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Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection
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Given two events   and    and their clock
values        and          — where
determine whether some event   exists s.t.

e e
′

LC(e) LC(e′) LC(e) < LC(e′)

LC(e) < LC(e′′) < LC(e′)

e
′′

Stability

DR2: !Deliver all received stable messages in 
increasing (logical clock) timestamp order.

A message    received by   is stable at   if   
will never receive a future message    s.t.
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TS(m′) < TS(m)

Implementing Stability
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wait for   time units∆



Implementing Stability

Real-time clocks
wait for   time units

Lamport clocks
wait on each channel for    s.t.

Design better clocks!

∆

m TS(m) > LC(e)

Clocks and STRONG Clocks

Lamport clocks implement the clock condition:

We want new clocks that implement the 
strong clock condition:

e → e
′
⇒ LC(e) < LC(e′)

e → e
′
≡ SC(e) < SC(e′)

Causal Histories

The causal history of an event   in         is the sete (H,→)

θ(e) = {e′ ∈ H | e
′
→ e} ∪ {e}
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Causal Histories

The causal history of an event   in         is the sete (H,→)
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e → e
′
≡ θ(e) ⊂ θ(e′)

θ(e) = {e′ ∈ H | e
′
→ e} ∪ {e}

How to build   

Each process   :

initializes

if    is an internal or send event, then 

if    is a receive event for message   , then    

θ(e)

θ : θ := ∅

e
k
i

pi

e
k
i m

θ(ek
i ) :={ek

i } ∪ θ(ek−1

i
) ∪ θ(send(m))

θ(ek
i ) :={ek

i } ∪ θ(ek−1

i
)

Pruning causal histories

Prune segments of history that are known to  
all processes (Peterson, Bucholz and 
Schlichting)

Use a more clever way to encode θ(e)

Vector Clocks

Consider      , the projection of      on   

      is a prefix of   :             – it can be 
encoded using 

                                      can be 
encoded using 

θi(e) θ(e) pi

θi(e) h
i θi(e) = h

ki

i
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θ(e) = θ1(e) ∪ θ2(e) ∪ . . . ∪ θn(e)
k1, k2, . . . , kn

Represent   using an  -vector     such thatθ n V C

V C(e)[i] = k ⇔ θi(e) = h
ki

i



Update rules

pi

pi

ei

m

ei

Message    is 
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1
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Operational 
interpretation

= no. of events executed by      up to and including

= no. of events executed by    that happen before    of  
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VC properties:
event ordering

Given two vectors  and  , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition: 
   Given     of   and   of   , where   

Concurrency
   Given    of   and   of   , where   

V V
′

V < V
′
≡ (V "= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ‖ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i != j

ei pi pjej i != j

e → e
′
≡ V C(e) < V C(e′)

VC properties: 
consistency

Pairwise inconsistency
Events   of   and   of            are pairwise 
inconsistent (i.e. can’t be on the frontier of the 
same consistent cut) if and only if

Consistent Cut
A cut defined by               is consistent if and 
only if
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : (VC(eci

i
)[i] ≥ VC(e

cj

j
)[i])

(VC(ei)[i] < VC(ej)[i]) ∨ (VC(ej)[j] < VC(ei)[j])

(i != j)

(c1, . . . , cn)

ei pi pjej


