Fast Byzantine Consensus

Jean-Philippe Martin, Lorenzo AlvisEenior member, IEEE.

Department of Computer Sciences
The University of Texas at Austin

Email: {jpmartin, lorenzo @cs.utexas.edu

Abstract—We present the first protocol that reaches in distributed systems. Yet, many practitioners had been
asynchronous Byzantine consensus in two communicationdiscouraged by the provable impossibility of solving con-
steps in the common case. We prove that our protocol sensus deterministically in asynchronous systems with
is optimal in terms of both number of communication gne faylty process [5]. Paxos offers the next best thing:
steps, and number of processes for two-step consensus. Th%vhile it cannot guarantee progress in some scenarios,

protocol can be used to build a replicated state machine it al h fot " f
that requires only three communication steps per request It always preserves (e salely properlies ol consensus,

in the common case. Further, we show a parameterized d€SPite asynchrony and process crashes. More specif-
version of the protocol that is safe despitef Byzantine ically, in Paxos one of the proposers is elected as a
failures and in the common case guarantees two-stepleader, with the responsibility of communicating with
execution despite some numbet of failures (t < f). We the acceptors. Paxos guarantees progress only when
show that this parameterized two-step consensus protocolthe |eader is unique and can communicate in a timely
is also optimal in terms of both number of communication manner with sufficiently many acceptors, but it ensures

steps, and number of processes. safety even with no leader or with multiple leaders. Our
Index Terms— Distributed systems, Byzantine fault tol- protocol follows a similar structure, but we choose the
erance, Consensus leader from the proposers instead of the acceptors.
Paxos is also attractive because it can be made very
. INTRODUCTION efficient in gracious executionsi.e. executions where

T HE consensus problem can be described in te“(& there is a unique correct leader, (i) all correct
of

the actions taken by three classes of agerﬂasgceptors agree on its identity, and (iii) the system is

proposerswho propose valuegcceptors who together n a tﬁer:od dOf synchtr_lcl)r;y._l l(;lot.e that Processes tgther
are responsible for choosing a single proposed valfgan € leader may Stll 1all during gracious executions.

andlearners who must learn the chosen value [12]. xcept in patho_loglcal S|tu§1t|ons, .'t Is reasonable to
Sxpect that gracious executions will be the norm, and

22259223?2;? ebg pzénif;n;bj;ﬁ; Tﬁéef:ﬂl?;vi?w;e t(: r§8 it is desirable to optimize_for them. For instance, the
safety properties and two liveness properties: astPaX(_)s [1] protocql by Bomhat etal. only requires wo
ommunication stepsin a gracious execution to reach
CS1 Only a value that has been proposed may Snsensus in non-Byzantine environments, matching the
chosen. . lower bound formalized by Keidar and Rajsbaum [8]
CS2 Only a single value may be chosen. FastPaxos should not be confused with Lamport’s more
CS3 Only a chosen value may be learned by a corrég&ent “Fast Paxos’ (with a space) [15] that uses a
learner. _ different approach to reduce the number of commu-
CLL Some proposgd value is eventually chosen. ication steps in the common case). Consequently, in
CL2 Once_a value is chosen, correct leamers eVemua;(ystate machine that uses FastPaxos, once the leader
learn it. receives a client request it takes just two communication
Since the unearthing of the simple and practicaleps, in the common case, before the request can be
Paxos protocol [12], consensus, which for years hagecuted. Henceforth, we use the terms “common case”

largely been the focus of theoretical papers, has onggq “gracious execution” interchangeably.
again become popular with practitioners. This popularity

should not be surprising, given that consensus is at the
core of the state ma_lChme app_roach [11], [22], the r_nOStTo be precise, this bound is only met fstable intervalsn which
general method for implementing fault tolerant service® replica transitions between the crashed and “up” state.

In this paper, we too focus on improving the commothat physically separates agreement from execution [23]
case performance of Paxos, but in the Byzantine modelakes this tradeoff look much more attractive. In this
Recent work has shown how to extend Paxos to sugrchitecture, a cluster of acceptorsagreement replicas
port Byzantine fault tolerant state machine replicatiois responsible for producing a linearizable order of client
The resulting systems perform surprisingly well: thegequests, while a separate cluster of learneexecution
add modest latency [2], can proactively recover fromeplicasexecutes the ordered requests.
faults [3], can make use of existing software diversity to Decoupling agreement from execution leads to agree-
exploit opportunistic N-version programming [20], ananent replicas (i.e. acceptors) that are much simpler and
can be engineered to protect confidentiality and reduless expensive than state machine replicas used in tradi-
the replication costs incurred to tolerafefaulty state tional architectures—and can therefore be more liberally
machine replicas [23]. used. In particular, such acceptor replicas are cheaper

These Byzantine Paxos protocols fall short of theoth in terms of hardware—because of reduced pro-
original, however, in the number of communicatiocessing, storage, and 1/O requirements—and, especially,
steps required to reach consensus in the common casderms of software: application-independent agreement
After a client request has been received by the leadesplicas can be engineered as a generic library that
Byzantine Paxos needs a minimum of three additionalay be reused across applications, while with traditional
communication steps (rather than the two required in theplicas the costs of N-version programming must be
non-Byzantine case) before the request can be exeéutg@aid anew with each different service.

