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Abstract

We describe a family oflogn protocols for assigning sym-

metric keys ton processes in a network so that each process

can use its assigned keys to communicate securely with every

other process. Thek-th protocol in our protocol family, where1 � k � logn, assignsO(k2 kpn) symmetric keys to each

process in the network. (Thus, our (logn)-th protocol assignsO(log2 n) symmetric keys to each process. This is not far

from the lower bound ofO(logn) symmetric keyswhich we

show is needed for each process to communicate securely

with every other process in the network.) The protocols in

our protocol family can be used to assign symmetric keys

to the processes in a sensor network, or ad-hoc or mobile

network, where each process has a small memory to store

its assigned keys. We also discuss the vulnerability of our

protocols to ”collusion”. In particular, we show thatkpn
colluding processes can compromise the security of thek-th

protocol in our protocol family.

I. I NTRODUCTION

In this paper, we investigate the following interesting ques-

tion. What is the smallest number of symmetric keys that need

to be assigned to each process in a network ofn processes

so that each process can communicate securely with each

other process in the network? The answer to this question

is important in securing communications within a network of

processes, where each process has a relatively small memory

for storing its assigned keys. Examples of such network

include sensor networks [1], [2], ad-hoc networks [3], [4],and

mobile networks [5], [6].

The straightforward answer to the above question is(n�1).
This straightforward answer is so “natural” and ”compelling”

that it is hard to think of another answer to the question.

As it happened, Gong and Wheeler did come up [7] with a

better answer, ofO(pn) keys assigned to each process in the

network. Their elegant protocol for assigning symmetric keys

to network processes is based on the view that the processes

and the keys in the network can be arranged in a
pn �pn

grid, and a key is assigned to a process if the relative position

of the key with respect to the process satisfies some condition.

Recently, Kulkarni, Gouda, and Arora presented [8] a

variation of this grid protocol and showed that this protocol

achieves the lower bound of assigning the smallest number of

keys to each process in the network under the assumption that

no two processes share more than two keys.

This last result leaves the door open for the following

question. If we allow each pair of processes to share any

number of keys, can fewer thanO(pn) keys be assigned to

each process and still each process can communicate securely

with each other process in the network? In this paper, we

demonstrate that the answer to this question is a resounding

”yes”.

We describe a family oflogn protocols for assigning

symmetric keys to then processes in a network so that each

process can securely communicate with each other process in

the network. Thek-th protocol,1 � k � logn, in this family

assignsO( kpn) keys to each process in the network. The first

protocol in this family, wherek = 1, is the straightforward

protocol that assigns(n�1) keys to each process. The second

protocol in this family, wherek = 2, is the grid protocol

designed by Gong and Wheeler [7]. The last protocol in this

family, where k = logn, assignsO(log2 n) keys to each

process.

As discussed below in some detail, thek-th protocol in our

family is based on our view that the processes and the keys

in the network can be arranged in multiple grids, where each

grid has kpn� kpn elements. The protocol assigns a key to a

process if the relative position of the key with respect to the

process satisfies some condition.

We start our presentation of our protocol family by present-

ing the second protocol, wherek = 2, in the family.

II. A O NE-GRID PROTOCOL

We consider a network that hasn processes. Each process

in the network has a unique identifier in the range0 : : : n� 1,

represented bylogn bits.
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We partition thelog n bits of the process identifiers into

two parts, called A-bits and B-bits. As much as possible, each

part has the same number of bits. For example, if each process

identifier consists of 7 bits, sayb0 throughb6, then the A-bits

are(b0; b1; b2; b3) and the B-bits are(b4; b5; b6).
The A-bits can haveumax distinct values, 0 throughumax � 1, and the B-bits can havevmax distinct values,

0 throughvmax � 1. Note that bothumax and vmax areO(pn).
Consider aumax � vmax grid, where each element

corresponds to a distinct process in the network. Specifically,

an element(u; v) in this grid corresponds to the process whose

A-bits has the valueu and whose B-bits has the valuev. We

refer to this process asp(u; v).
We specify two types of symmetric keys, called grid keys

and direct keys, for the different elements in the grid, accord-

ing to the following two rules.

i) For each grid element(u; v), specify a randomgrid key

denotedg(u; v).
ii) For each pair of grid elements(u; v) and(u0; v0), whereu = u0 or v = v0, specify a randomdirect key denotedd(u; v)(u0; v0). Note that the direct keyd(u; v)(u0; v0)

can also be denoted byd(u0; v0)(u; v), since the order

of the two pairs(u; v) and (u0; v0) is immaterial in the

name of a direct key.

