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Abstract. We present a general implementation for providing the prop-
erties of digital signatures using MACs in a system consisting of any
number of untrusted clients and n servers, up to f of which are Byzan-
tine. At the heart of the implementation is a novel matrix signature
that captures the collective knowledge of the servers about the authen-
ticity of a message. Matrix signatures can be generated or verified by
the servers in response to client requests and they can be transmitted
and exchanged between clients independently of the servers. The imple-
mentation requires that no more than one third of the servers be faulty,
which we show to be optimal. The implementation places no synchrony
requirements on the communication and only require fair channels be-
tween clients and servers.

1 Introduction

Developing dependable distributed computing protocols is a complex task. Prim-
itives that provide strong guarantees can help in dealing with this complexity
and often result in protocols that are simpler to design, reason about, and prove
correct. Digital signatures are a case in point: by guaranteeing, for example, that
the recipient of a signed message will be able to prove to a disinterested third
party that the signer did indeed sign the message (non repudiation), they can
discourage fraudulent behavior and hold malicious signers to their responsibil-
ities. Weaker primitives such as message authentication codes (MACs) do not
provide this desirable property.

MACs, however, offer other attractive theoretical and practical features that
digital signatures lack. First, in a system in which no principal is trusted, it is
possible to implement MACs that provide unconditional security—digital sig-
natures instead are only secure under the assumption that one-way functions
exist [1], which, in practical implementations, translates in turn to a series of
unproven assumptions about the difficulty of factoring, the difficulty of comput-
ing discrete logarithms, or both. Second, certain MAC implementations (though
not the ones that guarantee unconditional security!) can be three orders of mag-
nitude faster to generate and verify than digital signatures [2].
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Given these rather dramatic tradeoffs, it is natural to wonder whether, under
different assumptions about the principals, it is possible to get the best of both
worlds: a MAC-based implementation of digital-signatures. It is relatively easy
to show that such an implementation exists in systems with a specific trusted
entity [3]—in the absence of a specific trusted entity, however, the answer is
unknown.

The few successful attempts to date at replacing digital signatures with MACs
[2,4,5,6,7] have produced solutions specific only to the particular protocols for
which the implementation was being sought—these MAC-based, signature-free
protocols do not offer, nor seek to offer, a generic mechanism for transform-
ing an arbitrary protocol based on digital signatures into one that uses MACs.
Further, these new protocols tend to be significantly less intuitive than their
signature-based counterparts, so much so that their presentation is often con-
fined to obscure technical reports [2,8].

In this paper we study the possibility of implementing digital signatures using
MACs in a system consisting of any number of untrusted clients and n servers,
up to f of which can be Byzantine. We show that, when n > 3f , there exists
a general implementation of digital signatures using MACs for asynchronous
systems with fair channels. We also show that such an implementation is not
possible if n ≤ 3f—even if the network is synchronous and reliable.

At the heart of the implementation is a novel matrix signature that captures
the collective knowledge of the servers about the authenticity of a message. Ma-
trix signatures can be generated or verified by the servers in response to client
requests and they can be transmitted and exchanged between clients indepen-
dently of the servers.

Matrix signatures do not qualify as unique signature schemes [9]. Depending
on the behavior of the Byzantine servers and message delivery delays, the same
message signed at different times can produce different signatures, all of which
are admissible. Unique signature schemes have a stronger requirement: for every
message, there is a unique admissible signature. We show that unique signature
schemes can also be implemented using MACs, but that any such implementation
requires an exponential number of MACs if f is a constant fraction of n.

In summary, we make four main contributions:

– We introduce matrix signatures, a general, protocol-agnostic MAC-based
signature scheme that provides properties, such as non-repudiation, that so
far have been reserved to digital signatures.

– We present an optimally resilient implementation of a signing and verification
service for matrix signatures. We prove its correctness under fairly weak
system assumptions (asynchronous communication and fair channels) as long
as at most one third of the servers are arbitrarily faulty.

– We show that no MAC based signature and verification service can be imple-
mented using fewer servers, even under stronger assumptions (synchronous
communication and reliable channels).

– We provide an implementation of unique signatures, and show a bound on
the number of MACs required to implement them.
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2 Related Work

Matrix signatures differ fundamentally from earlier attempts at using MACs in
lieu of signatures by offering a general, protocol-agnostic translation mechanism.