We make three contributions. First, we introduce FastThis paper is organized as follows. We discuss related
Byzantine (or FaB) Paxos, a Byzantine consensus protesrk in Section 2 and our system model in Section 3. We
col that completes in two communication steps in thgresentf-tolerant FaB Paxos in Section 4 and generalize
common case (we say it iBvo-step, without using it to Parameterized FaB Paxos in Section 5. We give
expensive digital signatures. FaB Paxos requités- 1 lower bounds on the number of processes in Section 6,
acceptors and tolerates Byzantine faults. Second, weshowing that both protocols are optimal. We show in
show a generalization of FaB Paxos—Parameterized F&Bction 7 how to build a replicated state machine from
Paxos—that require3f + 2¢ + 1 acceptors to toleratg our consensus protocols, then present some optimizations
Byzantine failures and is two-step as long as at mdstSection 8 before concluding.

t acceptors fail. Third, we show that both FaB Paxos

and Parameterized FaB Paxos are tight in the sense that Il. RELATED WORK

they use the minimal number of processes required forConsensus and state machine replication have gen-
two-step protocols. erated a gold mine of papers. The veins from which

Since building a replicated state machine from cowur work derives are mainly those that originate with
sensus adds a single communication step, FaB Pak@snport’s Paxos protocol [12] and Castro and Liskov’s
or Parameterized FaB Paxos can be used to buildvark on Practical Byzantine Fault-tolerance (PBFT pro-
Byzantine fault-tolerant replicated state machine thajcol) [3]. In addition, the techniques we use to reduce
requires only three communication steps per operationtiie number of communication steps are inspired by the
the common case. By comparison, Castro and Liskowi®rk on Byzantine quorum systems pioneered by Malkhi
Practical Byzantine Fault-tolerance protocol [3] uses foand Reiter [17].
communication steps in the common cése. The two earlier protocols that are closest to FaB

For traditional implementations of the state machirRaxos are the FastPaxos protocol by Boichat and col-
approach, in which the roles of proposers, acceptors desdgues [1], and Kursawe’s Optimistic asynchronous
learners are performed by the same set of machinBgzantine agreement [10]. Both protocols share our
the extra replication required by FaB Paxos may apasic goal: to optimize the performance of the consen-
pear prohibitively large, especially when considering thgus protocol when runs are, informally speaking, well-
software costs of implementing N-version programmingehaved.

(or opportunistic N-version programming) to eliminate The most significant difference between FastPaxos and
correlated Byzantine faults [20]. However, an archite¢-aB Paxos lies in the failure model they support: in
ture for Byzantine fault tolerant state machine repliaaticFastPaxos processes can only fail by crashing, while in

No protocol can guarantee to take fewer than two rounds thre raB Paxqs they can fail arbitrarily. However, FastPaxos
Byzantine consensus. This bound holds even in a synchraystsm aOnly requires2f + 1 acceptors, compart_ad to the + 1
where one process may crash [16]. necessary for FaB Paxos. A subtler difference between

®Even with the tentative execution optimization (see Sectitl). the two protocols pertains to the conditions under which

FastPaxos achieves consensus in two communicatemsured; and (i) is the maximum number of ac-
steps: FastPaxos can deliver consensus in two comroaptor failures despite which consensus must be two-
nication steps duringtable periodsi.e. periods where step. Lamport’s conjecture is more general than ours—
no process crashes or recovers, a majority of procesaes do not distinguish betweei, F, and (Q—and
are up, and correct processes agree on the identitgre restrictive—unlike us, Lamport does not consider
of the leader. The conditions under which we achie®yzantine learners but instead assumes that they can only
gracious executions are weaker than these, in that durgrgsh. This can be limiting when using consensus for
gracious executions processesifail, provided that the the replicated state machine approach: the learner nodes
leader does not fail. As a final difference, FastPaxesecute the requests, so their code is comparatively more
does not rely, as we do, on eventual synchrony but eomplicated and more likely to contains bugs that result
an eventual leader oracle; however, since we only useunexpected behavior. Lamport’s conjecture does not
eventual synchrony for leader election, this difference ischnically hold in the corner case where no learner can
superficial. fail.* Dutta, Guerraoui and Vukoli¢c have recently derived
Kursawe’s elegant optimistic protocol assumes tteecomprehensive proof of Lamport’s original conjecture
same Byzantine failure model that we adopt and opnder the implicit assumption that at least one learner
erates with only3f + 1 acceptors, instead dff + 1. may fail [4]. In a later paper [14], Lamport gives a formal
However, the notion of well-behaved execution is mugbroof of a similar theorem for crash failures only. He
stronger for Kursawe’s protocol than for FaB Paxoshows that a protocol that reaches two-step consensus
In particular, his optimistic protocol achieves consensdgspitet crash failures and tolerates crash failures
in two communication steps only as long as channeisquires at leasf + 2¢ + 1 acceptors. In Section V we
are timely andno process is faulty: a single faultyshow that in the Byzantine case, the minimal number of
process causes the fast optimistic agreement protopobcesses i8f + 2t + 1.
to be permanently replaced by a traditional pessimistic,
and slower, implementation of agreement. To be fast, [1l. SYSTEM MODEL

FaB Paxos only requires gracious executions, which ar§ye make no assumption about the relative speed of
compatible with process failures as long as there iy, cesses or communication links, or about the existence
unique correct leader and all correct acceptors agree @y nchronized clocks. The network is unreliable: mes-
its identity. _ sages can be dropped, reordered, inserted or duplicated.
There are also protocols that use failure detectors iy vever, if a message is sent infinitely many times then
complete in two communication steps in Some Cas§Srrives at its destination infinitely many times. Finally
Both the SC protocol [21] and the later FC protocol [#he recipient of a message knows who the sender is. In

achieve this goal when the failure detectors make Rgher words, we are using authenticated asynchronous
mistake and the coordinator process does not crash (thgjf jinks.

coordinator is similar to our leader). FaB Paxos differs Following Paxos [12], we describe the behavior of FaB
from these protocols because it can tolerate unrelialdeyos in terms of the actions performed by proposers,
links and Byzantine failures. Other protocols offer 9uaGeceptors, and learners. We assume that the numbgr
antees only for certain initial configurations. The Orad%'rocesses in the system is large enough to accommodate
based protocol by Friedman et al. [6], for example, CA¥ | 1 proposerssf + 1 acceptors, andf + 1 learers.
complete in a single communication ste_p if all _corre%ote that a single process may play multiple roles in
nodes start with the same proposal (or, in a variant thag protocol. Up tof of the processes playing each role
uses6f + 1 processes, if at least — f of them start 5y he Byzantine faulty. When we consider FaB Paxos
with the same value and are not suspected). FaB Pagpg,nnection with state machine replication, we assume
differs from these protocols in that it guarantees learnings; an arbitrary number of clients of the state machine

in two steps regardless of the initial configuration. ¢an e Byzantine. Unlike [13], we allow learners to fail
In a paper on lower bounds for asynchronous consgR-, Byzantine manner.