The specified grid and direct keys are assigned to the system

processes as follows.

a) Each processp(u; v) is assigned a copy of every grid

key of the formg(u; v0) and a copy of every grid key

of the form g(u0; v). Thus each process is assigned

approximately(umax+ vmax) grid keys.

b) Each processp(u; v) is also assigned a copy of every

direct key of the formd(u; v)(u; v0) and a copy of every

direct key of the formd(u; v)(u0; v). Thus each process

is assigned approximately(umax+ vmax) direct keys.

It follows that the total number of keys assigned to each

process is2(umax+ vmax) keys. Since each ofumax andvmax is O(pn), the total number of keys assigned to each

process isO(4pn).
When a processp(u; v) needs to securely communicate with

another processp(u0; v0), p(u; v) uses(u; v) and (u0; v0) to

compute a non-empty subsetSK of its own keys that satisfies

the following two conditions.

1) Sharing:

Each key in the computed subsetSK is assigned to bothp(u; v) andp(u0; v0).

2) Exclusion:

No process, other thanp(u; v) andp(u0; v0) is assigned

all the keys in the computed subsetSK.

After computing the subsetSK, processp(u; v) applies an

exclusive-OR on the keys inSK in order to compute a single

shared key thatp(u; v) can use to communicate securely withp(u0; v0). Processp(u0; v0) also computes the same subsetSK
and applies an exclusive-OR on the keys inSK in order

to compute a single shared key thatp(u0; v0) can use to

communicate securely withp(u; v).
The algorithm that each ofp(u; v) and p(u0; v0) use to

compute the subsetSK is shown in Figure1.

Theorem 1: The key subsetSK computed by Algorithm

1 satisfies the two conditions of sharing and exclusion

Proof: Assume that processp(u; v) needs to communicate

securely with processp(u0; v0) and so it uses Algorithm 1 to

compute setSK of shared keys betweenp(u; v) andp(u0; v0).
There are three cases to consider.� Case 1 (u 6= u0 andv 6= v0) :

In this case,SK = fg(u; v0); g(u0; v)g. Both p(u; v)
andp(u0; v0) are assigned the two grid keys inSK and

no other process is assigned both these keys. Thus, the

computedSK satisfies the two conditions of sharing and

exclusion.� Case 2 (u 6= u0 andv = v0) :

In this case,SK = fd(u; v)(u0; v)g. Both p(u; v) andp(u0; v0) are assigned the direct key inSK and no other

process is assigned this key. Thus, the computedSK
satisfies the two conditions of sharing and exclusion.� Case 3 (u = u0 andv 6= v0) :

In this case,SK = fd(u; v)(u; v0)g. Both p(u; v) andp(u0; v0) are assigned the direct key inSK and no other

process is assigned this key. Thus, the computedSK
satisfies the two conditions of sharing and exclusion.

III. A T HREE-GRID PROTOCOL

In this section, we describe a second protocol for assigning

symmetric keys to each process in a network ofn processes.

In this new protocol, we partition thelog n bits of process

identifiers into three parts, called A-bits, B-bits, and C-bits. As

much as possible, each part has the same number of bits. For

example, if each process identifier consists of 7 bits, namelyb0 throughb6, then the A-bits are(b0; b1; b2), the B-bits are(b3; b4), and the C-bits are(b5; b6).
The A-bits haveumax distinct values, the B-bits havevmax distinct values, and the C-bits havewmax distinct
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1 . I n i t i a l l y , SK i s empty .

2 . if u 6= u0 and v 6= v0 !
add t h e two g r i d keys ,g(u; v0) and g(u0; v) t o SK

[ ] u 6= u0 and v = v0 !
add t h e d i r e c t keyd(u; v)(u0; v) t o SK

[ ] u = u0 and v 6= v0 !
add t h e d i r e c t keyd(u; v)(u; v0) t o SK

[ ] u = u0 and v 6= v0 ! / i m p o s s i b l e
s k i p

fi

Fig. 1. Algorithm 1 for Selecting Keys

figure

values. Note that each of the valuesumax; vmax andwmax
is O( 3pn).