Recent work on practical Byzantine fault tolerant (BFT) state machine repli-
cation [2,4,5,6] has highlighted the performance opportunities offered by substi-
tuting MACs for digital signatures. These papers follow a similar pattern: they
first present a relatively simple protocol based on digital signatures and then
remove them in favor of MACs to achieve the desired performance. These trans-
lations, however, are protocol specific, produce protocols that are significantly
different from the original—with proofs of correctness that require understanding
on their own— and, with the exception of [2], are incomplete.

[10] addresses the problem of allowing Byzantine readers to perform a write
back without using digital signatures; however, it uses secret-sharing and relies
on having a trusted writer.

Srikanth and Toueg [7] consider the problem of implementing authenticated
broadcast in a system where processes are subject to Byzantine failures. Their
implementation is applicable only to a closed system of n > 3f processes, with
authenticated pairwise communication between them. They do not consider the
general problem of implementing signatures: in their protocol, given a message
one cannot tell if it was “signed” unless one goes through the history of all
messages ever received to determine whether the message was broadcast—an
impractical approach if signed messages are persistent and storage is limited. In
contrast, we provide signing and verification primitives for an open asynchronous
system with any number of clients.

Mechanisms based on unproven number theoretic assumptions, are known to
implement digital signatures using local computation without requiring any com-
munication steps [11,12]. Some also provide unconditional security [13]; but, they
bound the number of possible verifiers and allow for a small probability that a ver-
ifier may be unable to convince other verifiers that the message was signed.

If there is a trusted entity in the system signatures can be implemented over
authenticated channels (or MACs) [3]. In the absence of a known trusted princi-
pal, implementing digital signatures locally requires one-way functions [1]. Our
results show that even with partial trust in the system, implementing digital
signatures is possible without requiring one-way functions.

3 MACs and Digital Signatures

Digital Signatures and MACs allow a message recipient to establish the authen-
ticity of a message. Unlike MACs, digital signatures also allow a message recipient
to prove this authenticity to a disinterested third party [14]—non repudiation.

3.1 Digital Signatures

A signature scheme over a set of signers S and a set of verifiers V consists of a
signing procedure SS,V and a verification procedure VS,V :
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SS,V : Σ
∗ �→ Σ

∗ VS,V : Σ
∗ × Σ

∗ �→ Boolean × Σ
∗

The signing procedure SS,V is used to sign a message. It outputs a signature,
which can convince the verifier that the message was signed.

The set S contains all the processes that can invoke the signing procedure.
The set V contains all processes that may verify a signature in the signature
scheme.

The verification procedure, VS,V , takes as input a message and a signature
and outputs two values. The first value is a boolean and indicates whether the
verification procedure accepts or rejects the signature. The second value is a
signature, whose role needs some explaining.

The signature schemes we define guarantee that (i) a verifier always accepts
signatures that are generated by invoking the signing procedure and that (ii) any
message whose signature is accepted was, at some point, signed by a member of S
by invoking the signing procedure although the signature that the verifier accepts
may not be the one produced by the signing procedure. We call these second type
of signatures derivative.

In traditional, non-distributed, implementations of signatures, one does not
expect that a verifier be presented with a derivative signature that was not
explicitly generated by the signing procedure. In a distributed implementation,
and for reasons that will become clear in Section 6, when we discuss the actions
that Byzantine nodes can take to disrupt a MAC-based signature scheme, the
existence of derivative signatures is the norm rather than the exception, and one
needs to allow them in a definition of signature schemes. Furthermore, because
the non-deterministic delays and Byzantine behavior of faulty servers, there exist
derivative signatures that may nondeterministically be accepted or rejected by
the verification procedure. It may then be impossible for a verifier who accepted
the signature to prove to another the authenticity of a message.

So, from the perspective of ensuring non repudiation, derivative signatures
present a challenge. To address this challenge, we require the verification proce-
dure, every time a verifier v accepts a signed message m, to produce as output
a new derivative signature that, by construction, is guaranteed to be accepted
by all verifiers. This new signature can then be used by v to authenticate the
sender of m to all other verifiers. Note that, if the first output value produced
by the verification procedure is false, the second output value is irrelevant.

Digital signature schemes are required to satisfy the following properties:

Consistency. A signature produced by the signing procedure is accepted by the
verification procedure.

