresponding vertices are
connected inGin(C, f). Also, a connected component ofGin(C, f) has one input
value in common to all its vertices if and only if the corresponding component of
H (C, f) has at least one input value in common, and this value appearsf + 1
times in each one of its vertices. Hence, given a conditionC, showing thatC is
f -legal (in accordance with Definition 5.2) amounts to show that every connected
component ofH (C, f) has at least one input value in common, and that this value
appearsf + 1 times in each one of its vertices.

The graphH (C, f) can be constructed in timeO(n · |C|2): the edges are defined
by comparing then entries of each pair of vectors ofC; the graph has|C| vertices
andO(|C|2) edges. Once the graph is constructed, the connected components can
be identified in timeO(|C|2), using say, BFS. Finally, the intersection of the values
appearing in the vectors of a connected componentHi can be computed in polyno-
mial time. A straightforward way of doing this is by sorting the valuesX of one of
its vertices, and then, for every other vertex of the component, binary searchingX
for each of the values of the vertex. If a value does not appear inX, it is removed
from X. This procedure takes timeO(n logn · |Hi |), where|Hi | is the number of
vertices inHi . Finally, one checks that at least one of these values appearsf + 1
times in every vector of the component.

Assuming a legal condition, for everyGi of Gin(C, f), there is a nonempty set,
d(Gi), of input values that appear in each input vector of the connected component
Gi . As we shall see, whenI ∈ Gi , the protocol actually forces the processes to
deterministically decide the same value, one ofd(Gi). Moreover, ifa ∈ d(Gi), then
#a(I) ≥ f + 1 for every I ∈ Gi with #⊥(I) = 0. Otherwise, we can replace all
occurrences ofa in I by⊥ and obtainJ with #⊥(J) ≤ f , and #a(J) = 0, which
is impossible, sinceJ ∈ Gi anda ∈ d(Gi). Thus, it is no coincidence that this
property holds forC1 andC2.

5.2. FROM A CONDITION-BASED PROTOCOL TO ALEGAL CONDITION. In ade-
cision taskeach process starts with an input value, and has to eventually decide on
an output value. A decision task specifies the input vectors that can be an initial
configuration for the processes, and for each one, a set of output vectors, that corre-
spond to correct final configurations. Given a protocol that solves an arbitrary task
f -resiliently, we can consider the output vector ofn values decided by the processes
in an execution where at mostf processes crash. If the task is a consensus task, then
all the non-⊥ entries of the vector are equal, by the agreement requirement. LetX be
a set of input vectors for the task. We are interested in the graphGout(X, f), whose

938 A. MOSTEFAOUI ET AL.

vertices are all decision vectors over all executions starting on inputsX, and where
two vectorsJ1, J2 are connected by an edge ifJ1 ≤ J2. We use the following
theorem, a simple extension of Theorem 3.5 in Moran and Wolfstahl [1987] (used
later in Biran et al. [1990a] to characterize the solvable problems withf = 1). The
proof in this paper is for the message passing model andf = 1, but the extension
to our shared memory model withf > 1 is easy. We present this extension here for
completeness, almost verbatim from Moran and Wolfstahl [1987]. We could have
proved the theorem using other techniques; for example, see Moses and Rajsbaum
[2002] for a proof technique that does not use a reduction to the FLP impossiblity
result [Fischer et al. 1985].

THEOREM 5.4. If Gout(X, f) is the graph of decision vectors of an f -fault
tolerant protocol on a connected input graph Gin(X, f), then Gout(X, f) is
connected.

PROOF. The proof is by reduction to the following well-known form of the
FLP impossiblity result [Fischer et al. 1985]. This form of the impossibility result
is for a variant of the consensus problem where the possible decision values of
the processes are 0 and 1. The set of input vectorsX is arbitrary, as long as it
defines a connected graphGin(X, f). The validity requirement is that there are
two input vectors that lead to different decision values. Agreement and termination
requirements are as usual.

The proof that this form of the consensus problem is not solvable forf > 0
follows the same arguments of the proof in Fischer et al. [1985]: LetI , I ′ be
two input vectors that lead to different decision values. Since the input graph is
connected, there is a path fromI to I ′. On this path, there must be two adjacent
input vectors that might lead to different decision values. From this point, the proof
is identical to the one of Fischer et al. [1985] is forf = 1 but the generalization to
f > 0 is obvious).

To prove the theorem, assume for contradiction there is a protocolP whose
graph of decision vectorsGout(X, f) is not connected. LetG1,G2, . . . ,Gp be the
connected components ofGout(X, f), p ≥ 2. We construct a protocolPc based on
P that solves the above consensus problem in spite off faults on the same input
graphGin(X, f).

The protocolPc works asP except that when a processor is about to return a
decision value according toP, it first writes the decision to the shared memory. Call
this value anintermidiatedecision value. Then, the process enters a loop where it
reads the shared-memory until it sees at leastn− f intermidiate decision values.
SinceP solves the task in spite off faults, eventuallyn− f processes will write
to the shared memory their intermidiate values. Thus, each correct processpi will
eventually construct a viewJi of intermidiate decision values, with at leastn− f
non-⊥ entries. Thus,Ji is a vertex ofGout(X, f). Moreover, any two such views,
Ji , Jj are in the same connected componentGm of Gout(X, f), since both are
views of the same output vectorI , Ji ≤ I , Jj ≤ I , whereI is a vertex ofGm that
corresponds to the decision vector in the corresponding execution ofP. The process
will return as decision forPc the parity bit ofm and halt. Since all processes agree
on the same connected componentGm, they will all decide on the same parity bit.
Therefore,Pc solves the above variant of consensus, a contradiction.

Conditions on Consensus Solvability 939

For the case of a nonsafe consensus problem for a conditionC (Section 3.2), the
set of input vectors corresponds toC f , while the set of output vectors contains one
output vector for each possible decision valuev ∈ V, with all its entries equal tov,
and joined by an edge to all its views.

LEMMA 5.5. If the nonsafe consensus problem for a condition C is f -fault
tolerant solvable, then C is f -legal.

PROOF. Assume there is anf -fault tolerant protocol solving nonsafe consensus
for C. For each connected componentGi of the input graph, consider the graph
Gouti of decision vectors of the protocol, on all executions starting with inputs of
this component with at mostf failures. By the termination requirement of consen-
sus, all correct processes decide in such executions, and hence the corresponding
decision vectors have at mostf entries equal to⊥. Notice that every vertex inGouti
corresponds to a decision vector of the protocol, which must contain all non-⊥ en-
tries equal to the same value, by the agreement requirement of consensus. It follows
from Theorem 5.4 that the graphGouti is connected.

We now show that all vertices ofGouti contain just one input value, sayd.
Consider two verticesI , I ′ of Gouti , and assume for contradiction that every (non-
⊥) entry of I is equal toa while every (non-⊥) entry of I ′ is equal tob. SinceGouti
is connected, there is a path fromI to I ′. Thus, there are two adjecent vertices,
J, J ′, in this path, one with (non-⊥) entries equal toa and the other equal tob. By
definition ofGouti , J ≤ J ′ or J ′ ≤ J. This is a contradiction, sinceJ has onlya’s
andJ ′ has onlyb’s (in addition to⊥’s) anda 6= b.

We have shown thatGouti contains vertices with only one decision value, say
d. By the validity property of decision consensus,d must be a value in every input
vector ofGi . And sinceGi is an arbitrary connected component of the input graph,
thenC is f -legal.