In this protocol, we construct three grids called AB-grid,

AC-grid and BC-grid:� The AB-grid hasumax� vmax elements.� The AC-grid hasumax� wmax elements.� The BC-grid hasvmax� wmax elements.

Each element(u; v) in the AB-grid corresponds to the set

of all processes where the A-bits have the value u and where

the B-bits have the value v. Thus, each element (u,v) in the

AB-grid corresponds to the set of processes:p(u; v; 0); p(u; v; 1); : : : ; p(u; v; wmax� 1)
Similarly, element(u;w) in the AC-grid corresponds to the

set of processes:p(u; 0; w); p(u; 1; w); : : : ; p(u; vmax � 1; w). Also, element(v; w) in the BC-grid corresponds to the set of processes:p(0; v; w); p(1; v; w); : : : ; p(umax� 1; v; w).
It follows that each processp(u; v; w) corresponds to three

elements:(u; v) in the AB-grid, (u;w) in the AC-grid and(v; w) in the BC-grid.

Grid keys and direct keys are specified for the elements of

each of the three grids. For example, keys are specified for the

elements in the AB-grid according to the following two rules:

i) For each element(u; v) in the AB-grid, specify a random

grid key denoted AB-g(u; v).
ii) For each pair of elements(u; v) and(u0; v0), whereu =u0 or v = v0, in the AB-grid, specify a randomdirect

key denoted AB-d(u; v)(u0; v0).
In the same manner, grid and direct keys are specified for the

elements of the AC-grid and for the elements of the BC-grid.

Note that the grid and direct keys specified for the elements of

the AC-grid are denoted AC-g(u;w) and AC-d(u;w)(u0; w0),

respectively. Also, the grid and direct keys specified for the

elements of the BC-grid are denoted BC-g(u;w) and BC-d(u;w)(u0; w0), respectively.

The specified grid and direct keys are assigned to the system

process as follows:

a) Each processp(u; v; w) is assigned a copy of every grid

key of one of the following six forms:

AB-g(u; v0); AB-g(u0; v);
AC-g(u;w0); AC-g(u0; w);
BC-g(v; w0); BC-g(v0; w)

Thus, each process is assigned2(umax + vmax +wmax) grid keys.

b) Each processp(u; v; w) is assigned a copy of every

direct key of the forms:

AB-d(u; v)(u; v0); AB-d(u; v)(u0; v);
AC-d(u;w)(u;w0); AC-d(u;w)(u0; w);
BC-d(v; w)(v; w0); BC-d(v; w)(v0; w)

Thus, each process is assigned2(umax + vmax +wmax) direct keys.

Since each ofumax; vmax, andwmax is O( 3pn), the total

number of keys assigned to each process isO(12 3pn).
When a processp(u; v; w) needs to securely communicate

with another processp(u0; v0; w0) to compute a nonempty

subsetSK of its own keys that satisfies the following two

conditions.

1) Sharing:

Each key in the computed subsetSK is assigned to bothp(u; v; w) andp(u0; v0; w0).
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2) Exclusion:

No process, other thanp(u; v; w) and p(u0; v0; w0), is

assigned all the keys in the computed subsetSK.

After computing the subsetSK, processp(u; v; w) applies

an exclusive-OR on the keys inSK in order to compute

a single shared key thatp(u; v; w) can use to communicate

securely withp(u0; v0; w0). Processp(u0; v0; w0) also computes

the same subsetSK and applies an exclusive-OR on the

keys in SK in order to compute a single shared key thatp(u0; v0; w0) can use to communicate securely withp(u; v; w).
The algorithm that each ofp(u; v; w) andp(u0; v0; w0) use

to compute the subsetSK is shown in Figure2.

From this algorithm, the number of keys in the computed

subsetSK depends on(u; v; w) and(u0; v0; w0). For example,SK has the maximum number of keys, six, whenu 6= u0; v 6=v0 andw 6= w0.
Theorem 2: The key subsetSK computed by Algorithm

2 satisfies the two conditions of sharing and exclusion

Proof: The proof of this theorem is similar to that of Theo-

rem 1

IV. A G ENERAL MULTI -GRID PROTOCOL

In this section, we generalize the protocol in the previous

section (where the bits of the process identifiers are partitioned

into three parts) into a protocol, where the bits of the process

identifiers are partitioned intok parts, A0-bits, A1-bits,: : :Ak�1-bits. As for the protocol in the previous section, these

parts have equal number of bits, as much as possible.