SS,V (msg) = σ ⇒ VS,V (msg, σ) = (true, σ′)

Validity. A signature for a message m that is accepted by the verification pro-
cedure cannot be generated unless a member of S has invoked the signing pro-
cedure.

VS,V (msg, σ) = (true, σ′) ⇒ SS,V (msg) was invoked
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Verifiability. If a signature is accepted by the verification procedure for a mes-
sage m, then the verifier can produce a signature for m that is guaranteed to be
accepted by the verification procedure.

VS,V (msg, σ) = (true, σ′) ⇒ VS,V (msg, σ′) = (true, σ”)

Verifiability is recursively defined; it ensures non-repudiation. If the verification
procedure accepts a signature for a given message, then it outputs a signature
that is accepted by the verification procedure for the same message. In turn, the
output signature can be used to obtain another signature that will be accepted
by the verification procedure and so on.

Any digital signature scheme that meets these requirements provides the gen-
eral properties expected of signatures. Consistency and validity provide authen-
tication; verifiability provides non-repudiation.
Unique Signature Schemes. Unique signature schemes are signature schemes
for which only one signature can be accepted by the verification procedure for a
given message. If (SS,V ,VS,V ) is a unique signature scheme, then, in addition to
consistency, validity and verifiability, it satisfies:

V(msg, σ) = (true, σproof) ∧ V(msg, σ′) = (true, σ′
proof) ⇒ σ = σ′

It follows from the definition that σproof = σ′
proof = σ = σ′, implying that, for

unique signatures, the signature produced in output by the verification procedure
is redundant . It also follows from the definition and the consistency requirement
that unique signatures have deterministic signing procedures.

3.2 Message Authentication Codes

MACs are used to implement authentication between processes. A message au-
thentication scheme consists of a signing procedure SU and a verifying procedure
VU .

SU : Σ∗ �→ Σ∗ VU : Σ∗ × Σ∗ �→ Boolean

The signing procedure SU takes a message and generates a MAC for that mes-
sage. The verification procedure VU takes a message along with a MAC and
checks if the MAC is valid for that message. For a given MAC scheme, the set
U contains all processes that can generate and verify MACs for the scheme.

MACs are required to ensure authentication, but not non-repudiation. For-
mally, they are required to satisfy:

Consistency. A MAC generated by the signing procedure will be accepted by
the verifying procedure.

SU (msg) = μ ⇒ VU (msg,μ) = true

Validity. A MAC for a message m that is accepted by the verification procedure
cannot be generated unless a member of U has invoked the signing procedure.

VU (msg, μ) = true ⇒ SU (msg) was invoked
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3.3 Discussion

Keys, Signatures, and MACs. Formal definitions of signature schemes typically
include signing and verification keys. In our work we omit the keys for simplicity
and assume they are implicitly captured in SS,V and VS,V . In our setting, S is
be the set of processes that know the key needed to sign and V is the set of
processes that know the key needed to verify.

MACs are also typically defined with reference to a symmetric secret key K
that is used to generate and verify MACs. In our setting, processes that know
K are members of the set U of signers and verifiers. In proving a lower bound
on the number of MAC schemes needed to implement unique signatures, we find
it convenient to identify a MAC scheme with the key K it uses. In this case,
we distinguish between the name of the key, K, and the value of the key k as
different schemes might use the same key value.

Signers and Verifiers. Since we will be considering Byzantine failures of servers
and clients (participants), the composition of the sets S or U for a given scheme
might change because a participant can give the secret signing key to another
participant. To simplify the exposition, we assume that the sets of signers (ver-
ifiers) include any participant that can at some point sign (verify) a message
according to the scheme.

Semantics. Formalisms for MACs and digital signatures typically express their
properties in terms of probabilities that the schemes can fail. For schemes that
rely on unproven assumptions, restrictions are placed on the computational pow-
ers of the adversary. In this paper we are only interested in implementing sig-
nature using a finite number of black box MAC implementations. We state our
requirement in terms of properties of the executions that always hold without
reference to probabilities or adversary powers. This does not affect the results,
but leads to a simpler exposition.1

4 Model

The system consists of two sets of processes: a set of n server processes (also
known as replicas) and a finite set of client processes (signers and verifiers).
The set of clients and servers is called the set of participants. The identifiers of
participants are elements of a completely ordered set.