sus [13], L'amport conjectures in “approximate theorem” rag" paxos does not use digital signatures in the
3a the existence of a boun > 2Q + F' + 2M 0N ¢ommon case; however, it does rely on digital signa-
the minimum numberV' of acceptors required by tWo-res when electing a new leader. All acceptors have a
step Byzantine consensus, where:{i)s the maximum ,pjic/private key pair—we assume that all proposers

number of acceptor failures despite which consensygq acceptors know all public keys and that correct
liveness is ensured; (i is the maximum number

of acceptor failures despite which consensus safety i$The counterexample can be found in our technical report [18]

acceptors do not divulge their private key. We alSO int leaderelection.getRegency ()
assume that Byzantlne processes are not ab|e to Subgert /1l return the number of the current regent (leader is regénp)
/1 if no correct node suspects it then the regency continues
the cryptographic primitives.
Since it is impossible to provide both safety and int leaderelection . getLeader ()
liveness for consensus in the asynchronous model [5] return getRegency() % p
we ensure safety at all times and only guarantee I|venesssv0,d leaderelection. suspect(int regency)
durin eriods of synchrony. 9 /I indicates suspicion of the leader for "regency”.
gp y Y

10 I/ if a quorum of correct nodes suspect the same regency r,
11 // then a new regency will start

IV. FAST BYZANTINE CONSENSUS 12

We now present FaB Paxos, a two-step Byzantifje ™
fault-tolerant consensus protocol that requifgs+ 1
processes—in Section VI, we show that this number . 3. Interface for leader election protocol
optimal. More precisely, FaB Paxos requites 5f + 1
acceptorsp > 3f+1 proposers, antl> 3f+1 learners;
as in Paxos, each process in FaB Paxos can play ond (er+ f+1)/2] correct acceptors have accepted it. These
more of these three roles. We describe FaB Paxost{¥ requirements are sufficient to ensure CS1 and CS2:
stages: we start by describing a simple version of ti§€arly, only a proposed value may be chosen and there
protocol that relies on relatively strong assumptions, af@n be at most one chosen value since at most one value

we proceed by progressively weakening the assumptidia! be accepted by a majority of correct acceptors. The
and refining the protocol accordingly. last safety clause (CS3) requires correct learners to learn

only a chosen value. Since learners wait foi + 3f +
1)/2] identical reports and at mogtof those come from

faulty acceptors, it follows that the value was necessarily
We first describe how FaB Paxos works in the comhosen.

mon case, when there is a unique correct leader, all
correct acceptors agree on its identity, and the system
is in a period of synchrony. B. Fair Links and Retransmissions

FaB is very simple in the common case, as can beSo far we have assumed synchrony. While this is a
expected by a protocol that terminates in two steps. Figgasonable assumption in the common case, our protocol
ure 1 shows the variables we use, and Figure 2 shows thest also be able to handle periods of asynchrony. We
protocol’s pseudocode. Thmumber variable (proposal weaken our network model to consider fair asynchronous
number) indicates which process is the leader; in tl@thenticated links (see Section Ill). Note that now
common case, its value will not change. The code stadgnsensus may take more than two communication steps
executing in theonStart methods. In the first step,to terminate, e.g. when all messages sent by the leader
the leader proposes its value to all acceptors (line 3).imthe first round are dropped.
the second step, the acceptors accept this value (line 21pur end-to-end retransmission policy is based on the
and forward it to the learners (line 22). Learners learnfallowing pattern: the caller sends its request repeatedly
valuev when they observe thata+3f+1)/2] acceptors and the callee sends a single response every time it
have accepted the value (line 25). In the common caseceives a request. When the caller is satisfied by the
the timeout at line 12 will never trigger. We will usereply, it stops retransmitting. We alter the pattern slight
that code later; the leader election interface is given in order to accommodate the leader election protocol:
Figure 3. FaB avoids digital signatures in the commasther processes must be able to determine whether the
case because they are computationally expensive. Addiegder is making progress, and therefore the leader must
signatures would reduce neither the number of commmake sure that they, too, receive the reply. To that end,
nication steps nor the number of servers since FaBléarners report not only to the leader but also to the other
already optimal in these two measures. proposers (Figure 2, line 28). When proposers receive

a) CorrectnessWe defer the full correctness proofenough acknowledgments, they are “satisfied” and notify

for FaB until we have discussed the recovery protocthle leader (line 9). The leader only stops resending when
in Section IV-D—in the following we give an intuition it receives|(p + f + 1)/2] such natifications (line 4).
of the correctness argument. If proposers do not hear frof(! + f + 1)/2] learners

Let correct acceptors only accept the first value thefter some time-out, they start suspecting the leader
receive from the leader and let a valuebe chosenif (line 14). If [(p + f + 1)/2] proposers suspect the

d leaderelection.consider(proof)
/I consider outside evidence that a new leader was elected

A. The Common Case

variable initial comment

Globals

p,al Number of proposers, acceptors, learners

f Number of Byzantine failures tolerated

Proposer variables

Satisfied 0 Set of proposers that claim to be satisfied

Learned 0 Set of learners that claim to have learned

Acceptor variables

accepted (L, 1) Value accepted and the corresponding proposal number
Learner variables

learner.acceptegl] (L, 1) Value and matching proposal number acceptaays it accepted
learner.learnf] (L, 1) Value and matching proposal number learriesays it learned
learner.learned (L, 1) Value learned and the corresponding proposal number