For everyi; 0 � i < k, the Ai-bits haveumaxi distinct

values, 0 throughumaxi�1. Note that eachumaxi isO( kpn).
In this protocol, we construct

�k2� grids. Each grid is calledAij -grid, wherei is in the range0 : : : k� 2, j is in the range1 : : : k � 1 and i < j. EachAij -grid hasumaxi � umaxj
elements.

Each element(ui; uj) in an Aij -grid corresponds to the

set of all processes where theAi-bits have the valueui,
and where theAj -bits have the valueuj . Each processp(u0; u1; : : : ; uk�1) corresponds to

�k2� elements: element(u0; u1) in the A01-grid, element(u0; u2) in the A02-grid,: : :, and element(uk�2; uk�1) in theA(k�2)(k�1)-grid.

Grid and direct keys are specified for the elements of everyAij -grid according to the following two rules.

i) For each element(ui; uj) in the Aij-grid, specify a

randomgrid key denotedAij -g(ui; uj).
ii) For each pair of elements(ui; uj) and (u0i; u0j), whereui = u0i or uj = u0j , in theAij-grid, specify a random

direct key denotedAij -d(ui; uj)(u0i; u0j).

The specified grid and direct keys are assigned to the system

processes as follows.

a) Each processp(u0; : : : ; uk�1) is assigned a copy of

every grid key of one of the following two formsAij -g(ui; u0j) and Aij -g(u0i; uj). Thus each process is

assigned(k � 1)(umax0 + umax1 + : : : + umaxk�1)
grid keys.

b) Each processp(u0; : : : ; uk�1) is assigned a copy of

every direct key of one of the following two forms.Aij-d(ui; uj)(ui; u0j) and Aij -d(ui; uj)(u0i; uj) Thus, each

process is assigned(k � 1)(umax0 + umax1 + : : : +umaxk�1) direct keys.

Since eachumaxi is O( kpn), the total number of keys

assigned to each process isO(2k(k � 1) kpn).
When a processp(u0; : : : ; uk�1) needs to securely commu-

nicate with another processp(u00; : : : ; u0k�1), p(u0; : : : ; uk�1)
computes a non-empty subsetSK of its own keys that satisfies

the following two conditions.

1) Sharing:

Each key inSK is assigned to bothp(u0; : : : ; uk�1)
andp(u00; : : : ; u0k�1)

2) Exclusion:

No process, other than p(u0; : : : ; uk�1) andp(u00; : : : ; u0k�1) is assigned all the keys inSK.

After computingSK, processp(u0; : : : ; uk�1) applies an

exclusive-OR on the keys inSK in order to compute a single

shared key thatp(u0; : : : ; uk�1) can use to communicate

securely withp(u00; : : : ;u0k�1). Processp(u00; : : : ; u0k�1) also computes the same sub-

set SK and applies an exclusive-OR on the keys inSK in

order to compute a single shared key thatp(u00; : : : ; u0k�1) can

use to communicate securely withp(u0; : : : ; uk�1).
The algorithm that each of p(u0; : : : ; uk�1) andp(u00; : : : ; u0k�1) use to compute the subsetSK is shown in

Figure3.

The number of keys in the computed subset SK depends on(u0; : : : ; uk�1) and(u00; : : : ; u0k�1). For example,SK has the

maximum number of keys,k(k � 1), whenui 6= u0i for everyi = 0; : : : ; k � 1.

Theorem 3: The key subsetSK computed by Algorithm

3 satisfies the two conditions of sharing and exclusion

Proof: The proof of this theorem is similar to that of Theo-

rem 1

V. THE KEY GRID PROTOCOL FAMILY

In the previous sections, we described a family of protocols

for assigning symmetric keys ton processes so that every

181



1 . I n i t i a l l y , SK i s empty .

2 . Use (u; v) , (u0; v0) , and t h e keys s p e c i f i e d f o r t h e e lemen ts
of t h e AB�g r i d t o add some keys t o SK as f o l l o w s :

if u 6= u0 and v 6= v0 !
add t h e two g r i d keys , AB�g(u; v0) and AB�g(u0; v) t o SK

[ ] u 6= u0 and v = v0 !
add t h e d i r e c t key AB�d(u; v)(u0; v) t o SK

[ ] u = u0 and v 6= v0 !
add t h e d i r e c t key AB�d(u; v)(u; v0) t o SK

[ ] u = u0 and v 6= v0 !
add t h e d i r e c t key AB�d(u; v)(u; v) t o SK

fi

3 . Repeat S tep 2 , bu t t h i s t ime use(u;w) , (u0; w0) , and t h e keys
s p e c i f i e d f o r t h e e lemen ts of t h e AC�g r i d t o add more keys t o SK .