An execution of a participant consists of a sequence of events. An event can be
an internal event, a message send event or a message receive event. Two particu-
lar internal events are of special interest to us. A message signing event invokes a
1 Our implementations use only finitely many MACs, consequently the probability

of breaking our implementation can be made arbitrarily small if the probability of
breaking the underlying MAC implementations can be made arbitrarily small. Also,
our requirements restrict the set of allowable executions, which in essence place a
restriction on the computational power of the verifiers. In particular, they do not
allow a verifier to break the signature scheme by enumerating all possible signatures
and verifying them.
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signing procedure. A message verification event is associated with the invocation
of a verification procedure. In our implementations of signature schemes we only
consider communication between clients and servers to implement the signing
and the verification procedures.

Clients communicate with the servers over authenticated point-to-point chan-
nels. Inter-server communication is not required. The network is asynchronous
and fair—but, for simplicity, our algorithms are described in terms of reliable
FIFO channels, which can be easily implemented over fair channels between
correct nodes.

Each process has an internal state and follows a protocol that specifies its
initial states, the state changes, and the messages to send in response to messages
received from other processes. An arbitrary number of client processes and up to
f of the server processes can exhibit arbitrary (Byzantine) faulty behavior [15].
The remaining processes follow the protocol specification.

5 Signatures Using MACs

We first present the high level idea assuming two trusted entities in the system.
One trusted entity acts as a signing-witness and one acts as a verifying-witness.
The two witnesses share a secret-key K that is used to generate and verify MACs.

Signing a message. A signer delegates to the signing witness the task of signing
a message. This signing witness generates, using the secret key K, a MAC value
for the message m to be signed and sends the MAC value to the signer. This
MAC-signature certifies that the signer s wants to sign m. It can be presented
by a verifier to the verifying-witness to validate that s has signed m.

Verifying a signature. To verify that a MAC-signature is valid, a verifier (client)
delegates the verification task to the verifying witness. The verifying witness
computes, using the secret key K, the MAC for the message and verifies that it
is equal to the MAC presented by the verifier. If it is, the signature is accepted
otherwise, it is rejected.

Since the two witnesses are trusted and only they know the secret key K, this
scheme satisfies consistency, validity and verifiability.

6 A Distributed Signature Implementation

In an asynchronous system with n ≥ 3f +1 servers, it is possible to delegate the
tasks of the signing witness and the verifying witness to the servers. However,
achieving non-repudiation is tricky.

6.1 An Illustrative Example: Vector of MACs

Consider a scheme, for n = 3f + 1, where each server i has a secret key Ki is
used to generate/verify MACs. The “signature” is a vector of n MACs, one for
each server.
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h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

? ? ? ?
? ? ? ?

? h1,2 ? ?
? h2,2 ? ?
? ? ? ?
? ? ? ?

A Matrix-signature Valid Signature Admissible Signature

Fig. 1. Example Matrix-signatures

To sign a message, the signer contacts the servers to collect the MACs. How-
ever, due to asynchrony, it cannot collect more than (n − f) = (2f + 1) MACs.

To verify a signature, the verifier contacts the servers to determine which
MACs are correct. Since, up to f Byzantine nodes could have sent wrong values
to the signer, ensuring consistency requires that the verifier accept the “signa-
ture” even if only f + 1 MAC are accepted by the servers.

This allows the adversary to fool a non-faulty verifier into accepting a vector
that contains only one correct MAC value. If that happens, the verifier will not
be able to convince other verifiers that the message was signed.

6.2 Matrix Signatures

To deal with the difficulties raised in the illustrative example, we propose matrix
signatures. A matrix signature consists of n2 MAC values arranged in n rows
and n columns, which together captures the servers’ collective knowledge about
the authenticity of a message.

There are n signing-witness-servers and n verifying-witness-servers; both im-
plemented by the same n servers. Each MAC value in the matrix is calculated
using a secret key Ki,j shared between a signing-witness-server i and a verifying-
witness-server j.2

The ith row of the matrix-signature consists of the MACs generated by the ith

signing-witness-server. The jth column of the matrix-signature consists of the
MACs generated for the jth verifying-witness-server.

Clients can generate (or verify) a signature by contacting all the signing-
witness (or, respectively, verifying-witness) servers. The key difference with the
protocol described in the previous section is that the signature being used is a
matrix of n × n MACs as opposed to a single MAC value.

We distinguish between valid and admissible matrix signatures:

Definition 1 (Valid). A matrix-signature is valid if it has at least (f + 1)
correct MAC values in every column.

