
Causal Delivery
in Synchronous Systems

We use the upper bound on
message delivery time

∆

Causal Delivery
in Synchronous Systems

We use the upper bound on
message delivery time

DR1: At time , delivers all messages
it received with timestamp up to
in increasing timestamp order

∆

t p0

t−∆

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

1
p0

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

1
p0

4
Should deliver?p0

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection

1
p0

4
Should deliver?p0

Given two events and and their clock
values and — where
determine whether some event exists s.t.

e e
′

LC(e) LC(e′) LC(e) < LC(e′)

LC(e) < LC(e′′) < LC(e′)

e
′′

Stability

DR2: !Deliver all received stable messages in
increasing (logical clock) timestamp order.

A message received by is stable at if
will never receive a future message s.t.

m

m
′

pp p

TS(m′) < TS(m)

Implementing Stability

Real-time clocks
wait for time units∆

Implementing Stability

Real-time clocks
wait for time units

Lamport clocks
wait on each channel for s.t.

Design better clocks!

∆

m TS(m) > LC(e)

Clocks and STRONG Clocks

Lamport clocks implement the clock condition:

We want new clocks that implement the
strong clock condition:

e → e
′
⇒ LC(e) < LC(e′)

e → e
′
≡ SC(e) < SC(e′)

Causal Histories

The causal history of an event in is the sete (H,→)

θ(e) = {e′ ∈ H | e
′
→ e} ∪ {e}

Causal Histories

The causal history of an event in is the sete (H,→)

p2

p1

p3

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
3

3e
1

3 e
2

3 e
4

3

θ(e) = {e′ ∈ H | e
′
→ e} ∪ {e}

Causal Histories

The causal history of an event in is the sete (H,→)

p2

p1

p3

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
3

3e
1

3 e
2

3 e
4

3

e → e
′
≡ θ(e) ⊂ θ(e′)

θ(e) = {e′ ∈ H | e
′
→ e} ∪ {e}

How to build

Each process :

initializes

if is an internal or send event, then

if is a receive event for message , then

θ(e)

θ : θ := ∅

e
k
i

pi

e
k
i m

θ(ek
i) :={ek

i } ∪ θ(ek−1

i
) ∪ θ(send(m))

θ(ek
i) :={ek

i } ∪ θ(ek−1

i
)

Pruning causal histories

Prune segments of history that are known to
all processes (Peterson, Bucholz and
Schlichting)

Use a more clever way to encode θ(e)

Vector Clocks

Consider , the projection of on

 is a prefix of : – it can be
encoded using

 can be
encoded using

θi(e) θ(e) pi

θi(e) h
i θi(e) = h

ki

i

ki

θ(e) = θ1(e) ∪ θ2(e) ∪ . . . ∪ θn(e)
k1, k2, . . . , kn

Represent using an -vector such thatθ n V C

V C(e)[i] = k ⇔ θi(e) = h
ki

i

Update rules

pi

pi

ei

m

ei

Message is
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1

Example

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

Operational
interpretation

=

=

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

V C(ei)[i]

V C(ei)[j]

Operational
interpretation

= no. of events executed by up to and including

=

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

Operational
interpretation

= no. of events executed by up to and including

= no. of events executed by that happen before of

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei

VC properties:
event ordering

Given two vectors and , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition:
 Given of and of , where

Concurrency
 Given of and of , where

V V
′

V < V
′
≡ (V "= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ‖ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i != j

ei pi pjej i != j

e → e
′
≡ V C(e) < V C(e′)

VC properties:
consistency

Pairwise inconsistency
Events of and of are pairwise
inconsistent (i.e. can’t be on the frontier of the
same consistent cut) if and only if

Consistent Cut
A cut defined by is consistent if and
only if
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : (VC(eci

i
)[i] ≥ VC(e

cj

j
)[i])

(VC(ei)[i] < VC(ej)[i]) ∨ (VC(ej)[j] < VC(ei)[j])

(i != j)

(c1, . . . , cn)

ei pi pjej