4 . Repeat S tep 2 , bu t t h i s t ime use(v; w) , (v0; w0) , and t h e keys
s p e c i f i e d f o r t h e e lemen ts of t h e BC�g r i d t o add more keys t o SK .

Fig. 2. Algorithm 2 for Selecting Keys

figure

1 . I n i t i a l l y , SK i s empty .

2 . For each Aij�g r i d do
if ui 6= u0i and uj 6= u0j !

add t h e two g r i d keys ,Aij�g(ui; u0j) and Aij�g(u0i; uj) t o SK
[ ] ui 6= u0i and uj = u0j !

add t h e d i r e c t keyAij�d(ui; uj)(u0i; uj) t o SK
[ ] ui = u0i and uj 6= u0j !

add t h e d i r e c t keyAij�d(ui; uj)(ui; u0j) t o SK
[ ] ui = u0i and uj = u0j !

add t h e d i r e c t keyAij�d(ui; uj)(ui; uj) t o SK
fi

Fig. 3. Algorithm 3 for Selecting Keys

figure

pair of processes can communicate securely, using the key

assigned to the process pair. Thek-th protocol in this family is

distinguished by partitioning the process identifiers intok parts

of almost equal number of bits, wherek = 1; : : : ; logn. The

protocol wherek = 2 is described in SectionII , the protocol

where k = 3 is described in SectionIII , and the protocol

wherek has any value in the range2 : : : logn is described in

SectionIV.

In this section, we focus our attention on the first protocol,

wherek = 1, and on the last protocol, wherek = logn, in

the protocol family .

In the first protocol in our protocol family, each process

identifier is partitioned into one part oflog n bits. In other

words, each process is identified asp(u), whereu = 0; : : : ; n�1. In this case, each processp(u) corresponds to elementu in

a one-dimensional grid.

For each pairu and u0 of distinct elements in the one-

dimensional grid, specify direct keyd(u)(u0). (Note that no

grid key is specified for each element in the one-dimensional

grid.)

Assign to each processp(u), every direct key of the formd(u)(u0). Thus each process is assigned(n� 1) direct keys.

When a processp(u) needs to communicate securely with

another processp(u0), p(u) uses the direct keyd(u)(u0). Note

182



that the direct keyd(u)(u0) is assigned to the two processesp(u) andp(u0) but not to any other process, and sod(u)(u0)
satisfies the two conditions of sharing and exclusion.

In the last protocol in our protocol family, each process

identifier is partitioned intologn parts of one bit each. Thus

each process is identified asp(u0; : : : ; ulogn�1). This protocol

is the one described in SectionIV, when k = logn. It

follows that this protocol has
�logn2 �

grids. Also, each process

is assignedO(2 logn(logn � 1) lognpn) = O(4 log2 n) keys.

Moreover, subsetSK has at mostlogn(logn� 1) keys.

Table I summarizes the results of the different protocols in

the protocol family. This table shows that our protocol family

exhibits a trade-off between two important parameters: the

number of keys assigned to each process and the maximum

number of keys in the subsetSK. (Note that the first parameter

measures the size of storage needed to store the assigned keys

in each process. The second parameter measures the length

of time needed by each process to compute the key that

this process can use to communicate securely with another

process.) If the value ofk is small, say 1, 2, or 3, then the

number of keys assigned to each process is relatively large and

the maximum number of keys inSK is relatively small. On

the other hand, if the value ofk is large, saylogn, then the

number of keys assigned to each process is relatively small,

but the number of keys inSK is relatively large.

VI. T HE LOWER BOUND

The last protocol in our protocol family assigns a small

number of keys, namelyO(4 log2 n) keys, to each of then
processes. This observation suggests the following important

question: What is the smallest number of keys that need to

be assigned to each process in order that each process can

communicate securely with each other process? In this section

we show that the answer to this question isO(logn) keys. This

indicates that the last protocol in our protocol family is not

far from being optimal in this regard.