Fig. 1. Variables for the FaB pseudocode

1 leader.onStart(): 23 learner.onAccepted(value ,pnumber): from acceptor ac
2 /1 proposing (PC is null unless recovering) 24 accepted[ac] := (value,pnumber)
3 send (PROPOSE, value ,pnumber,PC) to all acceptors 25 if there arefa 4 3f +1)/2] acceptorsz
4 until | Satisfied >= [(p + f +1)/2] 26 such that acceptedd] == (value,pnumber) then
5
27 learned := (value,pnumber) // learning
6 proposer.onLearned(): from learner |
. 28 send (LEARNED) to all proposers
7 Learned := Learned unior{l}
8 it |Learned >= [(I+ f + 1)/2] then 29
9 send (SATISFIED) to all proposers 30 learner.onStart():
10 31 wait for timeout
11 proposer.onStart(): 32 while (not learned) send (PULL) to all learners
12 wait for timeout 33
13 if [learned < [(I+ f+1)/2] then 34 learner.onPull(): from learner In
14 leader-election.suspect(leaderelection.getRegency()) 35 It this process learned some pair (value,pnumber) then
15 36 send (LEARNED, value ,pnumber) to In
16 proposer.onSatisfied () : from proposer x 37
17 Satisfied := Satisfiedu {x}
18 38 learner.onLearned(value ,pnumber): from learner In
19 acceptor.onPropose(value ,pnumber, progcert): fronadler 29 Learn[In] := (value,pnumber)
20 if not already accepted then 40 if there aref+1 learnersx
21 accepted := (value,pnumber) // accepting 41 such that learng] == (value,pnumber) then
22 send (ACCEPTED, accepted) to all learners 42 learned := (value,pnumber) // learning

Fig. 2. FaB pseudocode (excluding recovery)

leader, then a new leader is electetihe retransmission leader. Each node in the system has an instance of
policy therefore ensures that in periods of synchrony tlae leader-election object, and different instances may
leader will retransmit until it is guaranteed that no leaddaritially indicate different regents. Nodes indicate whnic
election will be triggered. Note that the proposers do nother nodes they suspect of being faulty; that is the input
wait until they hear from all learners before becomintp the leader election protocol. If no more thdmodes
satisfied (since some learners may have crashed). laie Byzantine and at lea8f + 1 nodes participate in
possible therefore that the leader stops retransmittilegder election, then leader election guarantees that if no
before all learners have learned the value. To ensure thatrect node suspects the current regent, then eventually
eventually all correct learners do learn the value, lin€8 all leader-election objects will return the same regenc
30-42 of the protocol require all correct learners still inumber and (ii) that number will not change. Leader

the dark to pull the value from their peers. election also guarantees that if a quorum of correct nodes
([(p+ f+1)/2] nodes out ofp) suspects regent, then
C. Recovery protocol the regency number at all correct nodes will eventually

. b? different fromr. Finally, leader election also generates
Recovery occurs when the leader election protocg roof, when it elects some regent If f
éﬂ - g proof, from a

elects a new leader. Although we can reuse existin o . .

: A rrect node is given to a leader-election objecthen
leader election protocols as-is, it is useful to go througqn . ,)

. . o will elect regencyr’,r <7’.

the properties of leader election. The output of leader
election is a regency number. This number never e interface to leader election is shown in Figure 3.
decreases, and we say that proposemod p is the getRegency() returns the current regency number,
{Ind getLeader() converts it to a proposer number.

*We do not show the election protocol, because existing feade . . .)
election protocols can be used here without modificatiog, the NOd€S indicate their suspicion by callisgspect() .

leader election protocol in [3]. When leader-election elects a new leader, it notifies

the node through th@nElected(regency,proof,) vouches for some valug thena proposes. Otherwise,

callback (not shown). If necessaryroof, can then « is free to propose any value. To propose its value,
be given to other leader-election objects through the follows the normal leader protocol, piggybacking
consider(proof,) method. the progress certificate alongside its proposal to justify

When proposers suspect the current leader of beiitg choice of value. The acceptors check that the new
faulty, they trigger an election for a new leader who thgoroposed value is vouched for by the progress certificate,
invokes the recovery protocol. There are two scenaritials ensuring that the new value does not endanger
that require special care. safety.

First, some value may have already been chosen: the As in Paxos, acceptors who hear of the new leader
new leader must then propose the sam® maintain (when the new leader gathers the progress certificate)
CS2. Second, a previous malicious leader may hapemise to ignore messages with a lower proposal
performed apoisonous write[19], i.e. a write that number (i.e. messages from former leaders). In order
prevents learners from reading any value—for exampte, prevent faulty proposers from displacing a correct
a malicious leader could propose a different value teader, the leader election protocol provides a proof-of-
each acceptor. If the new leader is correct, consensuddadership token to the new leader (typically, a collection
a synchronous execution should nonetheless terminatef. signed “election” messages).

In our discussion so far, we have required acceptors to2) Constructing progress certificatesA straightfor-
only accept the first value they receive. If we maintainaslard implementation of progress certificates would con-
this requirement, the new leader would be unable $ist of the currently accepted value, signed, froam f
recover from a poisonous write. We therefore allowcceptors. If these values are all different, then clearly
acceptors to change their mind and accept multipt® value was chosen: in this case the progress certificate
values. Naturally, we must take precautions to enswbould vouch for any value since it is safe for the new
that CS2 still holds. leader to propose any value.

1) Progress certificates and the recovery protocol: Unfortunately, this implementation falls short: a faulty
If some valuev was chosen, then in order to maintaimew leader could use such a progress certifitatee to
CS2 a new correct leader must not propose any valcguse two different values to be chosen. Further, this
other thanv. In order to determine whether some valuean happen even if individual proposers only accept a
was chosen, the new leader must therefore query tjigen progress certificate once. Consider the following
acceptors for their state. It can gather at mest f situation. We split the acceptors into four groups; the first
replies. We call the set of these repliespeogress group has sizef+1, the second has sizeand contains
certificate The progress certificate serves two purposesalicious acceptors, and the third and fourth have size
First, it allows a new correct leader to determine wheth¢r Suppose the values they have initially accepted are
some valuev may have been chosen, in which cas&’,“B",“"B”, and “C”, respectively. A malicious new
the leader proposes We say that a correct leader willleader A can gather a progress certificate establishing
only propose a value that the progress certifiegaieches that no value has been chosen. With this certificatan
for—we will discuss in Section IV-C.2 how a progreséirst swayf acceptors from the third group to accept “A’
certificate vouches for a value. Second, the progreby definition, “A” is now chosen), and then, using the
certificate allows acceptors to determine the legitimasame progress certificate, persuade the acceptors in the
of the value proposed by the leader, so that a faulty leadiest and fourth group to change their value to “B"—"B”
may not corrupt the state after some value was chosennow chosen. Clearly, this execution violates CS2.

