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Abstract—We propose a formal definition for the timed asynchronous distributed system model. We present extensive
measurements of actual message and process scheduling delays and hardware clock drifts. These measurements confirm that this
model adequately describes current distributed systems such as a network of workstations. We also give an explanation of why
practically needed services, such as consensus or leader election, which are not implementable in the time-free model, are

implementable in the timed asynchronous system model.
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1 INTRODUCTION

DEPENDING on whether the underlying communication
and process management services provide “certain
communication,” distributed systems can be classified as
either synchronous or asynchronous [7]. By certain communica-
tion, we mean that 1) at any time there is a minimum
number of correct processes, and 2) any message m sent by
a correct process to a correct destination process is received
and processed at the destination within a known amount of
time, i.e.,, the probability that m is not received and
processed in time is “negligible.” The authors of [28] and
[5] explain what it means for failures to be negligible. A
synchronous system guarantees certain communication. All
other systems are asynchronous.

To achieve certain communication, one assumes that the
frequency of failures that can occur in a system is bounded.
This bounded failure frequency assumption allows system
designers to use space [8] or time redundancy [32] to mask
lower level communication failures and provide the
abstraction of certain communication. However, for almost
all distributed systems, it is not reasonable to assume that
the failure frequency is bounded.

Dependable systems are characterized by strict stochastic
specifications [5]. Hence, even if one tries to fix the
unpredictability of a system to achieve certain communica-
tion (e.g., through admission control, resource allocation,
redundant communication channels, etc.), the probability of
communication failures might still not be negligible. For
many dependable systems it is therefore not necessarily
reasonable to assume that communication is certain. In this
paper, we define an asynchronous system model that
makes much simpler assumptions than a synchronous
system model. Hence, the probability that one of these
assumptions is violated is much smaller than the prob-
ability of a violation of the the assumptions of a
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synchronous system. Nevertheless, this asynchronous sys-
tem model is still strong enough to serve as a foundation for
the construction of dependable applications.

Most published research on asynchronous systems is
based on the time-free model [21]. This model is character-
ized by the following properties: 1) services are time-free,
ie., their specification describes what outputs and state
transitions should occur in response to inputs without
placing any bounds on the time it takes these outputs and
state transitions to occur, 2) interprocess communication is
reliable (some researchers relax this condition), i.e., any
message sent between two noncrashed processes is even-
tually delivered to the destination process, 3) processes
have crash failure semantics, i.e., processes can only fail by
crashing, and 4) processes have no access to hardware
clocks. In the time-free model, a process cannot distinguish
between a noncrashed (but very slow) and a crashed
process. Most of the services that are of importance in
practice, such as consensus, election, or membership, are
therefore not implementable [21], [2].

The timed asynchronous distributed system model (or, for
short, the timed model), which we define formally in this
paper, assumes that 1) all services are timed: Their
specification prescribes not only the outputs and state
transitions that should occur in response to inputs, but also
the time intervals within which a client can expect these
outputs and transitions to occur, 2) interprocess commu-
nication is via an unreliable datagram service with omis-
sion/performance failure semantics: The only failures that
messages can suffer are omission (message is dropped) and
performance failures (message is delivered late, 3) processes
have crash/performance failure semantics: The only fail-
ures a process can suffer are crash and performance
failures, 4) processes have access to hardware clocks that
proceed within a linear envelope of real-time, and 5) no
bound exists on the frequency of communication and
process failures that can occur in a system. We feel this
model adequately describes existing distributed systems
built from networked workstations. In contrast with the
time-free model, the timed model allows practically needed
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distributed services such as clock synchronization, member-
ship, consensus, election, and atomic broadcast to be
implemented [4], [10], [14], [6], [13].

Since it does not assume the existence of hardware clocks
or timed services, the time-free model may appear to be
more general than the timed model. However, all work-
stations currently on the market have high-precision quartz
clocks, so the presence of clocks in the timed model is not a
practical restriction. Moreover, while it is true that many of
the services encountered in practice, such as Unix processes
and UDP, do not make any response-time promises, it is
also true that all such services become de facto “timed”
whenever a higher level of abstraction that depends on
them—at the highest level: the human user—fixes a timeout
to decide if they have failed. Therefore, from a practical
point of view the requirements that services be timed and
processes have access to hardware clocks do not make the
timed model less general than the time-free model.

In fact, the failure semantics of interprocess communica-
tion in the time-free model (as defined in [21]) is much
stronger than in the timed model: While in the time-free
model there cannot exist system runs in which correct
processes are disconnected for the entire run, the timed
model allows runs in which correct processes are perma-
nently disconnected. Thus, while the time-free model
excludes the possibility that correct processes be parti-
tioned, the timed model allows such partitioning to be
naturally modeled as the occurrence of sufficiently many
message omission or performance failures. This character-
istic of the timed model reflects the situations in which
communication partitions can be observed for hours, or
even days in real systems, especially those based on wide
area networks, like the Internet. Thus, from a practical point
of view, the timed model is more general than the time-free
one, because 1) it allows partitions to be modeled naturally,
and 2) its assumptions that services are timed and processes
have access to hardware clocks are not restrictive from a
practical point of view.

The goals of this paper are to 1) propose a formal
definition for the timed asynchronous distributed system
model, 2) provide extensive measurements of actual
message and process scheduling delays and clock drifts
that confirm that this model adequately describes current
run-of-the-mill distributed systems built from networked
workstations, and 3) give an intuitive explanation of why
practically important services such as consensus or leader
election, which are not implementable in the time-free
asynchronous system model, are implementable in the
timed model.

2 RELATED WORK

Distributed system models can be classified according to
what they assume about network topology, synchrony, failure
model, and message buffering [23]. According to this taxon-
omy, the timed asynchronous model can be characterized as
follows:

e  network topology: any process knows the complete set
of processes and can send messages to any process.
The problem of routing messages for irregular
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topologies is assumed to be solved by a lower level
routing protocol.

e synchrony: services are timed and processes have
access to local hardware clocks whose drift rates
from real-time are bounded. The timed service
specifications allow the definition of timeout delays
for message transmission and process scheduling
delays.

e  failure model: processes can suffer crash or perfor-
mance failures; the communication service can suffer
omission or performance failures.

o message buffering: finite message buffers and non-
FIFO delivery of messages. Buffer overflows do not
block senders, but result in message omission
failures.

The most important difference between the timed model
and the time-free model [21] is the existence of local
hardware clocks. Many distributed applications are speci-
fied using real-time constraints. For example, if a compo-
nent fails, then within X time units, the application has to
perform some action. Hardware clocks allow one to
implement application level “time-outs.”

The timed asynchronous system model was introduced
(without being named) in [4]. It was further refined in [10]
and renamed to avoid confusion with the time-free model
[21]. In particular, [10] introduces system stability predicates
and conditional timeliness properties to capture the intuition
that as long as the system is stable, that is, the number of
failures affecting the system is below a certain threshold,
the system will make progress within a bounded time.

Well-tuned systems are expected to alternate between
long periods of stability and short periods of instability, in
which the failure frequency increases beyond the assumed
threshold. In [14], we formalized this as progress assump-
tions. A progress assumption is an optional extension of the
“core” timed asynchronous system model (see Section 4): A
progress assumption states that after an unstable period
there always exists a time interval of some given minimum
length in which the system will be stable. Progress
assumptions allow one to solve problems like consensus,
that were originally specified by using unconditional
termination conditions (defined in Section 6.1), as opposed
to our use of conditional timeliness properties (see Section
6.1). One can view a progress assumption as a formal way
to require the parameters of the timed model (the one-way
time-out delay 6; Section 3.2 and the scheduling timeout
delay o; Section 3.3.2) to be well chosen. Progress assump-
tions are similar to the global stabilization requirement of [11]
which postulates that eventually a system must permanently
stabilize, in the sense that there must exist a time beyond
which all messages and all noncrashed processes become
timely. However, progress assumption only require that
infinitely often there exists a majority set of processes that
for a certain minimum amount of time are timely and can
communicate with each other in a timely manner.