5.3. FROM LEGALITY TO ACCEPTABILITY. We now show how, given anf -legal
conditionC, there is an efficient way of constructing its actual predicateP and
functionSused by the generic protocol, and henceC is f -acceptable.

Let J ∈ Vn
f (i.e., a vector with at mostf entries equal to⊥.) We say that an input

vector I is a legal extensionof J, if J ∈ I f and I ∈ C. Notice that several input
vectors can be legal extensions of the sameJ.

For a given legal conditionC, P and S are constructed as follows. For every
J ∈ Vn

f :

—P(J) is true if there exists a legal extension ofJ.
—S(J) = a deterministically chosen value ofd(Gi), whereGi is the connected

component including all legal extensions ofJ.

Notice thatSis well defined. First,S(J) has to be defined only whenP(J) is true.
Second, ifI1 andI2 are two legal extensions ofJ, they belong to the same connected
componentGi as they differ in at mostf values. Third, sinceC is f -legal,d(Gi)
is not empty. Also, it is easy to see that all this can be executed in polynomial time,
using ideas similar to the ones described for Lemma 5.3. Thus, it is easy to show
the following result.

LEMMA 5.6. Any f -legal condition C is f -acceptable, and associated P and
S can be computed in polynomial time.

940 A. MOSTEFAOUI ET AL.

PROOF. Let P and S be parameters as defined above. Trivially,P satisfies
property TC→P. For AP→S, notice that forJ1, J2, there is a legal extensionI of
both vectors, sinceJ1 ≤ J2. Thus, the valueS(J1) is equal to a deterministically
chosen value ofd(Gi), whereGi is the connected component includingI , and
therefore,S(J2) is equal to the same value. Finally, VP→S follows from the fact
that J is in Gi , the connected component including any of its legal extensionsI ,
sinceJ andI are joined by an edge. Also, it is not hard to check (as in Lemma 5.3)
that P andScan be computed in polynomial time.

5.4. MAIN THEOREM. The following summarizes our main results.

THEOREM 5.7. Main Theorem. The following three assertions are equivalent,
and decidable in polynomial time.

—A1. Condition C is f -acceptable.
—A2. Condition C is f -legal.
—A3. The nonsafe version of the consensus problem for C is f -fault tolerant

solvable.
—A4. The consensus problem for C is f -fault tolerant solvable.

PROOF. Theorem 4.2 shows that A1⇒ A4, and it is easy to see that A4⇒ A3,
since the same protocol that solves a consensus problem solves its nonsafe version.
Lemma 5.5 shows that A3⇒ A2, Lemma 5.6 shows that A2⇒ A1. Lemma 5.3
shows that A2 is decidable in polynomial time, and hence so are the two other
assertions.

It is interesting that consensus solvability can be decided in polynomial time for
everyC and f , while the general problem of deciding if a distributed problem is
f -fault tolerant solvable is undecidable [Gafni and Koutsoupias 1999; Herlihy and
Rajsbaum 1997] whenf > 1. Even in the case off = 1 the general decidability
problem is difficult: it was shown to be NP-hard in Biran et al. [1990b].

The previous theorem is analogous to the characterization of the class of weakest
failure detectors for consensus [Chandra et al. 1996], in the sense that this class
identifies the minimal properties that a failure detectorD must satisfy for consensus
to be solvable. The previous theorem does the same for conditions: it characterizes
the largest set of conditions for consensus to be solvable.

6. Two Conditions

This section presents the two conditions described in the introduction,C1 andC2,
and proves them to be acceptable, by defining associated predicatesP and functions
S. Both conditions are parameterized byf . Once we have developed the required
tools of Section 5,C1′ (a slight refinement ofC1) andC2 are proved to be maximal
in Section 7.

Notation. #a(J) denotes the number of entries ofJ that are equal toa, where
J is a vector inVn

f , anda ∈ V ∪ {⊥}.
6.1. CONDITION C1. We use the following definitions forC1, whereJ ∈ Vn

f ,

and Ĵ is the vector obtained fromJ by choosing a non-⊥ valuea of J that appears
the most often, and replacing it by⊥.

Conditions on Consensus Solvability 941

—#1st(J) = maxa∈V #a(J).
—#2nd(J) = #1st(Ĵ).

That is, #1st(J) returns the number of occurrences inJ of a non-⊥ value that
appears the most often inJ. Notice that there may be more than one value that
appears the most often inJ, if such values appear equal number of times. In this
case #1st(J) returns that number (for one of those values, such as the smallest, for
instance). Thus, ifJ is a vector with at least one non-⊥ entry, we have:

— J contains a single non-⊥ value iff #2nd(J) = 0 (hence #1st(J) = n− #⊥(J)).
—There are several non-⊥ values that appear the most often inJ iff #2nd(J) =

#1st(J).
— J contains at least two different values and there is a single (non-⊥) value that

appears the most often inJ iff #2nd(J) returns the number of occurrences inJ of
a non-⊥ value that appears the second most often inJ (thus, #2nd(J) < #1st(J)).

With these notationsC1 for f is stated as follows, for any vectorI ∈ Vn:

(I ∈ C1) iff [#1st(I)− #2nd(I) > f].

The intuition is that, when this condition is satisfied, a process can decide the
value it has seen most often, despite up tof process crashes.

Let I ∈ Vn andJ ∈ I f . ConditionC1 has associated parameters:

—P1(J) ≡ #1st(J)− #2nd(J) > f − #⊥(J).
—S1(J) = a : #a(J) = #1st(J).

The following theorem shows thatP1 and S1 can be used to instantiate the
consensus protocol, and hence that the problem is solvable forC1 and f .

THEOREM 6.1. C1 is f -acceptable with associated parameters P1, S1.

PROOF. TC1→P1: We have to show thatI ∈ C1⇒ ∀J ∈ I f : P1(J). That is,

#1st(I)− #2nd(I) > f ⇒ ∀ J ∈ I f : #1st(J)− #2nd(J) > f − #⊥(J).

AssumeI satisfies #1st(I) − #2nd(I) > f , and consider aJ ∈ I f . Assume
there arex1 vector positions such that inJ they are equal to⊥, while in I they
are equal to the value that is most common inI . Similarly, assume there arex2
vector positions such that inJ they are equal to⊥, while in I they are equal
to a value that is the second most common inI . Thus,x1 + x2 ≤ #⊥(J) ≤ f .
Now, notice that ifa is a value that is the most common inI , it will still be
most common inJ, since #1st(I) − #2nd(I) > f and at mostf entries ofI are
changed to⊥ in J. Thus, #1st(J) ≥ #1st(I) − x1. Also, #2nd(J) ≥ #2nd(I) − x2.
Hence, #1st(J) − #2nd(J) ≥ #1st(I) − #2nd(I) − x1 + x2. And we are assuming
#1st(I) − #2nd(I) > f , so #1st(J) − #2nd(J) > f − x1 + x2. This gives the result
sincex2 ≥ 0 andx1 ≤ #⊥(J), as observed above.

AP1→S1: Consider two vectorsJ1 andJ2 ofVn
f such that (J1≤ J2)∧P1(J1)∧

P1(J2). We have to show thatS1(J1)= S1(J2).
If a is a value that is the most common inJ2, it will still be most common

in J1, and the proof follows. To see this, first notice that sinceJ1 ≤ J2, some
numberx of entries ofJ2 are changed to⊥ to createJ1. Clearly,x ≤ f − #⊥(J2),

942 A. MOSTEFAOUI ET AL.

since in J2 already #⊥(J2) entries equal⊥. Therefore, P(J2)≡ #1st(J2) −
#2nd(J2)> f − #⊥(J2) implies thata is also the most common value ofJ1.

