Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_{0} delivers all messages
it received with timestamp up to $t-\Delta$
in increasing timestamp order

Causal Delivery

 with Lamport ClocksDR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.
p_{0} \qquad \longrightarrow

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Should p_{0} deliver?

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Should p_{0} deliver?
Problem: Lamport Clocks don't provide gap detection
Given two events e and e^{\prime} and their clock
values $L C(e)$ and $L C\left(e^{\prime}\right)$-where $L C(e)<L C\left(e^{\prime}\right)$ determine whether some event $e^{\prime \prime}$ exists s.t.

$$
L C(e)<L C\left(e^{\prime \prime}\right)<L C\left(e^{\prime}\right)
$$

Stability

Implementing Stability

e Real-time clocks
\square wait for Δ time units
DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message m received by p is stable at p if p will never receive a future message $m^{\prime} s$.t.
$T S\left(m^{\prime}\right)<T S(m)$

Implementing Stability

(2) Real-time clocks
\square wait for Δ time units

- Lamport clocks
\square wait on each channel for m s.t. $T S(m)>L C(e)$
- Design better clocks!

Causal Histories

- The causal history of an event e in (H, \rightarrow) is the set
$\theta(e)=\left\{e^{\prime} \in H \mid e^{\prime} \rightarrow e\right\} \cup\{e\}$

Clocks and STRONG Clocks

(2) Lamport clocks implement the clock condition:

$$
e \rightarrow e^{\prime} \Rightarrow L C(e)<L C\left(e^{\prime}\right)
$$

(6) We want new clocks that implement the strong clock condition:

$$
e \rightarrow e^{\prime} \equiv S C(e)<S C\left(e^{\prime}\right)
$$

Causal Histories

e The causal history of an event e in (H, \rightarrow) is the set $\theta(e)=\left\{e^{\prime} \in H \mid e^{\prime} \rightarrow e\right\} \cup\{e\}$

Causal Histories

The causal history of an event e in (H, \rightarrow) is the set $\theta(e)=\left\{e^{\prime} \in H \mid e^{\prime} \rightarrow e\right\} \cup\{e\}$

Pruning causal histories

6 Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)
(2) Use a more clever way to encode $\theta(e)$

How to build $\theta(e)$

Each process p_{i} :
\square initializes $\theta: \quad \theta:=\emptyset$
\square if e_{i}^{k} is an internal or send event, then

$$
\theta\left(e_{i}^{k}\right):=\left\{e_{i}^{k}\right\} \cup \theta\left(e_{i}^{k-1}\right)
$$

\square if e_{i}^{k} is a receive event for message m, then $\theta\left(e_{i}^{k}\right):=\left\{e_{i}^{k}\right\} \cup \theta\left(e_{i}^{k-1}\right) \cup \theta(\operatorname{send}(m))$

Vector Clocks

(2 Consider $\theta_{i}(e)$, the projection of $\theta(e)$ on p_{i}
(2) $\theta_{i}(e)$ is a prefix of $h^{i}: \theta_{i}(e)=h_{i}^{k_{i}}$ - it can be encoded using k_{i}
(2) $\theta(e)=\theta_{1}(e) \cup \theta_{2}(e) \cup \ldots \cup \theta_{n}(e)$ can be encoded using $k_{1}, k_{2}, \ldots, k_{n}$

Represent θ using an n-vector $V C$ such that
$V C(e)[i]=k \Leftrightarrow \theta_{i}(e)=h_{i}^{k_{i}}$

Update rules

p_{i}

Example

Operational
interpretation

$V C\left(e_{i}\right)[i]=$
$V C\left(e_{i}\right)[j]=$

Operational interpretation

$V C\left(e_{i}\right)[i]=$ no. of events executed by p_{i} up to and including e_{i} $V C\left(e_{i}\right)[j]=$

Operational

 interpretation
$V C\left(e_{i}\right)[i]=$ no. of events executed by p_{i} up to and including e_{i}

VC properties: event ordering

Given two vectors V and V_{1}^{\prime} less than is defined as: $V<V^{\prime} \equiv\left(V \neq V^{\prime}\right) \wedge\left(\forall k: 1 \leq k \leq n: V[k] \leq V^{\prime}[k]\right)$
e Strong Clock Condition: $e \rightarrow e^{\prime} \equiv V C(e)<V C\left(e^{\prime}\right)$
(2) Simple Strong Clock Condition:

Given e_{i} of p_{i} and e_{j} of p_{j}, where $i \neq j$ $e_{i} \rightarrow e_{j} \equiv V C\left(e_{i}\right)[i] \leq V C\left(e_{j}\right)[i]$

- Concurrency

Given e_{i} of p_{i} and e_{j} of p_{j}, where $i \neq j$
$e_{i} \| e_{j} \equiv\left(V C\left(e_{i}\right)[i]>V C\left(e_{j}\right)[i]\right) \wedge\left(V C\left(e_{j}\right)[j]>V C\left(e_{i}\right)[j]\right)$

VC properties: consistency

- Pairwise inconsistency

Events e_{i} of p_{i} and e_{j} of $p_{j}(i \neq j)$ are pairwise inconsistent (i.e. can't be on the frontier of the same consistent cut) if and only if
$\left(V C\left(e_{i}\right)[i]<V C\left(e_{j}\right)[i]\right) \vee\left(V C\left(e_{j}\right)[j]<V C\left(e_{i}\right)[j]\right)$
(2) Consistent Cut

A cut defined by $\left(c_{1}, \ldots, c_{n}\right)$ is consistent if and
only if
$\forall i, j: 1 \leq i \leq n, 1 \leq j \leq n:\left(V C\left(e_{i}^{c_{i}}\right)[i] \geq V C\left(e_{j}^{c_{j}}\right)[i]\right)$