Progress assumptions also have a certain similarity with
failure detectors [3], which are mechanisms to strengthen the
time-free model: Certain failure detector classes provide
their desired behavior based on the observation that the
system eventually stabilizes. The main differences between
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the model of [3] and the timed model are the following: 1)
the timed model allows messages to be dropped and
processes to recover after a crash, and 2) the timed model
provides processes with access to hardware clocks while the
model of [3] provides processes with access to a failure
detector. Note that hardware clocks can be used to detect
failures. To further highlight the similarities and differences
which exist between the synchronous and the timed
asynchronous system models, [7] compares the properties
of fundamental synchronous and asynchronous services
such as membership and atomic broadcast.

We will sketch in Section 6 that certain problems that are
implementable in synchronous systems are not implemen-
table in timed asynchronous systems. Previously, other
authors addressed possibility issues. For example, [24] and
[27] address the issue of what problems can be simulated in
an asynchronous system. In Section 6, however, we don't
address simulation issues: For example, we are concerned
with how one can ensure that there are no two leaders at
any point in real-time and we are not interested in solutions
where there are no two leaders in wvirtual time. This
difference is important for real-time systems that have to
interact with external processes.

In [15], we introduced the notion of fail-awareness as a
systematic means of transforming synchronous service
specifications into fail-aware specifications that become
implementable in timed asynchronous systems. The idea
is that processes have to provide their “synchronous
properties” as long as the failure frequency is below a
given bound and whenever a property cannot be guaran-
teed anymore. This is detectable in a timely manner by all
correct clients that depend on this property. Our claim is
that the weakened fail-aware specification is still useful
when implementable in a timed system. Fail-awareness
depends on the timely detection of message performance
failures. We introduced in [19] a mechanism that allows a
receiver r of a message m to detect if m has suffered a
performance failure: The basic idea is that 1) one can use
local hardware clocks to measure the transmission delay of
a message round-trip, and 2) one can use the duration of a
round-trip that contains m as an upper bound for the
tranmission delay of m. We introduced in [19] several
optimizations to provide a better upper bound for m. [12]
describes the use of the timed model and a fail-aware
datagram service in a fully automated train control system.

The quasi-synchronous model [31] is another approach to
define a model that is in between synchronous systems and
time-free asynchronous systems. It requires (P1) bounded
and known processing speeds, (P2) bounded and known
message delivery times, (P3) bounded and known drift
rates for correct clocks, (P4) bounded and known load
patterns, and (P5) bounded and known deviations among
local clocks. The model allows for at least one of the
properties (Pz) to have incomplete assumption coverage, that
is, a nonzero probability that the bound postulated by (Px)
is violated at run-time [28]. In comparison, the timed
asynchronous system model assumes that the coverage of
(P3) is 1, the coverage of (P1) and (P2) can be any value and
it does not make any assumptions about load patterns or
the deviation between local clocks.
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Fig. 1. Processes in a timed asynchronous system have access to local
hardware clocks and communicate via datagram messages across a
network.

3 THE MoODEL

A timed asynchronous distributed system consists of a
finite set of processes P, which communicate via a
datagram service. Processes run on the computer nodes of
a network (see Fig. 1). Lower level software in the nodes
and the network implements the datagram service. Two
processes are said to be remote if they run on separate nodes;
otherwise, they are local. Each process p has access to a local
hardware clock. The process management service that runs
in each node uses this clock to manage alarm clocks that
allow the local processes to request to be awakened
whenever desired. We use o, p, ¢, and r to denote processes,
s, t, u, and v to denote real-times, S, T, U, and V to denote
clock times, and m, and n to denote messages.

3.1 Hardware Clocks
All processes that run on a node can access the node’s
hardware clock. The simplest hardware clock consists of an
oscillator and a counting register that is incremented by the
ticks of the oscillator. Each tick increments the clock value
by a positive constant G called the clock granularity. Other
hardware clock implementations are described in [26].
Correct clocks display strictly monotonically increasing values.
We denote the set of real-time values with R7 and the
set of clock values with C7. The clock H), of process p is
represented by a function H), from real-time to clock-time:

H,:RT = CT.

H,(t) denotes the value displayed by the clock of p at real-
time ¢. Local processes access the same clock, while remote
processes access different clocks. Thus, if processes p and ¢
are running on the same node, H, = H,.

Due to the imprecision of the oscillator, temperature
changes, and aging, a hardware clock drifts apart from real-
time. Intuitively, the drift rate of a hardware clock indicates
how many microseconds a hardware clock drifts apart from
real-time per second. For example, a drift rate of 2* means
that a clock increases its value by 1sec + 2us every second.

We assume the existence of a constant maximum drift
rate p < 1 that bounds the absolute value of the drift rate
of a correct clock. Thus, the drift rate of a correct clock is
at least —p and at most +p (see Fig. 2). The constant p is
known to all processes. A correct clock measures the
duration of a time interval [s,t] with an error within
[—p(t—s)— G,p(t —s) + G]. The term G accounts for the
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Fig. 2. At any point in time the drift rate of a correct hardware clock H, is
within [—p,+p]. Note that the drift rate does not have to be constant since
it can change over time and can assume any value within [—p,+p].

error due to the granularity of the clock and the factor p
for the error due to the drift of the clock.

We define a predicate correcty that is true iff p’s
hardware clock H), is correct at time u. The definition is
based on the intuition that H), has to measure the duration
of any time interval [s, t] before u with an absolute error of
at most p(t — s) + G:

correct%p = Vs,t:s<t<u=
(1=p)(t—s)—G< Hp(t) - Hp(s) <
(I4+p)(t-s)+G.

The p bound on the drift rate causes any correct clock to be
within a narrow linear envelope of real-time (see Fig. 2).
When one analyzes the drift error of a clock, it is possible
to distinguish 1) a systematic drift error due to the
imprecision of its oscillator, and 2) drift errors due to other
reasons, such as aging or changes in the environment. The
speed of a calibrated hardware clock is changed by a
constant factor ¢ to reduce the systematic drift error. The
relation between an uncalibrated clock H), and its calibrated
counterpart Hi*“""*“! can be expressed as follows:

H;alib'mtcd(t) o CHp(t)

Hardware clock calibration can be done automatically in
systems that have Internet access or have local access to an
external time provider such as a GPS receiver.

Clocks are externally synchronized if, at any instant, the
deviation between any correct clock and real-time is
bounded by a known constant. Clocks are internally
synchronized if the deviation between any two correct clocks
is bound by a known constant. If all correct clocks in a
system are externally synchronized by some known ¢, then
the clocks are also internally synchronized by 2e. Clock
calibration can be done once during the lifetime of a system.
However, to account for aging of a clock, it makes sense to
recalibrate the clock occasionally. Internal and external
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Fig. 3. Measured drift rate (in =) of four hardware clocks over a period of
more than 70 days. The drift rate was determined every hour using
externally synchronized clocks.

clock synchronization needs to be performed periodically to
account for the ongoing drift of all clocks.