VP1→S1: This property is trivially satisfied becauseS1(J) = the most common
non-⊥ value ofJ (recall that f < n).

The case of binary consensus.In the binary consensus problem,| V |= 2. In
this case, #2nd(I) = n− #1st(I). Thus,C1 can be written asI ∈ C1bin ≡ #1st(I) >
(n+ f)/2.5 Also, since #1st(J) = n− #2nd(J)− #⊥(J), the associated parameters
P1, S1 can be written asP1bin(J) = #2nd(J) < (n− f)/2, andS1bin(J) = #1st(J).
Thus, in the binary case, Theorem 6.1 shows thatC1bin is acceptable with associated
parametersP1bin andS1bin.

6.2. C1′: A REfiNEMENT OF C1. Given a conditionC, a natural question is if
C can be extended to include more vectors, and still allowing a consensus solution.
Alternately, we would like to be able to prove that a conditionC is maximalin
this sense. We will answer this question later on, but meanwhile we can see that
C1 is not maximal, because there is a conditionC1′ that is f -acceptable with
associated parametersP1′, S1′ (the proof is similar and is omitted), andC1⊂ C1′.
In Section 7, we prove thatC1′ is maximal. This refined condition assumes a total
order (denoted<) on the values ofV. It is formally defined as follows. For any
vector I ∈ Vn:

(I ∈ C1′) iff [(I ∈ C1)∨
((#1st(I)− #2nd(I) = f = 0) ∨
((#1st(I)− #2nd(I) = f > 0) ∧
[∀a, b : (#a(I) = #1st(I)) ∧ (#b(I) = #2nd(I))⇒ a < b])

)
].

The intuition is thatC1 can be refined in the case where ties are encountered,
by preferring smaller values. In the caseI is such that #1st(I) − #2nd(I) = f ,
it is possible that a process does not seef entries of I with value a such that
#a(I) = #1st(I). In this situation, the process has a viewJ where #1st(J) = #2nd(J),
and it does not know if the missing entries are equal toa. Hence, it does not know
if the original input vector wasI , or the missing entries are equal tob, where
#b(J) = #2nd(J), and the input vector was another vectorI ′. The solution inC1′ is
to include only one of these input vectors,I and notI ′, with an additional constraint
ona andb: a < b.

Arguments similar to the ones forC1 can be used to show that the parameters
associated withC1′ are:

—P1′(J) ≡ P1(J) ∨
[(#1st(J)− #2nd(J) = f − #⊥(J) = 0) ∨
((#1st(J)−#2nd(J) = f −#⊥(J) > 0) ∧ [∀a, b : (#a(J) = #1st(J) ∧ #b(J) =
#2nd(J))⇒ a < b])] .

—S1′(J) = min a : #a(J) = #1st(J).

Notice that whenf = 0 every vector is inC1′ andP1′ is always true.

5 Taubenfeld and Moran [1996] showed that binary consensus is solvable using a condition equivalent
to this one.

Conditions on Consensus Solvability 943

6.3. THE CONDITION C2. The idea forC2 is to guarantee that all processes
have the same extremal (e.g., largest or smallest) value in their local views. We
(arbitrarily) consider the largest value, and include inC2 every vector whose largest
input value appears more thanf times. The formal definition is the following, where
max(I) denotes the largest (non-⊥) value contained in the input vectorI :

(I ∈ C2) iff [#max(I)(I) > f].

To defineP2 andS2 we fix a value off , and consider vectorsJ ∈ Vn
f .

—P2(J) ≡ #max(J)(J) > f − #⊥(J).
—S2(J) = max(J).

THEOREM 6.2. C2 is f -acceptable with associated parameters P2 and S2.

PROOF. TC2→P2: AssumeI ∈ C2. Hence #a(I) > f for the largest non-⊥
valuea ∈ I . Consider anyJ ∈ I f . Notice thatx values are changed to⊥ from I to
J, x = #⊥(J). Thus, in particular, #a(J) ≥ #a(I)− x = #a(I)− #⊥(J). Therefore,
#a(J) > f − #⊥(J), since #a(I) > f , andP2(J) holds.

AP2→S2. ConsiderJ1, J2 ∈ Vn
f . We show that ifJ1≤ J2∧P2(J1)∧P2(J2),

then max(J1)= max(J2), i.e., the largest non-⊥ values inJ1 andJ2 are the same.
SinceS2 chooses this value,S2(J1)= S2(J2). Assumea = max(J2). The claim
will follow if we prove that #a(J1)> 0, becauseJ1≤ J2.

SinceP2(J2), we have #a(J2)> f − #⊥(J2). Notice thatx values are changed
to ⊥ from J2 to J1, x = #⊥(J1) − #⊥(J2). Thus, #a(J1) ≥ #a(J2) − x =
#a(J2) − #⊥(J1) + #⊥(J2). Since #a(J2) > f − #⊥(J2), we have #a(J1) >
f − #⊥(J2)− #⊥(J1)+ #⊥(J2) = f − #⊥(J1). And the claim follows, because
#⊥(J1)≤ f implies #a(J1)> f − #⊥(J1)≥ 0.

VP2→S2. Follows directly from the fact that∀J ∈ Vn
f , J includes a non-⊥

value (recall thatf < n).

6.4. NONCOMPOSABILITY OFCONDITIONS. The following theorem shows that
the set of f -acceptable conditions is not union-closed: the union off -acceptable
conditions does not always define anf -acceptable condition. This is not surprising.
We show in Section 7 thatC1′ andC2 are maximal: thus there union cannot be
acceptable. Nevertheless, we provide here a different proof, that in addition shows
thatC1 andC2 may be complementary in the sense of the following lemma.

LEMMA 6.3. LetV = {a, b}, and consider any n, f such that f< n/3. Then
for all I ∈ Vn we have that I∈ C1 or I ∈ C2.

PROOF. Let I ∈ Vn such thatI 6∈ C1. We show thatI ∈ C2. I 6∈ C1 ⇒
#a(I)−#b(I) ≤ f ∧ #b(I)−#a(I) ≤ f . This means that− f ≤ #a(I)−#b(I) ≤ f .
Let

#a(I) = #b(I)+ x (1)

with − f ≤ x ≤ f and without loss of generality leta > b. We have #a(I) +
#b(I) = n > 3 f from which we get #a(I) > 3 f − #b(I). This equation combined
with (1) gives: #a(I) > 3 f − #a(I)+ x or equivalently 2#a(I) > 3 f + x. Since
− f ≤ x ≤ f , we have 2#a(I) > 2 f and consequently #a(I) > f .

944 A. MOSTEFAOUI ET AL.

THEOREM 6.4. Let n> 3 f . The set of f -acceptable conditions is not union-
closed.

PROOF. Let us assume thatf -acceptable conditions can be composed with
union. It then follows (due to Lemma 6.3) that consensus is solvable for allI ∈ Vn,
with V = {a, b}, n > 3 and f = 1. But this is known to be impossible (FLP
impossibility result [Fischer et al. 1985]).

7. Maximality of C1′ and C2

In this section, we prove thatC1′ (the refined version ofC1) andC2 are maximal
in the sense that consensus is notf -fault tolerant solvable when adding to them any
new input vectorI . By Theorem 5.7, this notion of maximality can be equivalently
stated in terms of legality, and also in terms of acceptability. Here is the statement
in terms of acceptability:

Definition 7.1. Given anf -acceptable conditionC, we say thatC is maximal
if any vector added toC makes it nonf -acceptable.

Notice that this definition makes sense because any subset of an acceptable
condition is also acceptable.