In order to serve the second purpose, we require thélMe make three changes to prevent progress certificates
answers in the progress certificate to be signed. from being used twice. First, we allow a proposer to

A progress certificaté’C' must have the property thatpropose a new value only once while it serves as a leader.
if some valuev was chosen, the®C' only vouches for Specifically, we tie progress certificates topeoposal
v (sincew is the only proposal that maintains CS2). Inumber whose value equals the number of times a new
must also have the property that it always vouches flader has been elected.
at least one value, to ensure progress despite poisonouSecond, we associate a proposal number to proposed
writes. values. Acceptors now accept a value for a given pro-

In the recovery protocol, the newly elected corregosal number rather than just a value. Where before
leadera first gathers a progress certificate by queryingcceptors forwarded just the accepted value (to help
acceptors and receiving— f signed responses. Them, learners decide, or in response to a leader’s query), now
decides which value to propose: If the progress certificateey forward both the accepted valaed its proposal

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122

leader.onElected (newnumber, proof):

appeard (a— f+1)/2] times in the progress certificate.

/1 this function is called when leaderlection picks a new regency

Il proof is a piece of data that will sway leadeelection at the A Consequence Of th|S deﬁnition iS that |f some SpeCifiC

/1 other nodes.

pnumber := newnumber // no smaller than the previous pyem

if (not leader for pnumber) then return
send (QUERY,pnumber, proof) to all acceptors

until get (REP, signed(value,pnumber)) fromfaacceptors
PC := the union of these replies
if PC vouches for (v’,pnumber) then value := v’
onStart ()
acceptors.onQuery(pn, proof): from leader

leader-election.consider(proof)
if (leaderelection.getRegency() != pn) then:
return // ignore bad requests
send (REP, signed(value ,pn)) to leaderlection.getLeader ()

acceptor.onPropose(value ,pnumber, progcert): fronoppser
if pnumber != leade+election.getRegency() then
return // only listen to current leader
if accepted (v,pn) and pn == pnumber then

return // only once per prop. number

pair (v, pn) appears at leag{a — f +1)/2] times in the
progress certificate, then the progress certificate vouches
only for value v at proposalpn. If there is no such
pair, then the progress certificate vouches for any value
as long as its proposal number matches the one in the
progress certificate. As we prove in the next section,
progress certificates guarantee thatvifis chosen for

pn, then all progress certificates with a proposal number
following pn will vouch for v and no other value.

Let us revisit the troublesome scenario of before in
light of these changes. Suppose, without loss of gen-
erality, that the malicious leadex gathers a progress
certificate for proposal number 1 (s the second pro-
poser to become leader). Because of the poisonous write,
the progress certificate allows the leader to propose any

123 if accepted (v,pn) and v != value and new value. To have “A’ choser\ sends a new proposal
124 d h f lue , b h - . . .

progeert does not voueh for (vaue pnumber) then (“A", 1) together with the progress certificate first to the
125 return // only change with progress certificate . . .
126 accepted := (value,pnumber) // accepting acceptors in the first group and then to the acceptors in
127 send (ACCEPTED, accepted) to all learners

the third group. Note that the first step is critical to have
“A’ chosen, as it ensures that tB¢ + 1 correct acceptors

in the first and third group accept the same value for the
same proposal number.

. . Fortunately, this first step is also what prevehtfsom
number—hence, progress certificates now contain (value o :
‘ using the progress certificate to sway the acceptors in the
proposal number) pairs.

. first group to accept “B”. Because they have last accepted
Learners learn a value if they see thaf/ (a + 3f + grouk b Y P

d valudfor th | the pair (“A", 1), when\ presents to the acceptors in the
1)/2] acceptors accepte vala or t € sameproposal group the progress certificate for proposal number
number. We say that value is chosen forpn if [(a +

1 for the second time, they will refuse it (line 121 of the
f+1)/2] correct acceptors have accepted that value fBrrotocoI)

proposal numbepn. We say that value is chosen if
there is some proposal numbgnr so thatv is chosen
for pn.

Third, we change the conditions under which accep-We now prove that, for executions that are eventually
tors accept a value (Figure 4). In addition to ignoringynchronous, FaB Paxos solves consensus. Recall that a
proposals with a proposal number lower than any th&@lue v is chosen for proposain iff [(a + f +1)/2]
have seen (line 119), acceptors only accept one propdalrect acceptors accepfor proposapn. As mentioned
for every proposal number (line 121) and they onl@t the beginning of this section, we assume that5f,
change their accepted value if the progress certificate> 3/, andl > 3f.
vouches for the new value and proposal number (linesCS1.Only a value that has been proposed may be
123-125). chosen.

We are now ready to define progress certificat&d00f: To be chosen, a value must be accepted by a set
concretely. A progress certificate contains signed repliggcorrect acceptors (by definition), and correct acceptors
(vi,pn) from a— f acceptors (Figure 4, line 108).only accept valu_es that are proposed (line 118). =
An acceptor’s reply contains that acceptor’s current(lg CS2.0nly a single value may be chosen.

accepted value and the proposal number of the lea dpof: The theorem follows directly from the following

who requested the progress certificate. two lemmas.
Lemma 1: For every proposal number, at most one

Definition We say that a progress certificatealue is chosen.
((vo,pn), ..., (ve—s,pn)) vouches for value v at Proof: Correct acceptors only accept one value per
proposal numbepn if there is no valuev; # v that proposal number (line 121). In order for a value to be