Definition 2 (Admissible). A matrix-signature is said to be admissible if it
has at least one column corresponding to a non-faulty server that contains at
least (f + 1) correct MAC values.

2 Although signing-witness-server i and verifying-witness-server k are both imple-
mented by server i, for the time being, it is useful to think of them as separate
entities.
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Admissibility and validity respectively capture the necessary and sufficient con-
ditions required for a matrix-signature to be successfully verified by a non-faulty
verifier. Thus, every valid signature is admissible, but the converse does not hold.

6.3 Protocol Description

The protocol for generating and verifying matrix-signatures is shown in Figure 2.

Generating a Signature. To generate a matrix-signature, the signer s sends
the message Msg to be signed, along with its identity, to all the signing-witness-
servers over authenticated channels. Each signing-witness-server generates a row
of MACs, attesting that s signs Msg, and responds to the signer. The signer
waits to collect the MAC-rows from at least (2f + 1) signing-witness-servers to
form the matrix-signature.

The matrix-signature may contain some empty rows corresponding to the
unresponsive/slow servers. It may also contain up to f rows with incorrect MAC
values, corresponding to the faulty servers.

Verifying a Signature. To verify a matrix-signature the verifier sends (a) the
matrix-signature, (b) the message, and (c) the identity of the client claiming to
be the signer to the verifying-witness-servers. A verifying-witness-server admits
the signature only if at least (f + 1) MAC-values in the server’s column are
correct; otherwise, it rejects. Note that a non-faulty server will never reject a
valid matrix-signature.

The verifier collects responses from the servers until it either receives (2f +1)
〈ADMIT, . . .〉 responses to accept the signature, or it receives (f +1) 〈REJECT〉
responses to reject the signature as not valid.

Regenerating a valid signature. Receiving (2f +1) 〈ADMIT, . . .〉 responses does
not guarantee that the signature being verified is valid. If some of these responses
are from Byzantine nodes, the same signature could later fail the verification if
the Byzantine nodes respond differently.

Verifiability requires that that if a signature passes the verification procedure,
then the verifier gets a signature that will always pass the verification procedure.
This is accomplished by constructing a new signature, that is a valid signature.

Each witness-server acts both as a verifying-witness-server and a signing-
witness-server. Thus, when a witness-server admits a signature (as a verifying-
witness-server), it also re-generates the corresponding row of MAC-values (as
a signing-witness-server) and includes that in the response. Thus, if a verifier
collects (2f + 1) 〈ADMIT, . . .〉 responses, it receives (2f + 1) rows of MAC-
values, which forms a valid signature.

Ensuring termination. The verifier may receive (n − f) responses and still not
have enough admit responses or enough reject responses to decide. This can
happen if the signature being verified, σ, is maliciously constructed such that
some of the columns are bad. This can also happen if the signature σ is valid,
but some non-faulty servers are slow and Byzantine servers, who respond faster,
reject it.
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Signature Client-Sign (Msg Msg) {
∀i : σMsg,S [i][ ] :=⊥
send 〈SIGN, Msg, S〉 to all
do {

// Collect MAC-rows from the servers
rcv〈σi[1 . . . n]〉 from server i

σMsg,S [i][1 . . . n] := σi[1 . . . n]
} until received from ≥ 2f + 1 servers
return σMsg,S

}

(bool, Signature) Client-Verify(Msg Msg,
Signer S, Signature σ) {

∀i : σnew[i][ ] :=⊥; ∀i : resp[i] :=⊥;
send 〈VERIFY, Msg, S, σ[ ][ ]〉 to all
do {

either {
rcv 〈ADMIT, σi[1 . . . n]〉 from server i

σnew[i][1 . . . n] := σi[1 . . . n]
resp[i] := ADMIT
if ( Count(resp, ADMIT) ≥ 2f + 1 )

return (true, σnew);
} or {

rcv 〈REJECT〉 from server i

if (resp[i] =⊥) { resp[i] := REJECT }
if ( Count(resp, REJECT) ≥ f + 1 )

return (false, ⊥);
};
// If can neither decide, nor wait – Retry
if (Count(resp, ⊥) ≤ f)