The timed asynchronous system model does not require
clocks to be calibrated, nor to be externally or internally
synchronized. Only their drift rate has to be bounded by p.
However, it is advantageous to calibrate hardware clocks
since this allows the reduction of the maximum drift rate
(see Section 3.1.1).

3.1.1 Measurements

Common operating systems provide processes access to a
“real-time clock.” This real-time clock is more or less
synchronized with real-time, e.g., UTC (universal time) or
GPStime. In many Unix domains, one tries to maintain a good
synchronization with real-time using time services like NTP
[25]. However, processes do not always know how good the
synchronization with real-time is. There might not even exist
an upper bound on the drift rate of a real-time clock because
an operator can change the speed of the real-time clock [1].

More recent operating systems provide processes access
to hardware clocks that are not subject to adjustments, i.e.,
neither the software nor the operator can change the speed
of such a clock. For example, Solaris provides a C library
function gethrtime (get high-resolution real-time) that
returns a clock value expressed in nanoseconds. The
high-resolution real-time clocks are an example of hard-
ware clocks provided by an operating system. They are also
ideally suited to implement calibrated hardware clocks.

For current workstation technology, the granularity of a
hardware clock is in the order of 1ns to 1us and the constant
p is in the order of 10~ to 107°. We measured the drift rate
of the uncalibrated, unsynchronized hardware clocks of
several SUN workstations running Solaris 2.5 over a period
of several weeks. Fig. 3 shows the drift rate of four
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Fig. 4. The relative drift rate between two calibrated hardware clocks
stayed within about 1£* during our measurements.

hardware clocks. We measured the drift rate using both a
NIST timeserver and clocks externally synchronized via
NTP. The average drift rate of all four hardware clocks
stayed almost constant over the measured period. The
computers are all located in air-conditioned rooms. For
computers that are subject to higher temperature changes,
one has to expect a higher variance in the clock drift. Note
that we do not assume that the clock drift is constant; we
assume that clock drift is within some [—p, +p]. This interval
has to be chosen large enough to account for unsteady
environmental conditions.

We measured the relative drift rate of two calibrated
hardware clocks for an interval of several days, ie., we
measured how many us two calibrated hardware clocks
drift apart from each other every second. The calibrated
clocks were implemented on top of the high-resolution real-
time clocks of Solaris. Variations in the message transmis-
sion delays introduce errors when reading remote clocks in
a distributed system. We did read remote clocks using a
fail-aware datagram service [19] that calculates an upper
bound on the transmission delay of each message it
delivers.! That allowed us to calculate lower and upper
bounds on the remote clock reading errors. With these
bounds, we calculated lower and upper bounds on the drift
rate. To minimize the measurement error, we measured
every minute the average relative drift rate over the last 100
minutes. Fig. 4 shows a lower and an upper bound for the
relative drift rate of two calibrated hardware clocks over a
period of more than two days.

In summary, calibrating a hardware clock allows us to
decrease its maximum drift rate by two orders of
magnitude: from 107 to 107%. For example, clock calibra-
tion allowed us to reduce the measured average drift of one
clock from about 1555 to about 0£%. Because we use in our
protocols calibrated hardware clocks, we can use a
maximum drift rate p of 2% instead of a p of about 200£.
Since p is such a small quantity, we ignore terms p' for i > 2,
For example, we equate (1 + p) " with (1 — p) and (1 —p) "'
with (1 4 p). We also assume that the clock granularity G is
negligible.

1. The service requires an upper bound on the drift rate of a clock. We
chose that constant based on measurements of the (absolute) drift rate of
calibrated clocks using an externally synchronized clock. Hence, there is no
“circularity” in this measurement.

3.1.2 Clock Failure Assumption

We assume that each noncrashed process has access to a correct
hardware clock, i.e., has access to a hardware clock with a
drift rate of at most p. This assumption simplifies applica-
tions since they have to deal with crash failures anyhow but
they do not have to deal with faulty clocks like “fast” or
“slow” clocks. Let predicate crashed,, be true iff process p is
crashed at real-time ¢. Formally, we can express this clock
assumption (CA) as follows:

(CA)Vp,Vt : ﬁcrashed; = correctﬁqp,

In practice, one can actually weaken this assumption in
the following sense. If a hardware clock H, fails at time s
and a process p tries to read the clock at ¢t > s, p crashes at ¢
before an incorrect clock value is returned to p. Since p does
not read any incorrect clock information, this relaxed
assumption is actually equivalent to (CA). In particular,
no process can determine that ), failed. One can implement
this relaxed assumption by detecting clock failures at lower
protocol levels (transparent to application processes) and
transform them into process crash failures.

There are two basic real-time clock implementations in
operating systems: 1) an oscillator increments a long
hardware counter (typically, 64-bit long) and the value of
the real-time clock is the current value of the hardware
counter, and 2) a periodic timer is used to increment a
software counter (= value of real-time clock). In the first
case, the properties of the clock are determined by the
physical properties of the oscillator. In the second case,
interrupt priorities might affect the properties of the real-
time clock. In most systems, the timer interrupt has the
highest priority and these systems do not loose timer
interrupts. However, there exist a few systems in which
other interrupt sources (e.g., the serial line) have a higher
priority than the timer interrupt. These systems might loose
timer interrupts, i.e., these clocks can go slower if there are
too many interrupts of higher priority.

For most systems, one can find a reasonable p such that
the probability that a hardware clock fails (i.e., its drift rate
is not bounded by p) is very low. Whether this probability
can be classified as negligible depends on the stochastic
requirements of the application (see [28], [5] for an
explanation of what failures can be neglected). If this
probability is negligible, one does not even have to detect
clock failures. However, if the requirements of an applica-
tion are too stringent to neglect the probability that a single
hardware clock fails, one can use redundant hardware
clocks to make sure that the clock failure assumption is
valid.

We showed in [20] how one can use commercial off the
shelf components to build fault-tolerant clocks to make
clock failures negligible. For example, one can use two
redundant hardware clocks (two 64-bit counters connected
to separate oscillators, available as PC cards) to detect a
single hardware clock failure. The detection (or even the
masking of clock failures when at least three hardware
clocks are used) can be localized in one clock reading
procedure so that it becomes transparent to higher level
processes. Whenever a process wants to read its hardware
clock, the process calls the clock reading procedure and this
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Fig. 5. Process p sends unicast message m to ¢ at real-time s and ¢
receives m at real-time ¢. The transmission delay of m is td,(m) =t — s.

procedure reads the two redundant clocks. The procedure
uses the two values to determine if the relative drift rate of
the two clocks is within an acceptable range. If the failures
of hardware clocks are independent, one can detect the
failure of a clock with a very high probability. Thus, when
stochastic application requirements are stringent, redun-
dant clocks allow the detection of clock failures so that the
probability that a process reads a faulty clock becomes
negligible.

3.2 Datagram Service

The datagram service provides primitives for transmitting
unicast (see Fig. 5) and broadcast messages (see Fig. 6). The
primitives are:

e send(m,q): to send a unicast message m to process g,

e  broadcast(m): to broadcast m to all processes includ-
ing the sender of m, and

e  deliver(m,p): upcall initiated by the datagram service
to deliver message m sent by process p.

To simplify the specification of the datagram service, we
assume that each datagram message is uniquely identified.
In other words, two messages are different even when they
are sent by the same process (at two different points in time)
and have the same “contents.” Let Msg denote the set of all
messages. We use the following predicates to denote
datagram related events:

o deliver! (m,p): the datagram service delivers mes-
sage m sent by p to ¢ at real-time t. We say that
process q receives m at t.