Fig. 4. FaB recovery pseudocode

D. Correctness

chosen forpn, the value must be accepted by at least aThe correct leader will gather a progress certificate
majority of the acceptors (by definition). Hence, at mogline 108) and propose a value to all the acceptors. By
one value is chosen per proposal number. B construction, all progress certificates vouch for at least
Lemma 2:If value v is chosen for proposain, then one value—and correct acceptors will accept a value
every progress certificate for proposal numpet > pn vouched by a progress certificate. Singeis correct,
will vouch for v and no other value. it will propose the same value to all acceptors and all
Proof: Assume that value is chosen for proposala — f correct acceptors will accept the proposed value.
pn; then, by definition, at least = [(a + f + 1)/2] Given thata > 3f, [(a+ f +1)/2] < a— f and so by
correct acceptors have acceptedfor proposal pn. definition that value will be chosen.
Let PC be a progress certificate for proposal number The end-to-end retransmission protocol (line 4) en-
pn’ > pn. All correct acceptors that acceptedfor sures thaty will continue to resend its proposed value at
pn must have done so before acceptiRg’, since no least until it hears froni(I+ f +1)/2] learners that they
correct acceptor would accept for proposalpn if it have learned a value—that is, until the value is stable
had accepted®C with pn’ > pn (line 119 and the fact (line 8). [|
that the regency number never decreases). Consider th€EL1. Some proposed value is eventually chosen.
a— f pairs contained irPC'. Since these pairs are signedroof: By Lemma 3 eventually some value is stable,
(line 117), they cannot have been manufactured by the. [(I + f+1)/2] > f correct learners have learned it.
leader; hence, at least— f +c—a = [(a— f+1)/2] By CS3 a correct learner only learns a value after it is
of them must be signed by acceptors that acceptiast chosen. Therefore, the stable value is chosen. =
pn. By definition, then,PC vouches forv and no other Our proof for CL1 only relies on the fact that the

value. B correct leader does not stop retransmission until a value
CS3.0nly a chosen value may be learned by a correid chosen. In practice, it is desirable for the leader to
learner. stop retransmission onceif. Sincel > 3f, there are at

Proof: Suppose that a correct learner learns valder least[(l + f + 1)/2] correct learners and so eventually
proposalpn. There are two ways for a learner to learall correct proposers will be satisfied (line 8) and the
a value in FaB Paxos. leader will stop retransmitting (line 4).
e [(a+3f+1)/2] acceptors reported having accepted CL2. Once a value is chosen, correct learners even-
v for proposapn (line 25). At least(a+ f+1)/2] tually learn it.
of these acceptors are correct, so by definitiamas Proof: By Lemma 3, some value is eventually stable,
chosen fomn. ie. [(l—f+1)/2] > f +1 correct learners eventually
« f+ 1 other learners reported thatwas chosen for learn the value.

pn (line 40). One of these learners is correct—so, Even if the leader is not retransmitting anymore, the
by induction on the number of learners, it followgemaining correct learners can determine the chosen

thatv was indeed chosen fom. m Vvalue when they query their peers with the “pull” re-
We say that a value istableif it is learned by[(l — quests (lines 32 and 34-36) and recefve 1 matching
f +1)/2] correct learners. responses (line 40). So eventually, all correct learners
Lemma 3:Some value is eventually stable. learn the chosen value. u
Proof:
The system is eventually synchronous and in these V. PARAMETERIZED FAB PAXOs

periods, leaders that do not create a stable value ar@revious Byzantine consensus protocols reqgsijie-
eventually suspected by all correct proposers (line 13)processes and may complete in three communication
In this situation the leader election protocol elects a nesteps when there is no failure; FaB Paxos requires 1
leader. Byzantine learners or proposers cannot prevpnicesses and may complete in two communication steps
the election: even if thg¢ faulty learners pretend to havedespite up tof failures—the protocol uses the additional
learned a value, the remaining correct proposers fornreplication for speed. In this section we explore scenarios
qguorum and thus can trigger an election (see IV-C). that lie in between these two extremes: when fewer than
Since the number of proposerss larger thanf, even- 5f+1 processes are available, or when it is not necessary
tually either some value is stable or a correct leadés to ensure two-step operation even wrah f processes
elected. In a period of synchrony, Byzantine proposefil.
alone cannot trigger an election to replace a correctWe generalize FaB Paxos by decoupling replication
leader (see IV-C). We show thatdfis correct then some for fault tolerance from replication for speed. The result-
value will be stable. ing protocol, Parameterized FaB Paxos (Figure 5) spans

the whole design space between minimal number ofFinally, we redefine “chosen” and “progress certifi-
processes (but no guarantee of two-step executions) aatk” to take commit proofs into account.
two-step protocols (that require more processes). ThisWe now say that value is chosen foproposal number
trade-off is expressed through the new parame{er< pn if [(a + f + 1)/2] correct acceptors have accepted
t < f). Parameterized FaB Paxos requiBgs+ 2t + 1 v in proposalpn or if [(a + f + 1)/2] acceptors have
processes, is safe despite up foByzantine failures, (or had) a commit proof for and proposal numbem.
and all its executions are two-step in the common cakearners learnv when they knowv has been chosen.
despite up tot Byzantine failures. We say that theThe protocol ensures that only a single value may be
protocol is (¢,2)-step FaB Paxos is just a special casehosen.
of Parameterized FaB Paxos, with= f. Progress certificatestill consist ofa — f entries, but
Several choices dfand f may be available for a giveneach entry now contains an additional element: either
number of machines. For example, if seven machines are&ommit proof or a signed statement saying that the
available, an administrator can choose between toleratiwresponding acceptor has no commit proof. A progress
two Byzantine failures and slowing down after the firstertificatevouchedor valuev’ at proposal numbesn if
failure (f = 2,¢t = 0) or tolerating only one Byzantineall entries have proposal numbgen, there is no value
failure but maintaining two-step operation despite the+£ +’ contained[(a — f + 1)/2] times in the progress
failure (f = 1,t = 1). certificate, and the progress certificate does not contain a
The key observation behind this protocol is that FaBommit proof for any valuel # v’ (function “vouches-
Paxos maintains safety evemif< 5f +1 (provided that for”, line 291). The purpose of progress certificates is, as
n > 3f). It is only liveness that is affected by havingefore, to allow learners to convince acceptors to change
fewer than5f + 1 acceptors: even a single crash magheir accepted value.
prevent the learners from learning (the predicate at lineThese three modifications maintain the properties that
25 of Figure 2 would never hold). In order to restorat most one value can be chosen and that, if some value
the liveness property even withf < n < 5f + 1, we was chosen, then future progress certificates will vouch
merge a traditional BFT three-phase-commit [3] witbnly for it. This ensures that the changes do not affect
FaB Paxos. While merging the two, we take specighfety. Liveness is maintained despitdailures because
care to ensure that the two features never disagreetiasre are at least(a + f + 1)/2] correct acceptors, so,
to which value should be decided. The Parameterizi#dhe leader is correct, then eventually all of them will
FaB Paxos code does not include any mention of thave a commit proof, thus allowing the proposed value
parametert: if there are more tham failures, the two- to be learned. The next section develops these points in
step feature of Parameterized FaB Paxos may neverrhere detail.
triggered because there are not enough correct nodes to
send the required number of messages.
First, we modify acceptors so that, after receiving % Correctness
proposal, they sign it (including the proposal number) The proof that Parameterized FaB implements consen-
and forward it to each other so each of them can collegtts follows the same structure as that for FaB.
a commit proof. Acommit prooffor valuev at proposal CS1.Only a value that has been proposed may be
numberpn consists of[(a + f + 1)/2] statements from chosen.
different acceptors that accepted valuefor proposal Proof: To be chosen, a value must be accepted by a set
numberpn (function “valid”, line 284). The purpose of of correct acceptors (by definition), and correct acceptors
commit proofs is to give evidence as to which valuenly accept values that are proposed (line 229). m
was chosen. If there is a commit proof for valueat CS2.0nly a single value may be chosen.
proposalpn, then no other value can possibly have bedfroof: This proof also follows a similar argument as
chosen for proposaghn. We include commit proofs in the one in Section IV-D. We first consider values chosen
the progress certificates (line 252) so that newly electéat the same proposal number, then we show that once
leaders have all the necessary information when decidiagvalue v is chosen, later proposals also propase
which value to propose. The commit proofs are aldearameterized FaB uses a different notion of chosen, so
forwarded to learners (line 245) to guarantee livenes® must show that a value, once chosen, remains so if
when more thart acceptors fail. no correct node accepts new values.
Second, we modify learners so that they learn a valueLemma 4:If value v is chosen for proposal number
if enough acceptors have a commit proof for the same, then it was accepted bya + f + 1)/2] acceptors
value and proposal number (line 262). in proposalpn.