Theorem 4: In a a network ofn processes, each process

needs to be assigned at leastO(logn) symmetric keys in order

that each process is able to communicate securely with each

other process in the network.

Proof: Assume that each processp in this network is assignedx keys. Processp needs to use a different non-empty subset

of its x keys to communicate securely with each other process

in the network. Because there are2x � 1 non-empty subsets

of the set ofx keys, and processp needs to communicate

securely with(n� 1) processes, we have2x � 1 � n� 1

Thus,x � logn
Theorem4 establishes a lower bound on the number of

keys that need to be assigned to each process in a network ofn processes so that each process can communicate securely

with each other process in the network. In the remainder of

this section, we show that this lower bound is tight by proving

that it is possible to assignO(logn) keys to each process in the

network and still allow each process to communicate securely

with each other process in the network.

Consider the case where12 logn distinct keys are to be

distributed randomly amongn processes in a network, and

assume that each process is assigned9 logn distinct keys. In

this case, each two distinct processes are assigned at least6 logn keys in common. Because the keys are assigned ran-

domly to the network processes, the resulting key assignment

can be either secure or insecure. In what follows we show that

the probability that the resulting key assignment is insecure is

strictly less than one. This implies that the probability that the

resulting key assignment is secure is strictly more than zero.

probability that the resulting key assignment is insecure

= probability that there exists three distinct processesp, p0
andp00 such that all the keys that are assigned to bothp andp0 (and so can be used byp andp0 to communicate securely

with one another) are also assigned top00.� �n2�(n� 2):XY< n32 XY
Note that the factor

�n2� is the number of choices of the

distinct processesp andp0 from the set ofn processes in the

network. Factor(n � 2) is the number of choices of processp00 that is distinct from bothp andp0. FactorX is the number

of ways of assigning9 logn keys to processp00 under the

assumption that6 logn of those keys are those shared keys

betweenp andp0. Thus,X = �6 logn3 logn�. FactorY is the number

of ways of assigning9 logn keys to processp00. ThusY =�12 log n9 logn �. Therefore,

probability that the resulting key assignment is insecure< n32 �6 logn3 logn��12 logn9 logn �= n32 (6 logn)(6 logn� 1) : : : (3 logn+ 1)(12 logn)(12 logn� 1) : : : (9 logn+ 1)< n32 (6 logn)(6 logn) : : : (6 logn)(12 logn)(12 logn) : : : (12 logn)| {z }
3 logn times
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k-th Protocol, wherek = 1 2 3 k log n
Number of Grids 1, one-dimension

�22� �32� �k2� �log n2 �
Number of keys assigned to a process n - 1 4 2pn 12 3pn 2k(k � 1) kpn 4 log2 n

Max number of keys in SK 1 2 6 k(k � 1) log n(log n� 1)
TABLE I

SUMMARY OF RESULTS FOR THE PROTOCOL FAMILY

table = n32 �12�3 logn= 12< 1
This completes our proof of the following theorem.

Theorem 5: Given a network of n processes and a set of12 logn distinct keys, there is a protocol for assigning9 logn
distinct keys from the given set of keys to each process in the

network such that each process can use its assigned keys to

communicate securely with each process in the network

Note that our proof of Theorem5 is non-constructive: it

proves the existence of a secure protocol that assignsO(logn)
keys to each process in the network, but it does not specify

how to design such a protocol. This leaves the last protocol in

our protocol family, which assignsO(4 log2 n) keys to each

process in the network as the known most efficient protocol

for securely assigning keys.

VII. A NALYSIS OF COLLUSION

The security of each of our protocols can be threatened and

attacked by ”collusion” among some of the processes in the

protocol. In particular, the colluding processes can pool their

grid keys together (but not their direct keys), and use these

pooled keys to listen on communications between some non-

colluding processes.

For example, consider a network that consists ofn = 16
processes and assume that the grid and direct keys are assigned

to each process in the network according to the one-grid

protocol discussed in SectionII . Thus, the grid keysg(0; 2) is

assigned to processp(0; 0) while grid keyg(1; 3) is assigned

to processp(1; 1). Now if the two processesp(0; 0) andp(1; 1)
collude, then they can listen on the communication between

the two processesp(0; 3) andp(1; 2), which are not colluding.

Note that the colluding processes do not pool their direct

keys together since these keys cannot be used by the colluding

processes to listen on any communication between any two

non-colluding processes.