° sena(;)(m7 ¢): p transmits unicast message m to ¢ at
real-time ¢ by invoking the primitive send(m,q).

e broadcast,(m): p transmits broadcast message m at
real-time ¢ by invoking the primitive broadcast(m).

Let m be a message that p sends (see Fig. 5) or broadcasts
(see Fig. 6) at s. Let g receive m at t. We call s and ¢ the send
and receive times of m and we denote them by st(m) and
rty(m), respectively. The transmission delay ¢d,(m) of m is
defined by

td,(m) £ rt,(m) — st(m).
The function sender(m) returns the sender of m:
sender(m) = p < 3s, q : send,(m, q) V broadcast,(m).

The destination Dest(m) of a message m is the set of
processes to which m is sent:

$ broadcast% (m) U I
|

|
PN !
. . ideliver {(m,p)
a— ( . —
l-——td (11 |
| & . delivel(m,p)
r 1 1

-~ tdq(m) — !
s u t

rea!-
time

Fig. 6. Process p sends broadcast message m at s and g receives m at ¢,
while r receives m at u. The transmission delays of m are td,(m) =t — s
and td,.(m) = u — s.

q € Dest(m) < 3s,p : send,(m, q) V broadcast,(m).

The requirements for the datagram service (Validity, No-
duplication, and Min-Delay) are defined as follows:

o  Validity: If the datagram service delivers m to p at ¢
and identifies ¢ as m’s sender, then ¢ has indeed sent
m at some earlier time s < t:

Vp,q,m,t: deliver;(m7 q)
= 3s < t:send;(m, p) V broadcast; (m).

e  No-duplication: Each message has a unique sender
and is delivered at a destination process at most
once.

Yp,q,rm,t,u: deliver;(m, q) A deliver (m, 1)

=qg=rAt=u.

e Min-Delay: We assume that any message m sent
between two remote processes p and ¢ has a
transmission delay that is at least 0,

tdq (m) > 6min .

The Min-Delay requirement does not restrict the mini-
mum transmission delay of a message n sent between two
local processes: The transmission delay of n can be smaller
than 6,,,. The intuition of 6,,,, is that when knowing the
minimum message size and the maximum network
bandwidth, one knows a lower bound on the message
transmission delay. One can use 6, to improve the
calculated a posteriori upper bound on the transmission
delay of remote messages: the tighter 6,,;, is to the “real”
minimum transmission delay, the tighter the a posteriori
upper bound gets (see [19] for details). However, if 6,,, is
chosen too big (i.e., some remote messages have transmis-
sion delays of less than 6,,,,), one might calculate a bound
that is too small. Since the network configuration of a
system might change during its lifetime, the safest choice is
to assume that 6,,;, = 0.

The datagram service does not ensure the existence of an
upper bound for the transmission delay of messages. But
since all services in our model are timed, we define a one-
way time-out delay 6, chosen so that the actual messages sent
or broadcasted are likely [5] to be delivered within 6. A
message with a transmission delay of less than 6,,;, is called
early (see Fig. 7). In the timed model, we assume that there
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Fig. 7. In the timed model, a message can either be timely, late, or
dropped. The timed model assumes that no message is early.

are no early messages, i.e., 6min is well-chosen (see Min-
Delay requirement). A message m whose transmission delay
is at most 6, i.e., Oy < tdy(m) < 6, is called timely. If m’s
transmission delay is greater than 6, i.e., tdy,(m) > 6, we say
that m suffers a performance failure (or, m is late). If a
message is never delivered, we say that m suffered an
omission failure (or, m is dropped).

3.2.1 Measurements

The timed model assumes the existence of a one-way time-
out delay ¢ that is used to define message performance
failures. The choice of ¢ determines the frequency of
message performance failures. The timed model does not
put any upper bound on the frequency of failures and,
hence, the choice of § does not affect the correctness of
protocols designed for the timed model. We described in
[17] several techniques that allow the timely detection of
message and process performance failures to be able to
detect when certain application properties do not hold
anymore. In [19], we describe a mechanism that allows a
receiver to detect if a message is timely.

A “good” selection of § might be system and application
dependent. First, for some applications the choice of § can
be naturally derived from the application requirements. For
example, 1) an application might have to achieve “some-
thing good” within D time units, and 2) the protocol used to
implement the application can achieve something good
within, say, k6 time units (in case the failure frequency is
within some given bound). In this case, it makes sense to
define § by § £ 2,

Second, other applications might not constrain ¢. From a
practical point of view for these applications, a good choice
of ¢ is crucial for protocol stability and speed: 1) choosing a
too small ¢ will increase the frequency of message
performance failures and, hence, the quality of service
might degrade more often, and 2) choosing a too large ¢
might increase the response time of a service since service
time-outs take longer. The choice of a good 6 is not always
easy since message transmission delays increase with
message size (see Fig. 8) and with network load (see Fig. 9),
and also depend on the message transmission pattern used
by a protocol (see Fig. 10). The determination of a good ¢
that ensures likely stability and progress might require the
measurement of protocol specific transmission delays.

We performed all our measurements on a cluster of nine
Sun IPX workstations connected by a 10Mbit Ethernet in
our Dependable Systems Laboratory at UCSD. Seven of
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Fig. 8. Measured minimum delay of round-trip message pairs for
different message sizes. We used 20,000 round-trips for each of the 156
measured message sizes.

these computers run SunOS 4.1.2, while two machines run
Solaris 2.5. The measurement programs use different
services provided by the FORTRESS toolkit [18]. FORTRESS
uses UDP for interprocess communication.

To model the dependence of message transmission times
on the message size (see Fig. 8), we could replace constants
6 and 6,,;, by two functions that increase with the size of a
message. We actually use in [19] such that a function for
Omin, 1-€., Omin increases with the size of a message. This
tighter lower bound allowed a receiver to calculate a better
upper bound for the transmission delay of a received
message. For simplicity, however, we assume in the timed
model that é§ and §,,;, are constant.

We measured the distribution of message transmission
times for different network loads. During these measure-
ments, we used eight Sun IPX workstations connected by a
10Mbit Ethernet. The workstations were grouped into four
pairs and the two processes of a pair sent each other ping-
pong messages of size 1,448 bytes (without UDP header).
We estimated the network load to be the average number of
bytes the eight workstations sent per second. As expected,
the likelihood that a message is delivered within some
given time decreases with the network load (see Fig. 9). Our
measurement showed that the minimum experienced
message transmission delay can slightly decrease with an
increase in network load. This can be explained by a
decrease of cache misses for the network protocol code with
an increase in network traffic.

To demonstrate that transmission delays can be very
protocol dependent, we measured the transmission times
experienced by a local leadership service [13]. This
measurement involved one process p periodically broad-
casting messages and five processes sending immediate
replies to each message of p. After receiving a reply, p
spends some time processing it before receiving the next
reply. Hence, the transmission delays of successive replies
increase by the processing time of the preceding replies. The
distribution of transmission delays therefore shows five
peaks for the five replying processes (see Fig. 10).
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Fig. 9. The transmission delay of messages increases with the network
load. For a network load of 232 kByte/sec, 99 percent of the messages
were delivered within 6.0ms and for 580 kByte/sec within 7.4 ms. For a
network load of 704 kByte/sec, less than 99 percent of the messages
were delivered.
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Fig. 10. Distribution of the transmission delays of unicast messages sent
by a local leader election protocol. This distribution is based on 500,000
replies.