7.1. MAXIMALITY OF C1′. In Section 6.1, we definedC1, and, in Section 6.2,
we presented a refined version ofC1,C1′with C1⊂ C1′ and associated parameters
P1′, S1′. Since both conditions aref -acceptable,C1 is not maximal. We show here
thatC1′ is maximal.

THEOREM 7.2. Condition C1′ is maximal.

PROOF. To prove thatC1′ is maximal we first need to check thatC1′ is f -
acceptable. This has been argued in Section 6.2.

Now, to prove thatC1′ is maximal, we may use (by Theorem 5.7) the legality
version of Definition 7.1: we show that for any vectorI , I 6∈ C1′, C1′ ∪ {I } is not
f -legal. We assumef > 0 because otherwise the theorem is trivially true: iff = 0
there is noI with I 6∈ C1′.

Consider the graphGin(C1′, f). SinceC1′ is f -legal, for each connected com-
ponent ofGin(C1′, f) there is a value that appears in everyone of its vectors. In
fact, there is exactly one such value. This follows directly from the easy to check
fact that every connected componentGi of Gin(C1′, f) contains exactly onecorner
vectorwith all entries equal to the same value, that is, of the forman, for some value
a. To see this, for any givenI ∈ C1′, take ana such that #a(I) = #1st(I) (which is
unique sincef > 0). Then there is a path inGin(C1′, f) from I to an, which can
be obtained by switching one at a time each one of the entries ofI different from
a to a. This means that the only value in common to all vectors of the connected
componentGi that containsI is a, the most common value ofI . Indeed, this is
consistent with the fact thatS1(I) = a : #a(I) = #1st(I).

The technique to prove thatC1′ ∪ {I }, I 6∈ C1′, is not f -legal consists of
showing thatI has edges to two different connected components ofGin(C1′, f).
Hence, these two connected components belong to the same connected component
of Gin(C1′ ∪ {I }, f), which implies thatC1′ ∪ {I } is not f -legal (because two
corner vectors cannot be in the same connected component of a legal condition).

Conditions on Consensus Solvability 945

That is, we show thatI differs in at mostf entries with vectorsI1, I2 ∈ C1′ such
that their most common input values are different,S1′(I1) 6= S1′(I2).

Notice that #1st(I) − #2nd(I) ≤ f , becauseI 6∈ C1′. Also, I contains at least
two different values, becauseI 6∈ C1′ (i.e., every corner vector is inC1′). Let us
denote bya the value such that #a(I) = #1st(I), and byb the smallest value such
that #b(I) = #2nd(I). We consider two cases.

—Let us first assume thatI is such that #1st(I)−#2nd(I) = f . As I 6∈ C1′, it is not
the case that∀b : #b(I) = #2nd(I) it holdsa < b. Thus,b is the smallest value
such that #b(I) = #2nd(I), and we we have thatb < a.
–Let I1 be the vector obtained fromI by switching one entry different froma to
a. We have that #a(I1) = #a(I)+ 1, and henceI1 ∈ C1′ with S1′(I1) = a.

–On the other hand, letI2 be the vector obtained fromI by switching f entries
from a to b (notice that thosef entries equal toa do exist). It follows that
#b(I2) = #1st(I2) and #1st(I2)− #2nd(I2) ≥ f , with b being smaller than those
appearing second (if any) inI2. Hence,I2 ∈ C1′ with S1′(I2) = b.

—Let us now assume thatI is such that #1st(I)− #2nd(I) < f . SinceI contains at
least two different values, we have 1≤ #1st(I)− #2nd(I).
–If x = n− #1st(I), let I1 be the vector obtained fromI by switching min(x, f)
entries different froma to a. Thus, I1 differs from I in at most f entries.
Also, S1′(I1) = a, because eitherI includes f entries different froma, and
#1st(I1)− #2nd(I1) > f (since 1≤ #1st(I)− #2nd(I)), or elseI1 includes only
a’s.

–Let I2 be the vector obtained fromI by switching f entries different fromb
to b, choosing first entries equal toa. That is, if there aref entries equal toa,
switch them tob; else, switch all entries equal toa to b and then switch other
entries different fromb to b until we reach f switched entries or all entries
become equal tob. Thus,I2 differs from I in at most f entries. To prove that
S1′(I2) = b, observe that either (i) all entries fromI2 are equal tob or else (ii)
#1st(I2) − #2nd(I2) ≥ f . In case (i), clearlyS1′(I2) = b and we are done. For
case (ii), there are two subcases; it is clear that in both casesb is the single
value that appears the most often inI2:

(ii.a) #2nd(I2) = #a(I2), i.e.a is a value that appears the second most often
in I2. In this case, from #a(I) − #b(I) < f , #a(I2) = max(#a(I) − f, 0) and
#b(I2) = min(#b(I)+ f, n), we get #b(I2)−#a(I2) ≥ 2 f−(#a(I)−#b(I)) ≥ f+1.
If follows I2 ∈ C1(⊂ C1′), and consequently,S1′(I2) = b.

(ii.b) a is not a value that appears the second most often inI2. Let c be such
a value, #2nd(I2) = #c(I2). In this case, we have #b(I2)− #c(I2) ≥ f . Recall that
b was the smallest value that appears the second most often inI . Henceb < c.
We conclude from #b(I2) − #c(I2) ≥ f andb < c, that I2 belongs toC1′ and
S1′(I2) = b.

7.2. MAXIMALITY OF C2. Recall thatC2, P2 andS2 are defined as follows:

— I ∈ C2 iff #max(I)(I) > f .
—P2(J) ≡ #max(J)(J) > f − #⊥(J).
—S2(J) =max(J), the largest non-⊥ value ofJ.

THEOREM 7.3. Condition C2 is maximal.

946 A. MOSTEFAOUI ET AL.

PROOF. The structure of the proof is similar to the proof of Theorem 7.2. To
prove thatC2 is maximal, we first need to check thatC2 is f -acceptable. This has
been argued in Theorem 6.2.

Now, to prove thatC2 is maximal we may use (by Theorem 5.7) the legality
version of Definition 7.1: we show that for any vectorI , I 6∈ C2, C2∪ {I } is not
f -legal. We assumef > 0 because otherwise the theorem is trivially true: iff = 0
there is noI with I 6∈ C2.

Consider the graphGin(C2, f). SinceC2 is f -legal, for each connected com-
ponent ofGin(C2, f) there is a value that appears in everyone of its vectors. In
fact, there is exactly one such value. This follows directly from the easy to check
fact that every connected componentGi of Gin(C2, f) contains exactly onecorner
vectorwith all entries equal to the same value, i.e., of the forman, for some value
a. Moreover, the only value in common to all vectors of the connected component
Gi that containsI is a, the largest value ofI . Indeed, this is consistent with the fact
thatS2(I) = max(I).

We now show that ifI 6∈ C2, thenC2∪ {I } is not f -legal. As in Theorem 7.2,
we prove this by showing thatI differs in at mostf entries with vectorsI1, I2 ∈ C2
such thatS2(I1) 6= S2(I2), that is, in different connected components ofGin(C2, f),
and hence these two components are joined inGin(C2 ∪ {I }, f). A contradic-
tion because the new connected component ofGin(C2∪ {I }, f) has two different
corner vectors, and henceGin(C2 ∪ {I }, f) is not f -legal. This is done as fol-
lows (this part of the proof is different from the corresponding part in the proof
for C1′).

