Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_0 delivers all messages it received with timestamp up to $t-\Delta$ in increasing timestamp order

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message m received by p is stable at p if pwill never receive a future message m's.t. TS(m') < TS(m)

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

 $p_0 \xrightarrow{1} 4$ Should p_0 deliver?

Problem: Lamport Clocks don't provide gap detection

Given two events e and e' and their clock values LC(e) and LC(e') — where LC(e) < LC(e')determine whether some event e'' exists s.t. LC(e) < LC(e'') < LC(e')

Implementing Stability

Real-time clocks \Box wait for Δ time units

Implementing Stability

- Real-time clocks \Box wait for Δ time units
- Lamport clocks
 - \square wait on each channel for m s.t. TS(m) > LC(e)
- Design better clocks!

Clocks and STRONG Clocks

- We want new clocks that implement the strong clock condition:
 e → e' ≡ SC(e) < SC(e')

Causal Histories

The causal history of an event e in (H,→) is the set
 $θ(e) = \{e' ∈ H | e' → e\} ∪ \{e\}$

Pruning causal histories

- Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)
- \odot Use a more clever way to encode $\theta(e)$

How to build $\theta(e)$

Each process p_i :

 \square initializes θ : θ := \emptyset

 $\Box \text{ if } e_i^k \text{ is an internal or send event, then} \\ \theta(e_i^k) := \{e_i^k\} \cup \theta(e_i^{k-1}) \\ \Box \text{ if } e_i^k \text{ is a receive event for message } m \text{, then} \\ \theta(e_i^k) := \{e_i^k\} \cup \theta(e_i^{k-1}) \cup \theta(send(m)) \\ \end{array}$

Vector Clocks

- The projection of $\theta(e)$ on p_i
- ${\it (a)} \ \theta_i(e)$ is a prefix of $h^i : \theta_i(e) = h_i^{k_i} -$ it can be encoded using k_i

Represent θ using an *n*-vector VC such that $VC(e)[i] = k \Leftrightarrow \theta_i(e) = h_i^{k_i}$

VC properties: consistency

© Pairwise inconsistency

Events e_i of p_i and e_j of p_j $(i \neq j)$ are pairwise inconsistent (i.e. can't be on the frontier of the same consistent cut) if and only if $(VC(e_i)[i] < VC(e_j)[i]) \lor (VC(e_j)[j] < VC(e_i)[j])$

Consistent Cut
 A cut defined by (c₁,...,c_n) is consistent if and
 only if
 $\forall i, j: 1 \le i \le n, 1 \le j \le n: (VC(e_i^{c_i})[i] \ge VC(e_j^{c_j})[i])$

VC properties: event ordering

- Given two vectors V and V' less than is defined as: $V < V' \equiv (V \neq V') \land (\forall k : 1 \le k \le n : V[k] \le V'[k])$
- Strong Clock Condition: $e \rightarrow e' \equiv VC(e) < VC(e')$
- Simple Strong Clock Condition: Given e_i of p_i and e_j of p_j , where $i \neq j$ $e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$
- Concurrency
 Given e_i of p_i and e_j of p_j , where i ≠ j $e_i \parallel e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \land (VC(e_j)[j] > VC(e_i)[j])$