send 〈VERIFY, Msg, S, σnew[ ][ ]〉 to
{ r : resp[r] �= ADMIT}

} until (false)
}

void Signing-Witness-Server(Id i) {
while(true) {

rcv 〈SIGN, Msg, S〉 from S

∀j : compute σi[j] := MAC(K i,j , S : Msg)
send 〈σi[1 . . . n]〉 to S

}
}

void Verifying-Witness-Server(Id j) {
while(true) {

rcv 〈VERIFY, Msg, S, σ〉 from V

correct cnt := |{i : σ[i][j] ==
MAC(K i,j , S : Msg)}|

if (correct cnt ≥ f + 1)
∀l : compute σj [l] := MAC(K j,l, S : Msg)
send 〈ADMIT, σj [1 . . . n]〉 to V

else

send 〈REJECT〉 to V

}
}

Fig. 2. Matrix-signatures

To ensure that the verifier gets (2f + 1) 〈ADMIT, . . .〉 responses it retries by
sending σnew, each time σnew is updated, to all the servers that have not sent
an 〈ADMIT, . . .〉 response. Eventually, it either receives (f + 1) 〈REJECT〉
responses from different servers (which guarantees that σ was not valid), or it
receives (2f + 1) 〈ADMIT, . . .〉 responses (which ensures that the regenerated
signature, σnew , is valid).

6.4 Correctness

Algorithm described in Figure 2 for matrix-signatures satisfies all the require-
ments of digital signatures and ensure that the signing/verification procedures
always terminate for n ≥ 3f + 1 [16].

Lemma 1. Matrix-signature generated by the signing procedure (Fig 2) is valid.

Lemma 2. Valid signature always passes the verification procedure.

Proof. A valid signature consists of all correct MAC-values in at least (f + 1)
rows. So, no non-faulty server will send a 〈REJECT〉 message. When all non-
faulty servers respond, the verifier will have (2f + 1) 〈ADMIT, . . .〉 messages.
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Lemma 3. If a matrix-signature passes the verification procedure for a non-
faulty verifier, then it is admissible.

Lemma 4. An adversary cannot generate an admissible signature for a message
Msg, for which the signer did not initiate the signing procedure.

Proof. Consider the first non-faulty server (say j) to generate a row of MACs
for the message Msg for the first time. If the signer has not initiated a the
signing procedure then j would generate the row of MACs only if it has received
a signature that has at least f + 1 correct MAC values in column j. At least
one of these MAC values has to correspond to a non-faulty server (say i). Ki,j

is only known to the non-faulty servers i and j, thus it is not possible that the
adversary can generate the correct MAC value.

Lemma 5. If a signature passes the verification procedure then the newly re-
constructed matrix-signature is valid.

Lemma 6. If a non-faulty verifier accepts that S has signed Msg, then it can
convince every other non-faulty verifier that S has signed Msg.

Theorem 1. The Matrix-signature scheme presented in Figure 2 satisfies con-
sistency, validity and verifiability.

Proof. Consistency follows from Lemmas 1 and 2. Validity follows from Lem-
mas 3 and 4. Verifiability follows from Lemmas 2 and 5.

Theorem 2. The signing procedure always terminates.

Theorem 3. The verification procedure always terminates.
Proof. Suppose that the verification procedure does not terminate even after
receiving responses from all the non-faulty servers. It cannot have received more
than f 〈REJECT〉 responses. Thus, it would have received at least (f + 1)
〈ADMIT, . . .〉 responses from the non-faulty servers that is accompanied with
the correct row of MACs. These (f + 1) rows of correct MACs will ensure that
the new signature σnew is Valid.

Thus all non-faulty servers that have not sent a 〈ADMIT, . . .〉 response will do
so, when the verifier retries with σnew . The verifier will eventually have (n−f) ≥
(2f + 1) 〈ADMIT, . . .〉 responses.

6.5 Discussion

Our distributed implementation of digital signatures is based on an underlying
implementation of MACs. We make no additional computational assumptions
to implement the digital signatures. However, if the underlying MAC implemen-
tation relies on some computational assumptions (e.g. collision resistant hash
functions, or assumptions about a non-adaptive adversary) then the signature
scheme realized will be secure only as long as those assumptions hold.
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7 The n ≤ 3f Case

We show that a generalized scheme to implement the properties of signatures
using MACs is not possible if n ≤ 3f . The lower bound holds for a much stronger
system model where the network is synchronous and the point-to-point channels
between the processes are authenticated and reliable.