Note also that the non-zero numberr of colluding processes

in a network is in the range2 � r � n� 2
wheren is the total number of processes in the network.

Recently, Kulkarni and Bezawada [9] have identified a met-

ric for measuring the resistance of a key assignment protocol

to collusion. This metric, called ther-collusion resistance, is

defined as follows.

r-collusion resistance= limn!1 YZ
wherer is the number of colluding processes in the protocol,n is the total number of processes in the protocol,Y is the

number of communications that are encrypted using keys other

than those pooled together by the colluding processes, andZ is the total number of communications in the protocol.

In our context,Y = the number of communications that are

encrypted using direct keys + the number of communications

that are encrypted using grid keys other than those assigned

to the colluding processes, andZ = n(n�1)2 .

Note that the value of ther-collusion resistance for any

protocol is in the closed interval[0; 1℄. If the r-collusion

resistance for a protocol is 0, then this protocol is said to

offer no resistance tor colluding processes. If ther-collusion

resistance for a protocol is1 then this protocol is said to

offer full resistance tor colluding processes. Otherwise, the

protocol is said to offer a limited resistance tor colluding

processes.

The next three theorems specify ther-collusion resistance

for each protocol in our family.

Theorem 6: For the first protocol in our protocol family,

and for any value ofr in the range2; : : : ; n� 2,r-collusion resistance= 1
184
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Fig. 4. Grid keys pooled by colluding processes

figure

Proof: All communications in the first protocol are encrypted

using direct keys. ThusY = n(n�1)2 , and soY=Z = 1, and

the r-collusion resistance = 1.

Theorem 7: For thek-th protocol, where2 � k � logn,

in our protocol family, ifr � kpn2 , thenr-collusion resistance� 116
Proof: In the k-th protocol, where2 � k � logn, each

process is identified asp(u0; : : : uk�1), where eachui is in

the range0; : : : ( kpn� 1).
The first grid in this protocol is denotedA01-grid. Assume

that( kpn2 ) of the processes collude. For the colluding processes

to be assigned and pool together the maximum number of

grid keys from theA01-grid, no two colluding processes can

be on the same row or on the same column in theA01-grid.

Thus, without loss of generality, letu0 = 0 andu1 = 0 for

the 0th colluding process, letu0 = 1 andu1 = 1 for the 1st
colluding process, and so on. TheA01-grid can be represented

by Figure4.

In Figure4, all the grid keys in the dashed area are assigned

to the colluding processes and can be pooled together. On

the other hand all the grid keys in the undashed area are

not assigned to any of the colluding processes. Then, if

two uncolluding processes correspond to two elements in the

undashed area, then the communication between these two

processes cannot be listened on by the colluding processes.

Because the undashed area is one fourth of the total area of

theA01-grid, it follows thatY � (n=4)(n=4�1)2 and sor-collusion resistance= limn!1 YZ

� limn!1 (n=4)(n=4� 1)n(n� 1)= 116
Theorem 8: For the k-th protocol, where k is a constant

that does not depend on, in our protocol family, ifr � kpn,

then

r-collusion resistance= 0
Proof: The proof of this theorem is similar to that of Theo-

rem 7

VIII. C ONCLUDING REMARKS

We presented a family oflogn protocols for efficiently and

securely assigning symmetric keys to then processes in a

network. Unfortunately, except for the first protocol, all other

protocols in our protocol family are vulnerable to collusion

attacks. Thek-th protocol,1 � k � logn, in the protocol

family assignsO( kpn) symmetric keys to each process in

the network, but the security of most communications is

compromised ifkpn processes in the network decide to collude

(and pool their grid keys together).

Deciding which protocol in our protocol family one should

use to assign symmetric keys to the processes in a network

depends on what one considers more important: efficiency

or resistance to collusion. If one considers efficiency more

important (than resistance to collusion), then one should use

a k-th protocol, wherek is relatively large say(logn) or(logn � 1) . On the other hand, if one considers resistance

to collusion more important (than efficiency), then one should

use ak-th protocol, wherek is relatively small say 1,2,3, or

4.

In this paper, we showed, in a non-constructive manner, that

there is a protocol that assigns mereO(logn) keys to each of

then processes in the network (and still allows each process to

communicate securely with each other process in the network).

So far, we are unable to design such a protocol, but our search

for this ”amazing protocol” continues.
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