Notice that, ifa is the largest value ofI , then #a(I) ≤ f, sinceI 6∈ C2 (and this
makes sense because we assumedf > 0). Let b be the second largest value ofI
(which exists sincef < n). Let y be the number of entries ofI that are different
from a. Due to f < n andy+#a(I) = n, we conclude thaty ≥ f −#a(I)+1. Let
us now defineI1 as the vector obtained fromI by switching f − #a(I)+ 1 entries
different froma to a (due to the previous observation ony, those entries do exist).
Moreover, as #a(I) ≥ 1, we havef − #a(I) + 1 ≤ f , henceI 1 differs from I in
at most f entries. We have #a(I1) = #a(I) + f − #a(I) + 1 = f + 1, and hence
I1 ∈ C2 with S2(I1) = a. On the other hand, letI2 be the vector obtained fromI
by switching first all entries equal toa to b (the number of these entries is≤ f), and
then others until a total off − #b(I)+ 1 entries different fromb are changed tob.
As #b(I) ≥ 1, it follows that f −#b(I)+1≤ f . Hence,I 2 differs fromI in at most
f entries. We have that #a(I2) = 0, and #b(I2) = #b(I)+ f − #b(I)+ 1 = f + 1
with b being the largest such value. It follows thatI2 ∈ C2 with S2(I2) = b.

8. The Condition-Based Approach in Message Passing Systems

The condition-based consensus protocol presented in Figure 2 uses single-writer
multi-reader registers, and snapshot registers. The snapshot registers can be (wait-
free) implemented in terms of single-writer multi-reader registers using the tech-
niques of Afek et al. [1993], and hence the algorithm can be rewritten using only
read/write registers. The resulting algorithm would be less efficient, since the
simulation of eachwrite or snapshot operation to the snapshot registers requires
O(n2) read andwrite to read/write registers. The simulation of Attiya and Rachman
[1998] is more efficient, but still has an overhead:O(n logn) per operation to a
snapshot register.

Conditions on Consensus Solvability 947

Function MP Consensus(vi)

(1) broadcast VAL (vi , i);
(2) wait until (at least (n− f) VAL (−,−) messages have been delivered);
(3) forall j ∈ [1 · · n] do if (VAL (v j , j) has been delivered)
(4) then Vi [j] ← v j elseVi [j] ←⊥ endif enddo;
(5) if P(Vi) then wi ← S(Vi) elsewi ←> endif;
(6) UR broadcast ECHO(vi ,wi , i);
(7) repeat wait until (a newECHO(v j ,w j , j) message has been delivered);
(8) Wi [j] ← w j ; Yi [j] ← v j ;
(9) if (ECHO(−,w,−) messages with the same valuew (6= ⊥)
(10) delivered from a majority of processes)
(11) then return (w) endif
(12) until (⊥ 6∈ Wi) endrepeat;
(13) return (F(Yi))

FIG. 3. A message passing consensus protocol forf < n/2.

It is known [Attiya et al. 1995] that any wait-free algorithm in the read/write
shared memory model which uses atomic, single-writer multi-reader registers can
be executed in the message passing model whenf < n/2 [Gafni 1998]. Moreover,
there exists an efficient simulation [Attiya 2000], where eachread or write opera-
tion is simulated with onlyO(n) messages. Thus, our condition-based consensus
protocol can be automatically transformed to solve the same problem in a message
passing system whenf < n/2, by first eliminatingsnapshot operations using the
simulation of Attiya and Rachman [1998] and then simulatingread/write operations
with message passing using the algorithm of Attiya [2000], with an overhead of
O(n logn) messages. This section discusses the design of a simple message passing
condition-based consensus protocol, inspired by the protocol of Figure 2, but with-
out the overhead of an automatic transformation. In addition, we show that there
is no condition-based consensus protocol for message passing iff ≥ n/2. Notice
that the fact that the transformations mentioned above requiref < n/2 (as does any
general transformation) does not directly imply this result.

8.1. ADAPTING THEPROTOCOL TO THEMESSAGEPASSINGCONTEXT. The main
difficulty in adapting the protocol of Figure 2 to a message passing system comes
from the absence of a message passingsnapshot-like primitive providing the or-
dering property (J1 ≤ J2)∨ (J2 ≤ J1) whereJ1 andJ2 are the results of two
invocations to thesnapshot primitive.

Figure 3 describes a message passing protocol that solves consensus when
f < n/2, for any f -acceptable conditionC. This protocol is an adaptation of the
Figure 2 protocol to the message passing model without simulating thesnapshot
operation, and instead, relaying on the “majority of correct processes” assumption.
Its proof is very similar to the proof of the protocol described in Figure 2 and
is omitted.

The protocol assumesbroadcastand uniform reliable broadcastcommunica-
tion facilities. Both the invocations ofbroadcast(m) andUR broadcast(m) entail the
sending of the messagem to all processes. Thebroadcast(m) primitive is not reliable
in the following sense: if the sender crashes while it is broadcastingm, it is possible
that only a subset of the processes receive and deliverm. TheUR broadcast(m) prim-
itive is more reliable: if a process receives and deliversm, then all correct processes
receive and deliverm. Both primitives can be implemented in the asynchronous

948 A. MOSTEFAOUI ET AL.

message passing model considered, althoughUR broadcast is more costly (e.g.,
Hadzilacos and Toueg [1993]).UR broadcast is needed to ensure that if a process
terminates, then all correct processes do terminate.

8.2. ON THE PRESENCE OF ANATOMIC SNAPSHOT PRIMITIVE . When I ∈ C,
both protocols rely on AP→S to ensure the agreement property. But, whenI 6∈ C,
they rely on different requirements. As shown in Lemma 4.6, the shared memory
protocol relies on AP→S to guarantee agreement. In contrast, the message passing
protocol relies on the assumptionf < n/2. Indeed, in the absence of asnapshot
primitive, the following scenario is possible. AssumeI 6∈ C and pi gets the local
view J1 andP(J1) is true;pj gets the local viewJ2 andP(J2) is true. As now
it is possible that¬(J1 ≤ J2) ∧ ¬(J2 ≤ J1), it follows that AP→S alone is
insufficient to prevent to haveS(J1) 6= S(J2) (and guarantee agreement) when
I 6∈ C. Hence, the majority of correct processes requirement. Notice that the
construction of asnapshot primitive in a message passing system also requires the
f < n/2 assumption.6

As we show in the next theorem, there is no consensus protocol iff < n/2 does
not hold. Interestingly, thereis a message passing protocol that solves consensus
for any value of f when the inputs do not violate the conditionC. The protocol
of Figure 3 without the majority requirement in line (8) does the job, since as
discussed above, agreement in this case relays only on the condition AP→S. Thus,
the difficulty of solving consensus whenf ≥ n/2 comes from the requirement to
deal also with input vectors not inC.

A conditionC is f -non-trivial if in its graphGin(C, f) (defined in Section 5.1),
the intersection of thed(Gi)’s over all connected componentsGi is empty. The
intuition behind this definition is that if this intersection contains a valuev, then a
trivial solution to the consensus exists, where processes choose the default valuev
with no communication at all. The following stands in contrast to Theorem 4.2.

THEOREM 8.1. Let C be an f -acceptable, f -non-trivial condition. There is no
f -fault tolerant protocol that solves the consensus problem for C in a message pass-
ing system when f≥ n/2. If f < n/2, then there is an f -fault tolerant consensus
protocol for any f -acceptable C.

PROOF. The second part of the theorem, whenf < n/2, follows from the cor-
rectness of the protocol of Figure 3.