10

Proof: The value can be chosen for two reasons Secondy could be chosen fgin because there is a set
according to the definition: eithéfa+ f+1)/2] correct B of [(a+ f+1)/2] acceptors that have a commit proof
acceptors accepted it (in which case the lemma follovier v for proposalpn. Again, the progress certificateC’
directly), or becausé(a + f + 1)/2] acceptors have afor pn’ includes at leasf(a — f + 1)/2] answers from
commit proof forv atpn. At least one of them is correct,B. Up to f of these acceptors may be Byzantine and lie
and a commit proof includes answers frdrftu + f + (pretending to never have seejy so PC may contain
1)/2] acceptors who acceptedat pn (lines 243 and as few as[(a — 3f + 1)/2] commit proofs forv. Since

286-289). B o > 3f, PC contains at least one commit proof for
Corollary 1: For every proposal numbem, at most v, which by definition is sufficient to prevertC' from
one value is chosen. vouching for any value other than(lines 296-297).m

Proof: If two values were chosen, then the two Lemma 6:If v is chosen forpn thenwv is the only
sets of acceptors who accepted them intersect in at le¢atie that can be chosen for any proposal number higher
one correct acceptor. Since correct acceptors only accéinpn.
one value per proposal number (line 232), the two values Proof: In order for a different value’ to be chosen,
must be identical. m a correct acceptor would have to accept a different

Corollary 2: If v is chosen for proposain and no value in a later proposal (Cgrqllgry 2). Correct acceptors
correct acceptor accepts a different value for propos@Rly accept a new value’ if it is accompanied with
with a higher number thapn, thenv is the only value & Progress certificate that vouches fdr (lines 232—

that can be chosen for any proposal number higher th&#f)- The previous lemma shows that no such progress
. certificate can be gathered. |

Proof: Again, the two sets needed to choose distinct PUtting it all together, we can show that CS2 holds

v and v would intersect in at least a correct acceptof?y contradiction). Suppose that two distinct values,
!/
Since by assumption these correct acceptors did v’ are chosen. By Corollary 1, they must have been

o A
accept a different value aftem, v = v chosen in distinct proposats: andpn’. Without loss of

H / ! __
Lemma 5:If v is chosen forpn then every progressgegg?'gy’ISUppﬁsﬂn < pln' By L(te)mlma 6’Ud g v W ¢
certificate PC' for a higher proposal number either -Only @ chosen vaiue may be learned by a correc

learner.
vouches for no value, or vouches for value
Proof- Proof: Suppose that a correct learner learns valadter

observing that is chosen fopn. There are three ways

Suppose that the valueis chosen fopn. The higher- ¢, 5 jeamer to make that observation in Parameterized
numbered progress certificafeC' will be generated in

lines 209-212 by correct proposers. We show that all
progress certificates for proposal numbers higher than’
pn that vouch for a value vouch for (we will show
later that in fact all progress certificates from correct
proposers vouch for at least one value).

The valuev can be chosen fopn for one of two
reasons. In each case, the progress certificate can only v was chosen fopn.

vough forv. _ o [+ 1 other learners reported that was chosen
First, v could be chosen fopn because there is a set ¢, pn (lines 280-282). One of these learners is

A of [(a+f+1)/2] correct acceptors that have accepted qrrect—so, by induction on the number of leamners,

v for proposalpn. The progress certificate fom’, PC, it follows that;y was indeed chosen fom.
consists of answers from — f nodes (line 209). These Lemma 7:All valid progress certificates vouch for at

answers are signed so each answer in a valid progrtesst one value.

certificate come from a different node. Since acceptors Proof:

only answer higher-numbered requests (line 249; regencyl he definition allows for three ways for a progress
numbers never decrease), all nodesirthat answered certificate PC' to vouch for no value at all. We show
have done so after having accepteth proposalpn. At that none can happen in our protocol.

most f acceptors may be faulty, S8C includes at least First, PC' could vouch for no value if there were two
[(a—f+1)/2] answers fromA. By definition, it follows distinct valuesy and+’, each containefl(a — f +1)/2]
that PC' cannot vouch for any value other thanlines times in the PC. This is impossible because theC
292-295). only containsa — f entries in total (line 211).