The network and the operating system can drop
messages. For example, on Ethernet based systems a
message can be dropped because of a message collision
on the cable or because of a checksum error. However, it is
more likely that the operating system drops messages
because of buffer overruns, which occur when it cannot
deliver the messages fast enough to the receiving processes.
We measured the likelihood that a UDP packet is dropped
for different network loads. We used the same setup as for
the network load measurements: eight Sun IPX work-
stations grouped into four pairs. During a measurement, the
processes of each pair send each other ping-pong unicast
messages with a fixed scheduled wait time between the
sending of messages. We changed the network load by
changing the scheduled wait time. With a network load of
about 1,090 kByte/sec, approximately 3.5 percent of the
messages were dropped, while for a load of about 300
kByte/sec this decreased to about 0.003 percent (see Fig. 11).

We also performed experiments to test if communication
omission failures are “independent.” Again, we used eight
computers in the same setup as before. Note that if omission
failures were independent, the probability that two consecu-
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—
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Fig. 11. Likelihood that a message is dropped with respect to the
network load.

tive messages are dropped is the square of the probability that
a message suffers an omission failure. We sent 3,000,000
messages between eight processes to have a high network
load (about 1,000 kByte/sec). About 2.9 percent of these
messages suffered omission failures. During this measure-
ment, one process experienced the drop of 53 consecutive
messages that were sent by some other process. Fig. 12
shows the measured likelihood that a message is part of a
sequence of X € {1,..,20} consecutively dropped messages.
We also plotted how the curve would look if omission
failures were independent (X € {1,..,4}). This shows that
message omission failures are not independent.

3.2.2 Datagram Failure Assumption

We did various experiments to test if our system detects
message corruption. So far, we have sent more than 10°
messages with a known “random” contents. The system has
not delivered any corrupted messages. We also tested if
there were any message duplications. None of the 10°
messages were delivered more than once. The probability of
undetected message corruption and duplication might not
be negligible in all systems. However, one can use an
additional software layer to reduce this probability to the
degree that it becomes negligible. This software layer can be
transparent to the processes, i.e., the processes do not need
to know of its existence.

Source address spoofing occurs when a process p sends a
message m to some process ¢ and makes g believe that a
different process r # p has sent m. The validity assumption
implies that we assume that the probability of source
address spoofing is negligible. When one cannot neglect
this probability, one can use message authentication [30] to
reduce this probability so that it becomes negligible. This
can be done in a manner transparent to the processes. Note
that message authentication can increase the transmission
time substantially if there is no special hardware assistance.

In summary, the asynchronous datagram service is
assumed to have an omission/performance failure seman-
tics [5]: It can drop messages and it can fail to deliver
messages in a timely manner, but one can neglect the
probability of source address spoofing and that a message
delivered by the system is corrupted or is delivered
multiple times. Broadcast messages allow asymmetric
performance/omission failures in the sense that some
processes might receive a broadcast message m in a timely
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Fig. 12. Message omission failures are not independent.

manner, while other processes might receive m late or not at
all. Since p, 6;nin, and 6 are such small quantities, we equate
(1=p)o and (1 + p)6 with 6 and (1 — p)dmin and (1 + p)dmin
with 5mi'n-

3.3 Process Management Service
3.3.1 Process Modes

A process p can be in one of the following three modes (see
Fig. 13):

e up: p is executing its “standard” program code,

e crashed: a process stopped executing its code, i.e.,
does not take the next step of its algorithm and has
lost all its previous state, and

e recovering: p is executing its state “initialization”
code, 1) after its creation, or 2) when it restarts after a
crash.

A process that is either crashed or “recovering” is said to be
down. The following events cause a process p to transition
between the modes specified above (see Fig. 13):

e start: when p is created, it starts in “recovering”
mode,
e crash: p can crash at any time, for example, because
the underlying operating system crashes,
e ready: p transitions to mode “up” after it has finished
initializing its state, and
e recover: when p restarts after a crash, it does so in
“recovering” mode.
We define the predicate crashed,, to be true iff p is crashed at
time ¢. While p is crashed, it cannot execute any step of its
algorithm. We define the predicate recovering!, to be true iff
p is recovering at time ¢. A process can be recovering only as
a consequence of a start or recover event occurrence.

3.3.2 Alarm Clocks

A process p can set an alarm clock to be awakened at some
specified future clock time.”> When p requests to be
awakened at clock time 7, the process management service
will awake p when H),(t) shows a value of at least 7. We call
T an alarm time. Process p will not take a step after it sets its

2. We assume that a process is signaled an error in case it requests to be
awakened at a time that has already passed. To avoid this, a process can
define a positive alarm time relative to the current time instead of
specifying an absolute alarm time.
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alarm clock to T unless 1) it is awakened for alarm time T,
or 2) it receives a message before it is awakened for alarm
time 7. We assume that if a process p sets its alarm clock
before it was awakened for its previous alarm time 7" (this
can only happen if it receives a message before it is
awakened for T), alarm time T is overwritten, i.e., p will not
be awakened for alarm time 7. In other words, at any time a
process p can have at most one active alarm time, i.e., an
alarm time that has not been overwritten and for which p
has not been awakened. Note that a process can maintain
multiple alarm times based on the alarm clock provided by
the timed asynchronous system model.

We use the following predicates to specify the behavior
of an alarm clock:

o SetAlarm,(T): p requests at real-time s to be
awakened at some future real-time w such that
H,(u) > T,i.e., pwants to take its next step when its
hardware clock shows at least value T unless it
receives a message before 7', and
e WakeUp,(T): the process management service
wakes up p at real-time u for the alarm clock time T.
When a process p crashes, the process management
service forgets any active alarm time p has set before
crashing. If p never crashes, we assume that it will
eventually be awakened for all active alarm times. The
behavior of an alarm clock is constrained by the following
requirement (AC = alarm clock): A process p is awakened
for an alarm clock time T at real-time w only if 1) its
hardware clock shows at least T" at u, 2) p has requested at
some previous time s <u to be awakened at T, and 3)
within time interval (s, u], process p has not crashed, has not
overwritten the alarm time, and has not been awakened for
T since s. Formally, the (AC) requirement is expressed as
follows:

Vp,u, S, T : WakeUp,(T) =
A Hy(u) > T A3s < u: SetAlarm;(T)
AV € (s,u] : =SetAlarm;)(S)
A —~crashed, A =WakeUp,(T).

Let ¢ be the earliest real-time (i.e., smallest value) for
which H,(t) > T. We call ¢ the real alarm time specified by
the SetAlarm;(T) event. Consider that the process manage-
ment awakes process p for alarm time 71" at real-time u, i.e.,
WakeUp, (T) holds. The delay u —t is called the scheduling
delay experienced by process p. The process management
service does not ensure the existence of an upper bound on
scheduling delays. However, being a timed service, we
define a scheduling timeout delay o, so that actual
scheduling delays are likely [5] to be smaller than o. Since
p and o are such small quantities, we equate (1 — p)o and
(14 p)o with o.

We say that a noncrashed process p suffers a performance
failure when it is not awakened within o of the last alarm
time 7' it has specified (see Fig. 14), i.e., if it is awakened
when its local hardware clock, H, shows already a value
greater than 7'+ ¢. In this case, we say that p is late.
Otherwise, if p is awakened when its hardware clock shows
a value in [T, T + o], it is said to be timely. If p is awakened
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Fig. 13. Process modes and transitions.

for T before H, shows T, p is said to be early. Since it is easy
to avoid early timing failures (by checking that H, > T" and
going to sleep again if H, < T), the timed model assumes
that processes do not suffer early timing failures.

Formally, a process p suffers a performance failure at
real-time w if there exists an alarm time 7' that should have
caused a Wakellp event by u:

pFail; 23s< u,: SetAlarm(T),(u) > T + o AVv € (s,u] :
—WakeUp,(T) A =crashed, ANVS : ~SetAlarm, (S).

