Causal Delivery

in Synchronous Systems

We use the upper bound A on
message delivery time

Causal Delivery
with Lamport Clocks

Deliver all received messages in
increasing (logical clock) timestamp order.

Causal Delivery
in Synchronous Systems

We use the upper bound A on
message delivery time

At time ¢, Po delivers all messages
it received with timestamp up fo t—A
in increasing timestamp order

Causal Delivery
with Lamport Clocks

Deliver all received messages in
increasing (logical clock) timestamp order.

1

Po

Causal Delivery
with Lamport Clocks

Deliver all received messages in
increasing (logical clock) timestamp order.

1 4

Po o - Should po deliver?

Stability

Deliver all received stable messages in
increasing (logical clock) timestamp order.

A message m received by p is stable at p if p
will never receive a future message m’s.t.

WS (' s T8 (n)

Causal Delivery
with Lamport Clocks

Deliver all received messages in
increasing (logical clock) timestamp order.

1 4

Po o - Should po deliver?

Problem: Lamport Clocks don't provide gap detection

Given two events e and €’ and their clock

values LC(e) and LC(e') —where LC(e) < LC(¢')

determine whether some event ¢”exists s.t.
LC(e) < LC(e") < LC(€')

Implementing Stability

@ Real-time clocks

0 wait for A time units

Implementing Stability

@ Real-time clocks

0 wait for A time units

@ Lamport clocks

0 wait on each channel form s.t. T'S(m) > LC(e)

@ Design better clocks!

Causal Histories

@ The causal history of an event e in (H,—)is the set
Oe)={e e H|e —e}U{e}

Clocks and STRONG Clocks

@ Lamport clocks implement the clock condifion:
e— e = LC(e) < LC(¢€)

@ We want new clocks that implement the

e— e =85C(e) < SC(e)

Causal Histories

® The causal history of an event e in (H, —)is the set
Oe)={e e H|e — e} U{e}

g

y ,3 g
€3 €3 (]

Causal Histories

@ The causal history of an event e in (H,—)is the set
Oe)={e e H|e —e}U{e}

/.
& e

4
5

Pruning causal histories

@ Prune segments of history that are known to
all processes (Peterson, Bucholz and
Schlichting)

@ Use a more clever way to encode 6(e)

How to build 6(e)

Each process p;:
0 initializes 60 : 6 :=0

0 if ef is an internal or send event, then
0(es):={ef} Ub(ef ™)
o if ef is a receive event for message m, then

B(eF):={ef} ub(el=1) Ub(send(m))

Vector Clocks

@ Consider 6;(e), the projection of 6(e) on p;

@ 0;(e) is a prefix of b’ 0;(e) = h¥- it can be
encoded using k;

@ 0(e) =61(e)Ub(e)U...UBb,(e) can be

encoded using ki, ko, ..., ky,

Represent 0 using an n-vector V(' such that
VC(e)|i] = k < 0;(e) = hF

Update rules

Message m is
timestamped with
TS(m) = VC(send(m))

VC(A= maT{ oy TS(m))

VC(ei)li] := VCIi] +

Operational
interpretation

[1,0,0] [2,1,0] [3,1,2] 4121 [51.2]

LX))

[0,1,0] / / [4,3,3]

101] [102] [103]

Example

[1,0,0] [2,1,0] [3.1,2] [412] [512]

il

[0,1,0] / / 14,3,3]

[1,01] [1,0,2] [1,0,3]

Operational
interpretation

[1,0,0] [2,1,0] [3,1,2] 412 [51.2]

LX) S

[0,1,0] / / 14,3,3]
p3 o

o1 [o2 [103] [5,1,4]

VC(e;)i] = no. of events executed by p; up to and including e;

Operational VC properties:
interpretation event ordering

1 LOOK2L0] (31.2] 4121 = [l Given two vectors V and V/ less than is defined as:
V<V =(WAV)A(Yh:1<k<n:V[k<V/[k)

@ Strong Clock Condition: e — ¢’ = VC(e) < VC(€)

@ Simple Strong Clock Condition:
Given ¢; of p; and ¢; of pj, where i # j
(S F’]‘ == ‘Y(V(Pl)[/} S ‘YCv(fl)[Z}
@ Concurrency
VC(e:)[i] = no. of events executed by p; up fo and including e; Given ¢; of pi and €; of Pj, where i # j
ei || e; = (VC(e)[i] > VC(ej)[i]) A (VCle;)g] > VCi(esi)d])

[1,0,1] [1,0,2] [1,0,3]

VC(e;)[j] = no. of events executed by p; that happen before e; of pi

VC properties:
consistency

@ Pairwise inconsistency

Events e; of pi and ¢; of p; (i # j) are pairwise
inconsistent (i.e. cant be on the frontier of the
same consistent cut) if and only if

(VC(e)li] < VC(ej)[i]) v (VC(e;)[i] < VC(es)5])

@ Consistent Cut

A cut defined by (ci,...,cy)is consistent if and
only if

Vi, j o 1. <= gl g RV et VC'(G';'j)[Z])