7.1 A Stronger Model

We assume that the network is synchronous and processes communicate with
each other over authenticated and reliable point-to-point channels. We also as-
sume that processes can maintain the complete history of all messages sent and
received over these authenticated channels.

This model, without any further set-up assumptions, is strictly stronger than
the model described in Section 4. A lowerbound that holds in this stronger model
automatically holds in the weaker model (from Section 4) where the network is
asynchronous and the channels are only guaranteed to be fair.

In this model, we show that it is possible to implement MACs over authen-
ticated channels. If, in this model, signatures can be implemented using MACs
with n ≤ 3f , then they can also be implemented over authenticated channels
with n ≤ 3f . Using signatures, it is possible to implement a reliable-broadcast
channel with just n ≥ f +1 replicas [17]. So, it would be possible to implement a
reliable-broadcast channel assuming a MAC-based implementation of signatures
with n servers, where (f + 1) ≤ n ≤ 3f .

But, it is well known that implementing a reliable-broadcast channel in a syn-
chronous setting over authenticated point-to-point channels, without signatures,
requires n ≥ 3f + 1 [17]. We conclude that implementing signatures with MACs
is not possible if n ≤ 3f .

It only remains to show that MACs can be implemented in the strong model.

Lemma 7. In the strong system model, MACs can be implemented amongst any
set of servers, U , using authenticated point-to-point channels between them.

Proof. (outline) To sign a message, the sender sends the message, tagged with
the identity of set U , to all the servers in U over the authenticated point-to-point
channels. Since the network is synchronous, these messages will be delivered to all
the servers in U within the next time instance. To verify that a message is signed,
a verifier looks into the history of messages received over the authenticated
channel. The message is deemed to have been signed if and only if it was received
on the authenticated channel from the signer.

8 Unique Signatures

We provide an implementation of unique signatures when n > 3f . By Lemma 7,
it follows that the implementation is optimally resilient. Our implementation
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requires an exponential number of MAC values. We show that any implemen-
tation of unique signatures requires that an exponential number of MAC values
be generated if f is a constant fraction of n. The implementation is optimal if
n = 3f + 1; the number of MAC values it requires exactly matches the lower
bound when n = 3f + 1.

Our implementation uses unique MAC schemes. These are schemes for which
only one MAC value passes the verification procedure for a given message and
that always generate the same MAC value for a given message. Many widely
used MAC schemes are unique MAC schemes, including those that provide un-
conditional security.3

8.1 A Unique Signature Implementation

We give an overview of the implementation; detailed protocol and proofs can be
found in [16].

In our unique signature scheme, the signing procedure generates signatures
which are vectors of N =

(
n

2f+1

)
MAC values, one for each subset of 2f+1 servers.

The i’th entry in the vector of signatures can be generated (and verified) with
a key Ki that is shared by all elements of the i’th subset Gi of 2f + 1 servers,
1 ≤ i ≤ (

n
2f+1

)
. For each Ki, the MAC scheme used to generate MAC values is

common knowledge, but Ki is secret (unless divulged by some faulty server in Gi).
To sign a message, the signer sends a request to all the servers. A server

generates the MAC values for each group Gi that it belongs to and sends these
values to the signer. The signer collects responses until it receives (f+1) identical
MAC values for every group Gi. Receiving f + 1 identical responses for every
Gi is guaranteed because each Gi contains at least f + 1 correct servers. Also,
receiving (f +1) identical MAC values guarantees that the MAC value is correct
because one of the values must be from a non-faulty server.

To verify a unique signature, the verifier sends the vector of N MACs to all
the servers. The i’th entry Mi is verified by server p if p ∈ Gi and Mi is the
correct MAC value generated using Ki. A verifier accepts the signature if each
entry in the vector is correctly verified by f + 1 servers. The verifier rejects a
signature if one of its entries is rejected by f + 1 servers. Since the underlying
MAC schemes are unique and each Gi contains 2f + 1 servers, a signature is
accepted by one correct verifier if an only if it is accepted by every other correct
verifier and no other signature is accepted for a given message.