For the first part, assumef ≥ n/2. Assume for contradiction that such a protocol
exists. Thus, as explained in the proof of Lemma 5.5, Theorem 5.4 implies that the
protocol decides on one value,vi , for each connected componentGi . First notice
that there must exist two different connected components ofGin(C, f), G1, G2,
where the protocol decidesv1 with inputs ofG1, andv2 with inputs ofG2, where
v1 6= v2. Otherwise, for every connected componentGi , the protocol decides the
same valuev, which by the validity condition has to be in common to every vector
of everyGi , contradicting the assumption thatC is f -non-trivial.

Consider vectorsI1, I2 of G1, G2 respectively. Letp1, . . . , pbn/2c run starting on
I1 until they decide, without hearing any messages from the other processes. They

6 A more constraining result, namely, show that there is no simulation of a read/write atomic register
when f ≥ n/2, is the topic of the exercise 10.15 in Attiya and Welch [1998].

Conditions on Consensus Solvability 949

have to decide eventually, because it is possible that the other processes crash from
the very beginning (f > n/2), and becauseI1 is in C. Moreover, the decision must
bev1, sinceI1 is in G1.

Consider the prefix of this (infinite) execution, until the point they decide, call it
α1, and do not deliver any message fromp1, . . . , pbn/2c to the others. Do the same
for I2, running only the other processors,pbn/2c+1, . . . , pn, and call the prefix until
they decidev2, α2.

Consider the input vectorI constructed with the firstbn/2c entries fromI1, and
the other entries fromI2 (I is not necessarily inC). Construct the execution which
starts inI by pastingα1 first, thenα2, and then delivering all messages between the
two groups. This execution violates agreement.

8.3. COMING BACK TO THE SHARED MEMORY MODEL. Here we discuss a
shared memory protocol inspired by the previous message passing protocol that
does not use snapshots, but works only forf < n/2.

The message-passing protocol described in Figure 3 can be translated to get a
shared memory protocol that does not usesnapshot operations. The shared memory
protocol we obtain (let’s call itA) differs from the protocol described in Figure 2
(let’s call it B) mainly in two points:

— A requiresf < n/2, while B assumesf < n.
—Due to the use of thesnapshot operation, the local views obtained by the processes

are ordered by containments inB. This containment property is not provided inA
that basically uses acollect operation.7 It follows that, while bothA andB satisfy
the Validity, Agreement andGuaranteed Termination properties,B terminates in
more cases thanA when the actual input vectorJ /∈ C f . To illustrate this point
let us consider the case where the input vectorJ /∈ C f , and there is a single
processpj that gets a local viewJj such thatP(Jj) holds. Moreover,pj writes
w j 6= > in the shared memory and then crashes.
—In B, the correct processes terminate (see Theorem 4.8).
—In A, no correct process terminates. This is due to the fact that a majority of

processes have to suggest the same non-⊥ value before deciding it.

9. Trading Safety for Liveness

9.1. NONTERMINATION VS. TERMINATION. As far as termination is concerned,
we have seen that the protocol described in Figure 2 satisfiesGuaranteed Termination
(defined in Section 3.1) andP-More Termination (defined in Theorem 4.8). Hence,
a correct process fails to decide only in rare situations.

It is actually possible to modify the protocol to guarantee that a correct process
always terminates provided there are no more thanf crashes. This has a price
that translates as a versatile tradeoff between the liveness and the safety guaran-
teed by the protocol. More precisely, the safety is weakened in the sense that the
default value⊥ can now be decided in some circumstances in order to prevent
nontermination [Jayanti et al. 1998; Raynal 1997].

7 collect is an operation that non-atomically executes a set ofread operations:collect(X) is equivalent
to forall j : do read(X[j]) enddo.

950 A. MOSTEFAOUI ET AL.

Function SM TermConsensus(vi)

(1) write(vi ,V [i]);
(2) repeat Vi ← snapshot(V) until (#(Vi [j] 6= ⊥) ≥ (n− f)) endrepeat;
(3) if P(Vi) then wi ← S(Vi) elsewi ←> endif;
(4) write(wi ,W[i]);
(5) ri ← 0;
(6) repeat forall j ∈ [1 · · n] do Wi [j] ← read(W[j]) enddo;
(7) if (∃ j : Wi [j] 6= ⊥,>) then return (Wi [j]) endif;
(8) ri ← ri + 1
(9) until ((ri = N) ∨ (⊥ 6∈ Wi)) endrepeat;
(10) if (⊥ 6∈ Wi) then forall j ∈ [1 · · n] do Yi [j] ← read(V [j]) enddo;
(11) return (F(Yi))
(12) else return(⊥)
(13) endif

FIG. 4. A terminating condition-based consensus protocol.

9.2. A TERMINATING PROTOCOL. Given a conditionC and assuming at most
f crashes, a “terminating” protocol is described in Figure 4. The local variableri
is a counter used to limit the number of iterations executed bypi . N ∈ [1 · ·∞) is a
tuning parameter for the trading of safety for liveness;N = +∞ corresponds to the
no-trading case where the value⊥ can never be decided (Figure 2). This protocol
guarantees the following properties (their proofs are left to the reader):

—T-Validity: A decided value is a proposed value or⊥.
—T-Obligation: If the input vector satisfiesC, then⊥ cannot be decided.
—T-Agreement: No two processes decide different proposed values.
—T-Termination: When at mostf processes crash, every correct process decides.

Let us note that, when the input vectorI does not satisfyC, it is possible that some
processes decide a proposed value while others decide⊥.

Let us consider the property TC→P defined in Section 4. This property has been
used in Lemma 4.3 (Section 4.3) to prove the consensus termination property of the
generic protocol described in Figure 2. In contrast, the termination of the protocol
described in Figure 4 relies only on the assumption that there are no more than
f crashes. As far as the property TC→P is concerned, it is still necessary but for
another purpose: the protocol requires it in order to satisfy the obligation property.
This interesting feature constitutes another facet of the tradeoff relating the safety
and the liveness properties guaranteed by the protocol of Figure 4.

As before, this protocol can be easily adapted to the message passing context
without snapshot primitive, but with the f < n/2 assumption (see Figure 5).
Interestingly, the uniform reliable broadcast is no longer necessary.

10. Conclusion

Solving the consensus problem consists of providing each process with the same
view of a relevant part of the system. The difficulty of solving this problem in an
asynchronous system prone to process crash failures comes from the uncertainty
created by asynchrony, failures and ignorance of the actual input values proposed
by the processes in the execution [Lynch 1989]. This article has investigated a new

Conditions on Consensus Solvability 951

Function MP TermConsensus(vi)

(1) broadcast VAL (vi , i);
(2) wait until (at least (n− f) VAL (−,−) messages have been delivered);
(3) forall j ∈ [1 · · n] do if (VAL (v j , j) has been delivered)
(4) then Vi [j] ← v j elseVi [j] ←⊥ endif enddo;
(5) if P(Vi) then wi ← S(Vi) elsewi ←> endif;
(6) broadcast ECHO(wi);
(7) wait until (ECHOmessages have been delivered from at least a majority of processes);
(8) if (the same valued 6= > appears in a majority ofECHOmessages)
(9) then return (d) else return(⊥) endif

FIG. 5. A terminating message passing consensus protocol.

condition-basedapproach, to cope with these difficulties. Two main results have
been presented. The first is a generic consensus protocol for the shared memory
model. A set ofacceptableconditions has been defined, and shown that for any such
condition the protocol has the following noteworthy properties: it always guarantees
agreement and validity, and it terminates (at least) when the inputs satisfy the
condition with which the protocol has been instantiated, or when there is no crash.
The second main result of the article is the statement of a general characterization
that captures the set of all the conditions allowing a consensus solution. These are
exactly the acceptable conditions. Thus, the characterization states the minimal
properties a condition has to satisfy for consensus to be solvable.