We define the predicate timely, to be true iff p is timely at u:

timely, = —pFail, \ —crashed,,.

We extend the notion of a process p being timely to a
time interval I as follows:

timelyll) Svtel: timely;.

Note that we do not include the processing time of
messages in the definition of a timely process. The reason
for that is that, conceptually, our protocols for the timed
model add the processing time of a message m to the
transmission delay of the messages sent during the
processing of m (see [17] for a more detailed description):
A too slow processing of messages is, therefore, trans-
formed into message performance failures.

3.3.3 Measurements

To implement alarm clocks in the Unix family of operating
systems, one can use the select system call. This call allows
the specification of a maximum interval for which a process
waits for some specified I/O events in the kernel before it
returns. Unix tries to awake the process before the specified
time interval expires using an internal timer. In SunOs, this
timer has a resolution of 10ms. Thus, the scheduling delay
timeout o should be chosen to be at least 10ms. Fig. 15
shows the distribution of scheduling delays experienced by
a process executing a membership protocol [16]. These
measurements where performed during normal daytime
use of the system (low load).

3.3.4 Process Failure Asssumption

The timed model assumes that processes have crash/
performance failure semantics [5]. However, the execution
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Fig. 14. Process p is timely if it is awakened within ¢ ticks of alarm time
T. Process p suffers a performance failure (or, is late) if it is awakened
after T+ 0. The timed model excludes early timing failures, i.e., a
process is never awakened before time 7.
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Fig. 15. The distribution shows the difference between the time a
process was awakened and the time it requested to be awakened. It is
based on 350,000 measurements.

of a process might stop prematurely (crash failure) or a
process might not be awakened within o time units of an
active alarm time (performance failure). Processes can
recover from crashes.

In most applications, the probability that a processor
executes the program of a process incorrectly is negligible.
In systems in which that probability cannot be neglected,
one can use redundancy at lower protocol levels to
guarantee the crash/performance process failure semantics.
For example, consider that processors can suffer independent
failures. In this case, one can use a processor pair to execute
the program of a process in lock step. If the two processors
disagree about the result of some instruction, both
processors stop executing. In this way, processor failures
can be transformed into crash failures. This dual processor
approach is transparent to the processes. Thus, the assump-
tion that processes have crash/performance failure seman-
tics is reasonable.

4 EXTENSIONS

The core of the timed asynchronous system model assumes
the datagram service, the process management service, and
the local hardware clocks. We introduce two optional
extensions of the model: stable storage and progress assump-
tions. Both extensions are reasonable for a network of
workstations. However, not all systems might need to have
or actually have access to stable storage. A progress
assumption states that infinitely often a majority of
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processes will be “stable” (i.e., behave like a synchronous
system) for a bounded amount of time. While progress
assumptions are valid for most local area network based
systems, they are not necessarily valid for large scale
systems connected by wide area networks. Moreover, most
of our service specifications do not need a progress
assumption to enable their implementation in timed
asynchronous systems. We sometimes use the terms “core
model” and “extended models” to distinguish between
models that include assumptions about stable storage or
progress assumptions in addition to the “core” assumptions
about datagram service, the process management service,
and the local hardware clocks.

4.1 Stable Storage

Processes lose their memory state when they crash. To
allow processes to store information between crashes, we
introduce an extension of the timed asynchronous system
model: a local stable storage service. This service provides
the following two primitives to any local process p:

e store(addr,val): p asks the value wval to be stored at
address addr, and

e read(addr,val): p asks to read the most recent value it
has stored at address addr. If p has not yet stored
some value at addr, value L (undefined) is returned.

The predicates that denote the invocation of the above
primitives at some real-time ¢ are: store)(addr,val) and
read,,(addr, val), respectively.

The stable storage service guarantees that for any
address a that a process p reads, it returns the most recent
value that p has stored at address q, if any:

read;(a, val) =
Vu < t,v: =store,(a,v) Aval = L

V 3s < t:store,(a,val) AVu € (s,t],v: mstore,(a,v).

A stable storage service can be implemented on top of
Unix using the Unix file system. An implementation of such
a service and its performance is described in [9].

4.2 Stability and Progress Assumptions

The timeliness requirements encountered in the specifica-
tion of protocols designed for the timed asynchronous
system model are often conditional in the sense that only
when some “system stability” predicate is true, the system
has to achieve “something good” (see e.g., [7]). Such
conditional timeliness requirements express that when
some set of processes SP C P is “stable” (i.e., “behaves
like a synchronous system”); that is, the failures affecting
SP and the communication between them have a bounded
frequency of occurrence, the servers in SP have to
guarantee progress within a bounded amount of time. We
call a set SP a stable partition [13] iff

e all processes in SP are timely,

e all but a bounded number of messages sent between
processes in SP are delivered timely, and

e from any other partition either no message or only
“late” messages arrive in SP.

The concept of a stable partition is formalized by a stability
predicate that defines if a set of processes SP forms a stable

partition in some given time interval [s,t]. There are
multiple reasonable definitions for stability predicates:
examples are the stable predicate in [10], or the majority-
stable predicate in [14]. In this paper, we formally define the
stability predicate A — F' — partition introduced informally
in [17]. To do that, we first formalize and generalize the
notions of connectedness and disconnectedness introduced
in [10].

4.2.1 A-F-Partitions

Two processes p and g are F-connected in the time interval
[s,t] iff 1) p and ¢ are timely in [s, ¢], and 2) all but at most F’
messages sent between the two processes in [s,t] are
delivered within at most 6 time units. We denote the fact
that p and ¢ are F-connected in [s,t] by the predicate
F — connected(p, q, s, t):

F—connected(p, q, s,t) S3m C Msg: |M|<F
AVu € [s,t] : timely, A timely);
AVYm € Msg— M,Vr € {p,q} : st(m) € [s,t]A
Sender(m) € {p,q} A r € Dest(m) = td,(m) < 6.

A process p is A-disconnected from a process ¢ in [s, t] iff
any message m that is delivered to p during [s, ] from ¢ has
a transmission delay of more than A > ¢ time units. A
common situation in which two processes are A-discon-
nected is when the network between them is overloaded or
at least one of the processes is slow. One can use a fail-
aware datagram service [19] to detect all message that have
transmission delay of more than A while guaranteeing that
no message with a transmission delay of at most ¢ is
wrongly suspected to have a transmission delay of more
than A. We use the predicate A-disconnected(p,q,s,t) to
denote that p is A-disconnected from ¢ in [s, ¢]:

A—disconnected(p, q, s,t) £ VYm,Yu € [s,1] :
deliver,(m) A sender(m) = q = td,(m) > A.

We say that a nonempty set of processes S is a A-F-
partition in an interval [s,¢] iff all processes in S are F-
connected in [s, t] and the processes in S are A-disconnected
from all other processes:

A—F — partition(S, s,t) 2540
AVp,q € S : F — connected(p,q, s,t)
AVp € S,Vr € P—S: A — disconnected(p,r, s,t).

As an example of the utility of the above stability
predicate, consider an atomic broadcast protocol designed
to achieve group agreement semantics [6], where all messages
that are possibly lost or late are resent up to ¥ + 1 times. If a
group of processes S forms a A-F-partition for sufficiently
long time, that group can make progress in successfully
broadcasting messages during that time.

4.2.2 Progress Assumptions

The lifetime of most distributed systems based on a local
area network is characterized by long periods in which
there exists a majority of processes that are stable. These
stability periods alternate with short instability periods.
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Fig. 16. The graph shows the transmission delay of messages received
by one process over a period of 100 seconds. The transmission delay of
messages stayed for long periods of time well below 10ms. However,
sporadically the delay increased well above 10ms.