8.2 Complexity of Unique Signature Implementations

Implementing MAC-based unique signature schemes requires an exponential
number of keys. Here we outline the approach for the proof; details can be
3 For many MAC schemes the verification procedure consists of running the MAC

generation (signing) procedure on the message and comparing the resulting MAC
value with the MAC value to be verified. Since the signing procedure is typically
deterministic, only one value can pass the verification procedure.
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found in [16]. We identify the MAC schemes used in the implementation with
their secret keys and, in what follows, we refer to Ki instead of the MAC scheme
that uses Ki. We consider a general implementation that uses M secret keys.
Every key Ki is shared by a subset of the servers; this is the set of servers that
can generate and verify MAC values using Ki. We do not make any assumptions
on how a signature looks. We simply assume that the signing procedure can be
expressed as a deterministic function S(msg, k1, k2, . . . , kM ) of the message to
be signed (msg), where k1, . . . , kM are the values of the keys K1, . . . , KM used
in the underlying MAC schemes.

The lower bound proof relies on two main lemmas which establish that (1)
every key value must be known by at least 2f + 1 servers, and (2) for any set of
f servers, there must exist a key value that is not known by any element of the
set. We can then use a combinatorial argument to derive a lower bound on the
number of keys.

Since we are proving a lower bound on the number of keys, we assume that
the signature scheme uses the minimum possible number of keys. It follows, as
shown in the following lemma, that no key is redundant. That is, for every key
Ki, the value of the signature depends on the value of Ki for some message and
for some combination of the values of the other keys.

Lemma 8 (No key is redundant). For each key Ki, ∃msg, k1, . . . ki−1, k
α
i , kβ

i ,
ki+2, . . . , kM : S(msg, k1, . . . , ki−1, k

α
i , ki+1, . . . , kM ) = σ1, S(msg, k1, . . . , ki−1,

kβ
i , ki+1, . . . , kM ) = σ2 and σ1 �= σ2

Proof. (Outline) If the signature produced for a message is always independent
of the key Ki, for every combination of the other keys. Then, we can get a smaller
signature implementation, by using a constant value for Ki, without affecting
the resulting signature.

Lemma 9 (2f + 1 servers know each key). At least (2f + 1) servers know
the value of Ki.

Proof. We show by contradiction that if Ki is only known by a group G, |G| ≤
2f , servers. the signature scheme is not unique. If |G| ≤ 2f , G is the union
of two disjoint sets A and B of size less than f + 1 each. From Lemma 8,
∃msg, k1, . . . ki−1, k

α
i , kβ

i , ki+1, . . . , kM : S(msg, k1, . . . , ki−1, k
α
i , . . . , kM ) = σ1,

S(msg, k1, . . . , ki−1, k
β
i , ki+1, . . . , kM ) = σ2, and σ1 �= σ2

Consider the following executions, where message msg is being signed. In all
executions, the value of Kj is kj for j �= i.

– (Exec α) The symmetric key value for Ki is kα
i . All servers behave correctly.

The resulting signature value is σ1.
– (Exec α′) The symmetric key value for Ki is kα

i . Servers not in B behave
correctly. Servers in B set the value of Ki to be kβ

i instead of kα
i . The

resulting signature value is also σ1 because the signature scheme is unique
and tolerates up to f Byzantine failures and |B| ≤ f .

– (Exec β) The symmetric key value for Ki is kβ
i . All servers behave correctly.

The resulting signature value is σ2.
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– (Exec β′) The symmetric key value for Ki is kβ
i . Servers not in A behave

correctly. Servers in A set the value of Ki to be kα
i instead of kβ

i . The
resulting signature value is also σ2 because the signature scheme is unique
and tolerates up to f Byzantine failures and |A| ≤ f .

Executions α′ and β′ only differ in the identities of the faulty servers and are
otherwise indistinguishable to servers not in G and to clients. It follows that the
same signature value should be calculated in both cases, contradicting the fact
that σ1 �= σ2.

Lemma 10 (Faulty servers do not know some key). For every set of f
servers, there exists a secret key Ki that no server in the set knows.

Proof. If a given set of f servers has access to all the M secret keys, then, if all
the elements of the set are faulty, they can generate signatures for messages that
were not signed by the signer, violating validity.

We can now use a counting-argument to establish a lower bound on the number
of keys required by a MAC-based unique signature implementation [16].

Theorem 4. The number of keys used by any MAC-based implementation of a
unique signature scheme is ≥ (

n
f

)
/
(
n−(2f+1)

f

)

It follows that for n = 3f + 1, the unique signature implementation described
in Section 8.1 is optimal. In general, if the fraction of faulty nodes f

n > 1
k , for

k ≥ 3, then the number of MACs required is at least ( k
k−2 )f .
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