The article presented several additional results. It described two natural condi-
tions and proved them to be acceptable. Furthermore, it showed that these conditions
cannot be extended and remain acceptable. The article has also presented an ef-
ficient version of the generic protocol for the message passing model. It has also
shown how the protocol safety can be traded for liveness.

An interesting line of research is trying to combine the condition based approach
with other approaches that have been proposed to circumvent the FLP impossibility
result, like failure detectors, randomization, or communication objects stronger
than read/write registers. We describe some preliminary results in this direction in
Mostefaoui et al. [2002] for failure detectors and randomization.

We have defined a version of the consensus problem for the condition based ap-
proach in terms of three requirements. The first two are the agreement and validity
requirements of the classic consensus problem, and are independent of a particular
conditionC. The third requirement, requires termination under “normal” operating
scenarios, including (1) inputs belonging toC, and (2) failure-free executions. Part
(1), requires termination even in executions where some processes crash initially
and their inputs are unknown to the other processes. This is represented by a view
J with ⊥ entries for those processes. Termination is required if it is possible that
the full input vector belongs toC, that is, if J can be extended to an input vec-
tor I ∈ C. Part (2) defines two well-behaved scenarios where a protocol should
terminate even if the input vector does not belong toC. In Section 4.4, we show
that our protocol terminates in other situations as well. It would be interesting to
understand better other “normal” termination conditions for input vectors not in
the condition, including randomized conditions that require processes to terminate
with high probability when the inputs do not satisfy the condition.

We remark that the set of acceptable conditions is quite rich. In a sequel article
[Mostefaoui et al. 2001a], we describe one way of producing acceptable conditions

952 A. MOSTEFAOUI ET AL.

using a weight function. Also, acceptable conditions, in general, do not satisfy the
closure properties needed for the BG-simulation [Borowsky et al. 2001] to work.
This simulation shows how to transform a protocol that solves a problem with some
resiliencef into a protocol that solves the same problem with a different resilience
f ′, f < f ′. However, for the simulation to work, the version of the problem forf
and the version of the problem forf ′ have to be related in some specific way. Thus,
if an acceptable conditionC for f and an acceptable conditionC ′ for f ′, satisfy this
relationship we can derive results from one level of resilience to another, and, for
example, study its wait-free solvability to derive the solvability of the condition for
generalf .

In this article, we have proved that acceptable conditions are exactly the class
of conditions that allow consensus to be solved. It may be that among the accept-
able conditions, in some sense, some are easier than others. In Mostefaoui et al.
[2001b], we have presented a hierarchy of acceptable conditions, and presented
a protocol whose time complexity depends on the place in the hierarchy of its
condition. However, no lower bounds are known. Finally, the interested reader
can find a probabilistic evaluation of the condition-based approach in Mostefaoui
et al. [2003].

ACKNOWLEDGMENTS. We are grateful for the many comments of anonymous ref-
erees that helped improve the article significantly.

REFERENCES

AFEK, Y., ATTIYA , H., DOLEV, D., GAFNI, E., MERRITT, M., AND SHAVIT , N. 1993. Atomic snapshots
of shared memory.J. ACM 40, 4, 873–890.

AGUILERA, M., AND TOUEG, S. 1998. Failure detection and randomization: a hybrid approach to solve
consensus.SIAM J. Comput. 28, 3, 890–903.

ASPNES, J. 2000. Fast deterministic consensus in a noisy environment. InProceedings of the 19th ACM
Symposium on Principles of Distributed Computing(PODC’00) (Portland, Calif.). ACM, New York,
299–308.

ATTIYA , H.,AND AVIDOR, Z. 2002. Wait-free n-set consensus when inputs are restricted. InProceedings
of the 16th International Symposium on DIStributed Computing (DISC’02)(Toulouse, France). Number
2508. Springer-Verlag, New York, 326–338.

ATTIYA , H. 2000. Efficient and robust sharing of memory in message passing systems.J. Algorithms 34, 1,
109–127.

ATTIYA , H., BAR-NOY, A., AND DOLEV, D. 1995. Sharing memory robustly in message passing systems.
J. ACM 42, 1, 124–142.

ATTIYA , H.,AND RACHMAN, O. 1998. Atomic snapshots in o(n logn) operations.SIAM J. Comput. 27, 2,
319–340.

ATTIYA , H., AND WELCH, J. 1998. Distributed Computing: Fundamentals, Simulations and Advanced
Topics. McGraw–Hill, New York.

AUMANN, Y. 1997. Efficient asynchronous consensus with the weak adversary scheduler. In16th
ACM Symposium on Principles of Distributed Computing (PODC’97)(Santa Barbara, Calif.). ACM,
New York, 209–218.

AZAR, Y., BRODER, M., AND MANASSE, M. 1993. On-line choice of on-line algorithms. InProceedings
of the 4th Annual ACM/SIAM Symposium on Discrete Algorithms. ACM, New York, 432–440.

BEN-OR, M. 1983. Another advantage of free choice: Completely asynchronous agreement protocols. In
Proc. 2nd ACM Symposium on Principles of Distributed Computing (PODC’83). ACM Press, Montreal,
27–30.

BERMAN, P., AND GARAY, J. 1998. Adaptability and the usefulness of hints. InProceedings of the
6th European Symposium on Algorithms (ESA’98). Number 2508. Springer-Verlag, New York, 271–
282.

BIRAN, O., MORAN, S., AND ZAKS, S. 1990a. A combinatorial characterization of the distributed 1-
solvable tasks.J. Algorithm 11, 420–440.

Conditions on Consensus Solvability 953

BIRAN, O., MORAN, S., AND ZAKS, S. 1990b. Deciding 1-solvability of distributed tasks is np-hard.
In Proceedings of the 16th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’90). Number 484. Springer-Verlag, New York, 206–220.

BOROWSKY, E., GAFNI, E., LYNCH, N., AND RAJSBAUM, S. 2001. The BG distributed simulation algo-
rithm. Dist. Comput. 14, 13, 127–146.

CASTRO, E.-V.,AND WOOD, D. 1992. A survey of adaptive sorting algorithms.ACM Comput. Surv. 24, 4,
441–476.

CHANDRA, T., HADZILACOS, V., AND TOUEG, S. 1996. The weakest failure detector for solving consensus.
J. ACM 43, 4, 685–722.

CHANDRA, T., AND TOUEG, S. 1996. Unreliable failure detectors for reliable distributed systems.J.
ACM 43, 2, 225–267.

CHAUDHURI, S. 1993. More choices allow more faults: set consensus problems in totally asynchronous
systems.Inf. and Comput. 105, 132–158.

DOLEV, D., DWORK, C.,AND STOCKMEYER, L. 1987. On the minimal synchronism needed for distributed
consensus.J. ACM 34, 1, 77–97.

DOLEV, D., LYNCH, N., PINTER, S., STARK, E.,AND WEIHL, W. 1986. Reaching approximate agreement
in the presence of faults.J. ACM 33, 3, 499–516.

DWORK, C., LYNCH, N., AND STOCKMEYER, L. 1988. Consensus in the presence of partial synchrony.J.
ACM 35, 2, 288–323.

FISCHER, M., LYNCH, N., AND PATERSON, M. 1985. Impossibility of distributed consensus with one
faulty process.J. ACM 32, 2, 374–382.