This can be explained by the bursty behavior of the network
traffic which can cause temporary instabilities. For example,
traffic bursts can be caused by occasional core dumps or file
transfers via the network. Based on this observation, we
introduced the concept of progress assumptions [14] to show
that classical services, such as consensus, originally speci-
fied by using unconditional termination requirements, are
implementable in the extended timed model. A progress
assumption states that the system is infinitely often
“stable”: There exists some constant 7 such that for any
time s, there exists a t > s and a majority of processes SP so
that SP forms a stable partition in [¢,¢ + 7].

4.2.3 Measurements

The first measurement shows how transmission delays are
distributed over time (see Fig. 16). In this experiment, we
used four processes and each process receives and sends
about 36 UDP messages per second. Hence, we sent about
144 messages every second on the Ethernet. Each message
contains a payload of 1,448 bytes, i.e., we induced a network
load of more than 208 KByte/sec.

We also measured the behavior of six processes
{p1,...,ps} each running on a SUN workstation in our
Dependable Systems Lab over a period of a day under
normal load conditions (see Fig. 17). The set of all six
processes were, on the average, “A-1-stable” for about 218s,
i.e., the six processes formed a A-F-partition with F =1,
A = 20ms and o = 30ms. The average distance between two
A-1-stable periods was about 340ms. The typical behavior
experienced during an “unstable” phase was that one of the
six processes was slow. For this measurement, we used a
modified membership service [16]: Whenever a process
declared that it could not keep its membership up-to-date
or not all six processes stayed in the membership, we knew
that {pi, ..., ps} is not A-1-stable. From a theoretical point of
view, one cannot determine perfectly if the system is A-1-
stable. However, one can determine if the system looks to
the processes like it is A-1-stable—which, from a practical
point of view, is equivalent to the system being A-1-stable.
Note that the membership service allows the fast processes
to continue to make progress even if the system is not A-1-
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Fig. 17. Observed time between two A-1-stable periods for six
processes, where A = 20ms and o = 30ms during a period of 24 hours.
The typical failure behavior observed between consecutive stability
periods was that one process was slow.

stable because it can temporarily remove the slow pro-
cess(es) from the membership. In other words, system
instabilities might result in the removal of slow or
disconnected processes but in our experience in almost all
cases the remaining processes can still provide their safety
and timeliness properties.

5 COMMUNICATION BY TIME

In synchronous systems, the communication by time (i.e.,
communication of information achieved by measuring the
passage of time) is very important. For example, if a correct
process p does not hear in time the “I-am-alive” message of
q, then p knows that ¢ has crashed. The communication
uncertainty that characterizes timed asynchronous systems
makes “communication by time” more difficult, but it is (in
a more restricted form) still possible. For example, in the
timed model if p does not hear from ¢ in time the “I-am-
alive” message of ¢, p does not know that ¢ has crashed.
However, p knows that ¢ or the “I-am-alive” has suffered a
failure. In many applications, this is sufficient since p only
cares about if or if not it can communicate with ¢ in a timely
manner. For example, in a leader election protocol, process
p might only support the election of ¢ as long as p can
communicate with ¢ in a timely manner and otherwise, it
might try to support the election of another process (with
which it can communicate in a timely manner). However, in
this leader election example we have to make sure that there
is at most one leader at a time. In synchronous systems,
enforcing this property is straight forward since processes
can detect perfectly if the current leader has crashed and,
hence, when to replace it by a new leader. In asynchronous
systems, enforcing this property is not that easy since one
cannot decide if the current leader [ has crash, or is slow, or
the communication to [ is slow.

We illustrate how two processes p and ¢ can use
communication by time to ensure that, at any time, at most
one of them is leader. We use a locking mechanism [17],
which can be viewed as a leases mechanism [22] for systems
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const time Duration, A;

boolean Leader?(time now)
if now < ExpirationTime then
return true;
return false;

process p begin
time ExpirationTime = 0;

fa—send(“you are leader”, q);
T = H()+Duration(1+2%p)+A(1+p);
SetAlarm(T);
select event
when WakeUp(T):
ExpirationTime = oc;
end select
end

process q begin
time ExpirationTime = 0;
select event
when fa—deliver(m, p, fast, RT);
if fast then
ExpirationTime = RT+Duration;
endif
end select
end

Fig. 18. This pseudocode uses communication by time to enforce that a
correct p is eventually leader while ensuring that there is only one leader
at a time even though ¢ might be leader for a bounded amount of time.

without synchronized clocks. This mechanism enables
communication by time even when local clocks are not
synchronized. This mechanism works as follows:

e p sends some information in a message m to a
process ¢ and p says that this information is only
valid for a certain amount of time,

e if g receives m, it calculates an upper bound on the
transmission delay of m to determine for how long it
can use m, and

e p can determine by consulting only its local hard-
ware clock the time beyond which ¢ will no longer
make use of the information contained in m.

For concreteness, consider the pseudocode of Fig. 18. In
this example, we use communication by time to enforce one
correct process p is eventually leader while ensuring that
there is only one leader at a time, even though ¢ might be
leader for a bounded amount of time. To concentrate on the
main aspect, i.e., how p can detect that ¢ is not leader
anymore, g gets only one chance to become leader by p
sending ¢ a message saying that ¢ is leader for a certain
amount of time. A complete leader election protocol using a
time locking mechanism can be found in [13].

Process p sends a message m to ¢ informing ¢ that it can
become leader for Duration clock time units if the
transmission delay of m is at most A real-time units.
Process ¢ has to calculate an upper bound on the
transmission delay of m to determine if it can use m. The
fail-aware datagram service introduced in [19] calculates an

upper bound on the transmission delay of messages. It
delivers m as “fast” when its transmission delay is at most
A. Process q uses m only when m is “fast” and it sets
variable ExpirationTime so that ¢'s leadership expires exactly
Duration time units after the reception of m at local clock
time RT.

Process p waits for Duration(1+ 2p) + A(1+ p) clock
time units before it becomes leader, where 1) the factor (1 +
2p) is necessary because p’s and ¢'s hardware clocks can
drift apart by up to 2p, and 2) the factor (1 + p) since p’s
clock can drift apart from real-time by up to Ap during the
maximum transmission delay A of a “fast” message m. A
process 1 € {p,q} is leader at t iff the function Leader?
evaluates at t to true when called with the value of r’s
hardware clock at ¢t as argument, i.e.,

leader”. £ Leader? (H,(t)).

Process p and ¢ are never leader at the same time since 1) ¢
can only be leader when the transmission delay of m is at
most A and it is leader for at most Duration local clock time
units after receiving m, and 2) after p has sent m, it waits for
at least Duration(1 + 2p) + A(1 + p) local clock time units
before becoming leader.

Note that a leader is implicitly demoted by the
advancement of its hardware clock. Since a process might
be delayed immediately after checking if it is the leader, a
demoted process might not immediately detect that it was
demoted. However, when Leader? is used in a proper way,
other processes can detect messages from a demoted leader
in the following way:

e A process r first reads its hardware clock and if H,
shows a value T, then

e r determines if it is leader at 7' by querying function
Leader? for time T,

e if ris leader at 7', it does some processing and then
sends some message n and it sets the send time-
stamp of n to T, and

e a process receiving n will calculate the transmission
time of n based on T, i.e. delays of r are added to the
transmission time of n.

For example, if r is swapped out after reading Leader? and
before sending n, the delay of this swap is added to the
transmission delay of n and receiver(s) of n can reject n if
the transmission delay of n is too slow. In summary, we
typically transform delays of a demoted leader into
message performance failures that can be detected by the
receivers of the messages.

6 PoOSSIBILITY AND IMPOSSIBILITY ISSUES

We address, in this section, the issue of why problems like
election and consensus are implementable in actual
distributed computing systems while they do not allow a
deterministic solution in 1) the time-free model and 2) to
some extent in the core timed model.

To fix our ideas, we use the election problem to illustrate
the issues. Whether the leader problem has a deterministic
solution or not depends on 1) the exact specification of the
problem, 2) on the use of progress assumptions, and 3)



CRISTIAN AND FETZER: THE TIMED ASYNCHRONOUS DISTRIBUTED SYSTEM MODEL 655

whether the underlying system model allows communica-
tion by time. The main intuition of 1) is that one can weaken
a problem such that one has only to solve the problem when
the system is “well behaved,” or 2) one can require instead
that the system be “well behaved” from time to time and
hence, one can solve the problem while the system is well
behaved, and 3) if one can use communication by time to
circumvent the impossibility that one cannot decide
perfectly if a remote process is crashed, e.g., if one can
use a local hardware clock to decide if a time quantum of a
remote process has expired.

6.1 Termination versus Conditional Timeliness

Conditions
There is no commonly agreed-upon rigorous specification
for the election problem. For example, [29] specifies the
election problem for the time-free system model as follows:

e (S5): At any real-time there exists at most one leader,
and
e (TF): Infinitely often there exists a leader, i.e., for any
real-time s there exists a real-time ¢t > s and a
process p so that p becomes leader at t.
Typically, problems specified for timed systems do not use
such strong unconditional termination conditions (like (TF))
requiring that “something good” eventually happens.
Instead, we use conditional timeliness conditions. These
require that if a system stabilizes for an a priori known
duration, “something good” will happen within a bounded
time. With the introduction of the A-F-stable predicate
earlier, we can generalize the specifications given in [13] for
the election (or the highly available leadership) problem for
timed asynchronous systems as follows:

e (5): At any real-time there exists at most one leader,

and

e (TT): When a majority of processes are A-F-stable in

a time interval [s, s + k], then there exists a process p

that becomes leader in [s, s + &].
The specification (S, T'F) is not implementable in time-free
systems, even when only one process is allowed to crash
[29], while (S,TT) is implementable in timed systems [10],
[13]. To explain why this is so, consider a time-free system
that contains at least two processes p and ¢. To implement
(S,TF), one has to solve the following problem: When a
process p becomes leader at some real-time s and stays
leader until it crashes at a later time ¢ > s, the remaining
processes have to detect that p has crashed to elect a new
leader at some time u > t to satisfy requirement (TF). Since
processes can only communicate by messages, one can find
a run that is indistinguishable for the remaining processes
and in which p is not crashed and is still leader at u. In other
words, one can find a run in which at least one of the two
requirements (S, TF) is violated.

The implementability of (S, 7'T) in a timed asynchronous
system can be explained as follows. First, to ensure property
(S) processes do not have to decide if the current leader is
crashed or just slow. A process is leader for a bounded
amount of time before it is demoted (see Section b5).
Processes can therefore just wait for a certain amount of
time (without exchanging any messages) to make sure that
the leader is demoted. In particular, processes do not have

to be able to decide if a remote process is crashed (this is
impossible in both the time-free and the timed asynchro-
nous system models). Second, when the system is stable, a
majority of processes is timely and can communicate with
each other in a timely fashion. This is sufficient to elect one
of these processes as leader in a bounded amount of time
and ensure that the timeliness requirement is also satisfied
[13].

Note that the specification (S, TF) is not implementable
in the core timed model even when only one process is
allowed to crash. To explain this, consider a run R in which
no process can communicate with any other process
(because the datagram service drops all messages). If at
most one process ! in R is leader, we can construct a run R’
such that [ is always crashed in R’ and R’ is indistinguish-
able from R for the remaining processes, therefore R’ does
not satisfy (S,TF). Otherwise, if there exist at least two
processes p and ¢ in R that become leaders at times s and ¢,
respectively, we can construct a run R that is indistinguish-
able from R for all processes and in which p and ¢ are
leaders at the same point in real-time (s = t), since p and ¢
cannot communicate with any other process (in R).

6.2 Why Communication by Time is Important for
Fault Tolerance

One interesting question is if (S, TT) could be implemented
in time-free systems. Since no notion of stability was
defined for time-free systems, we sketch the following
alternative result instead: (5,77 is not implementable in a
timed system from which hardware clocks are removed
even if at most one process can crash and no omission
failures can occur. Note that, if processes have no access to
local hardware clocks, they cannot determine an upper
bound on the transmission delay of messages nor can a
leader enforce that it demotes itself within a bounded time
that is also known to all other processes. In particular, the
only means for interprocess communication is, like in the
time-free model, explicit messages. Thus, the proof
sketched above that (S,TF) is not implementable in the
time-free model also applies for (S, TT) in the timed system
model without hardware clocks. It is thus essential to
understand that it is the access to local clocks that run
within a linear envelope of real-time, which enables
communication by time between processes, that allows us to
circumvent in the timed model the impossibility result of
[29] stated for the time-free model.

6.3 Progress Assumptions

Another observation is that while (S,TF) does not have a
deterministic solution in the core timed model, it is
implementable in a practical network of workstations. The
reason is that while the timed asynchronous system model
allows in principle runs in which the system is never stable,
the actual systems that one encounters in practice make
such behavior extremely unlikely when ¢ and o are well
chosen. As mentioned earlier, such a system is very likely to
alternate between long stability periods and relatively short
instability periods. To describe such systems, it is therefore
reasonable to use a progress assumption (see Section 4.2.2);
that is, assume the existence of an 7 such that the system is
infinitely often stable for at least 1 time units. For n > &, a
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progress assumption ensures that a solution of (S,TT)
elects a leader infinitely often. Thus, the introduction of a
progress assumption implies that a solution of (S,77T) is
also a solution of (S,TF).

In the service specifications we have defined for
asynchronous services implementable in the timed model,
we always use conditional timeliness conditions and we never
use termination conditions like (I'F). In general, we do not
need progress assumptions to enable the implementation of
services with conditional timeliness conditions in timed
asynchronous systems, i.e., these services are implementa-
ble in the core timed system model. Furthermore, while
progress assumptions are reasonable for local area systems,
they are not necessarily valid for wide area systems that
frequently partition for a long time. Thus, we have not
included progress assumptions as a part of the core timed
asynchronous system model.

7 CONCLUSION

We have given a rigorous definition of the timed asynchro-
nous system model. Based on the measurements reported
previously, performed on the network of workstations in
our Dependable Systems Laboratory and on other unpub-
lished measurements at other labs that we are aware of, we
believe that the timed asynchronous system model is an
accurate description of actual distributed computing sys-
tems. In particular, we believe that the set of problems
solvable in the timed model extended by progress assump-
tions is a close approximation of the set of problems
solvable in systems of workstations linked by reliable,
possibly local area based, networks.

Most real-world applications have soft real-time con-
straints. Hence, such applications need a notion of time.
Neither the original time-free model [21] nor its extension
with failure detectors [3] provides that. These models are,
therefore, not necessarily an adequate foundation for the
construction of applications with soft real-time constraints.
The timed model instead provides these applications with a
sufficiently strong notion of time. The timed model is also a
good foundation for the construction of fail-safe hard real-
time applications (see [17], [12]).
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