FRIEDMAN, R., MOSTEFAOUI, A., RAJSBAUM, S., AND RAYNAL , M. 2002. Asynchronous distributed
agreement and its relation with error correcting codes. InProceedings of the 16th International Symposium
on DIStributed Computing (DISC’02)(Toulouse, France). Number 2508. Springer-Verlag, New York,
63–87.

GAFNI, E. 1998. Distributed Computing: a Glimmer of a Theory, in Handbook of Computer Science.
CRC Press.

GAFNI, E.,AND KOUTSOUPIAS, E. 1999. Three-processor tasks are undecidable.SIAM J. Comput. 28, 3,
970–983.

GUERRAOUI, R. 1995. Revisiting the relationship between non-blocking atomic commitment and con-
sensus. InProceedings of the 9th International Workshop on Distributed Algorithms (WDAG). Number
972. Springer-Verlag, New York, 87–100.

GUERRAOUI, R.,AND RAYNAL , M. 2003. A generic framework for indulgent consensus. InProceedings
of the 23th IEEE International Conference on Distributed Computing Systems (ICDCS’03)(Providence,
R.I.). IEEE Computer Society Press, Los Alamitos, Calif., 88–97.

HADZILACOS, V.,AND TOUEG, S. 1993. Reliable Broadcast and Related Problems, in Distributed Systems.
S. Mullender, Ed. ACM Press, New York.

HERLIHY, M. 1991. Wait-free synchronization.ACM Trans. Prog. Lang. Syst. 11, 1, 124–149.
HERLIHY, M., AND RAJSBAUM, S. 1997. On the decidability of distributed decision tasks. InProceed-

ings of the 29th ACM Symposium on the Theory of Computing (STOC’97). ACM, New York, 589–
598.

HERLIHY, M., AND RAJSBAUM, S. 1999. New perspectives in distributed computing. InProceedings
of the 24th International Symposium on Mathematical Foundations of Computer Science (MFCS’99).
Number 1672. Springer-Verlag, New York, 170–186. (Invited Talk).

HERLIHY, M., AND SHAVIT , N. 1999. The topological structure of asynchronous computability.J.
ACM 46, 6, 858–923.

HERLIHY, M., AND WING, J. 1990. Linearizability: A correctness condition for concurrent objects.ACM
Trans. Prog. Lang. Syst. 12, 3, 463–492.

JAYANTI , P., CHANDRA, T., AND TOUEG, S. 1998. Fault-tolerant wait-free shared objects.J. ACM 45, 3,
451–500.

LAMPORT, L. 1998. The part-time parliament.ACM Trans. Comput. Syst. 16, 2, 133–169.
LOUI, M., AND ABU-AMARA, H. 1987. Memory Requirements for Agreement Among Unreliable Asyn-

chronous Processes, in Parallel and Distributed Computing(Greenwich, Conn.). Advances in Computing
Research, vol. 4. JAI Press.

LYNCH, N. 1989. A hundred impossibility proofs for distributed computing. InProceedings of the 8th
ACM Symposium on Principles of Distributed Computing (PODC’89)(Edmonton, Ont., Canada). ACM,
New York, 1–27. (Invited Talk).

LYNCH, N. 1996. Distributed Algorithms. Morgan Kaufmann, San Francisco, Calif.

954 A. MOSTEFAOUI ET AL.

MORAN, S.,AND WOLFSTAHL, Y. 1987. Extended impossibility results for asynchronous complete net-
works.Inf. Proc. Lett. 26, 145–151.

MOSES, Y., AND RAJSBAUM, S. 2002. A layered analysis of consensus.SIAM J. Comput. 31, 4, 989–1021.
MOSTEFAOUI, A., MOURGAYA, E., RAIPIN, P.,AND RAYNAL , M. 2003. Evaluating the condition-based

approach to solve consensus. InProceedings of the International Conference on Dependable Systems
and Networks (DSN03)(San Francisco, Calif.). IEEE Computer Society Press, Los Alamitos, Calif.,
541–550.

MOSTEFAOUI, A., RAJSBAUM, S., AND RAYNAL , M. 2001. Conditions on input vectors for consensus
solvability in asynchronous distributed systems. InProceedings of the 33rd ACM Symposium on Theory
of Computing (STOC’01)(Crete, Greece). ACM Press, New York, 153–162.

MOSTEFAOUI, A., RAJSBAUM, S., AND RAYNAL , M. 2002. A versatile and modular consensus proto-
col. In Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
(Washington, D.C.). IEEE Computer Society Press, Los Alamitos, Calif., 364–373.

MOSTEFAOUI, A., RAJSBAUM, S., AND RAYNAL , M. 2003. Using conditions to expedite consensus in
synchronous distributed systems. InProceedings of the 17th International Symposium on Distributed
Computing (DISC’03)(Sorrento, Italy). Lecture Notes in Computer Science, vol. 2848. Springer-Verlag,
New York, 249–263.

MOSTEFAOUI, A., RAJSBAUM, S., RAYNAL , M.,AND ROY, M. 2001a. Efficient condition-based consensus.
In Proceedings of the 8th International Colloquium on Structural Information and Communication
Complexity (SIROCCO 8)(Catalonia, Spain). Carleton Univ. Press, 275–292.

MOSTEFAOUI, A., RAJSBAUM, S., RAYNAL , M., AND ROY, M. 2001b. A hierarchy of conditions for
consensus solvability. InProceedings of the 20th ACM SIGACT-SIGOPS International Symposium on
Principles of Distributed Computing (PODC’01)(Newport, R.I.). ACM, New York.

MOSTEFAOUI, A., RAJSBAUM, S., RAYNAL , M., AND ROY, M. 2002. Condition-based protocols for
set agreement problems. InProceedings of the 16th International Symposium on Distributed Com-
puting (DISC’02)(Toulouse, France). Lecture Notes in Computer Science, vol. 2508. Springer-Verlag,
New York, 48–62.

MOSTEFAOUI, A., AND RAYNAL , M. 1999. Solving consensus using Chandra-Toueg-s unreliable failure
detectors: a general quorum-based approach. InProceedings of the 13th International Symposium on
Distributed Computing (DISC’99)(Bratislava), P. Jayanti, Ed. Lecture Notes in Computer Science,
vol. 1603. Springer-Verlag, New York, 49–63.

MOSTEFAOUI, A., RAYNAL , M., AND TRONEL, F. 2000. The best of both worlds: A hybrid approach to
solve consensus. InProceedings of the International Conference on Dependable Systems and Networks
(DSN’00)(New York, N.Y.). IEEE Computer Society Press, Los Alamitos, Calif., 513–522.

RAYNAL , M. 1997. Real-time dependable decisions in timed asynchronous distributed systems. In
Proceedings of the 3rd International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS’97)(Newport Beach, Calif.). IEEE Computer Society Press, Los Alamitos, Calif., 283–290.

TAUBENFELD, G., KATZ, S.,AND MORAN, S. 1994. Impossibility results in the presence of multiple faulty
processes.Inf. Comput. 113, 2, 173–198.

TAUBENFELD, G.,AND MORAN, S. 1996. Possibility and impossibility results in a shared memory envi-
ronment.Acta Inf. 35, 1–20.

ZIBIN, Y. 2003. Condition-based consensus in synchronous systems. InProceedings of the 17th Inter-
national Symposium on Distributed Computing (DISC’03)(Sorrento, Italy). Lecture Notes in Computer
Science, vol. 2848. Springer-Verlag, New York, 239–248.

RECEIVED JANUARY2002;REVISED JUNE2003;ACCEPTED JULY2003

Journal of the ACM, Vol. 50, No. 6, November 2003.