[(a+3f+1)/2] acceptors reported having accepted
v for proposapn (line 255). At least (a+ f+1)/2]

of these acceptors are correct, so by definitiamas
chosen forpn.

e [(a+ f+1)/2] acceptors reported a commit proof
for v for proposapn (lines 262—264). By definition,

11

Second,PC could vouch for no value if it containedmessage to every other process, (ii) waits until it receives
two commit proofs for distinct values and v’. Both a (possibly empty) message sent in that round fromf
commit proofs containg(a + f + 1) /2] identical entries distinct processes (ignoring any extra messages), ahd (iii
(for v andv’ respectively) from the same proposal (lineperforms a (possibly empty) sequence of local events.
286-287). These two sets intersect in a correct proposde say that the process takesstepin each round.
but correct proposers only accept one value per propoBairing an execution, the system goes through a series of
number (line 232). Thus, it is not possible f&tC' to configurations where a configuratio” is an n-vector
contain two commit proofs for distinct values. that stores the state of every process. We also talk about

Third, there could be some valuecontained[(a — the state of a set of processes, by which we mean a
f + 1)/2] times in the PC, and a commit proof for vector that stores the state of the processes in the set.
some different valuev’. The commit proof includes This proof depends crucially on the notion of indis-
values from[(a + f + 1)/2] acceptors, and at leastinguishability. The notions ofiew and similarity help
[(a— f+1)/2] of these are honest so they would repotts capture this notion precisely.
the same valueu() in the PC. But [(a — f +1)/2] is a Definition Given an executionp and a procesy;, the
majority and there can be only one majority in tR€’, viewof p; in p, denoted by|p;, is the local history op;
so that scenario cannot happen. B together with the state qf; in the initial configuration

Recall that a value is stable if it is learned fy— f+ of p.

1)/2] correct learners. We use Lemma 3, which shoviZefinition Let p; and p, be two executions, and lgf
that some value is eventually stable, to prove CL1 ate a process which is correct in and p,. Executionp;
CL2. is similar to executionp, with respect top;, denoted as

CL1. Some proposed value is eventually chosen. p1 ~ pa, if pi|pi = pa|pi.

CL2. Once a value is chosen, correct learners even-If an executionp results in all correct processes
tually learn it. learning a valuey, we say thaw is theconsensus value
Proof: The proofs for CL1 and CL2 are unchangedf p, which we denote:(p). For the remainder of this
They still hold because although the parameterized psection we only consider executions that result in all
tocol makes it easier for a value to be chosen, it still hasrrect processes learning a value.
the property that the leader will resend its value until it Lemma 8:Let p; and p; be two executions, and let
knows that the value is stable (lines 203-204, 216-219).be a process which is correct ja andps. If p1 % ps,

A value that is stable is chosen (ensuring CL1) and it hgsen Cgplo) = 0#2). L
been learned by at leaitl — f + 1)/2] correct learners Proof: The correct process cannot distinguish be-

(ensuring CL2 because of the pull subprotocol on lind¥€€np1 andpz, so it will learn the same value in both
270-282). - executions. Consensus requires that all correct learners

learn the consensus value, &1) = c(p2). [|

VI. THE LOWER BOUND Definition Let F be a subset of the processes in the

ed . system. An executiop is F-silent if in p no process
Parameterized FaB Paxos requis¢s-2¢t+1 acceptors outsideF delivers a message from a processAn

to toleratef Byzantine failures and be two-step despltB - . .
: o . efinition Let atwo-step executiobe an execution in
t failures. We show that this is the optimal number, .
. hich all correct processes learn by the end of the second
of processes for parameterized two-step consensus. Qur .
RV round. A consensus protocol(i§2)-stepif it can tolerate
proof does not distinguish between proposers, accept

. . ' yzantine failures and if for every initial configuration
and learners because doing so would restrict the pr
. and every sefF of at mostt processest(< f), there
to Paxos-like protocols.

The proof proceeds by constructing two executio neg)(iStS a two-step execution of the protocol franthat
T i F-silent. If th tocol is (,2)-step th impl
that are indistinguishable although they should IeaI 7-silen e protocol s {,2)-step then we simply

) : . . %y that it istwo-step
different values. We now define these notions precisely.”,.
. . efinition Given a (,2)-step consensus protocol, an
We consider a system afprocesses that communicate

through a fully connected network. Processes exec'Q('et'aI configuration/ is (¢,2)-step bivalentf there exist

sequences of events, which can be of three typms: wo disjoint sets of processe§, and 73, (|Fo| < ¢ and

_ P . i :)
cal, send and deliver. We call the sequence of eventigiigm— ta(f—:ti 0 Sélfgélj\t'ivg Stesrl:fr)](iﬁl;ttl(?(ﬁo)a n_d ?)n;:; q
executed by a process ikscal history. P m po) =

. . =1.
An execution of the protocol proceeds in asynchronoﬁ(spl)
rounds. In a round, each correct process (i) sends d.emma 9:For every (,2)-step consensus protocol

12

with n > 2f there exists at(2)-step bivalent initial Proof: By contradiction. Suppose there exists a
configuration. (t,2)-step fault-tolerant consensus protodel that (i)

Proof: Consider a{,2)-step consensus protocBl tolerates up tgf Byzantine faults, (ii) is two-step despite
For each, 0 < i < n, letI’ be the initial configuration in ¢ failures, and (iii) requires onlgf + 2¢ processes. We
which the first; processes propose 1, and the remaininrtition the processes in five sets,. .. ps.

processes propose 0. By the definition o2)-step, for By | emma 9 there exist at,@)-step bivalent con-
every I' and for all 7 such that|F| < ¢ there exists figuration I, and two two-step executions, and pi,

at least oneF-silent two-step executiop® of P. By respectivelyF,-silent and;-silent, such that(py) = 0
property CS1 of consensus(p’) = 0 andc(p") = 1. and¢(p;) = 1. We name the sets of processes so that

Consider nows, = {p; : 1 < j < t}. There must exist r, —). and F; = p; (sop; and ps have sizet). The
two neighbor configurationg’ and I'*! and two ;- remaining sets have sizé

silent two-step executionsg andp™! such thate(p?) #

c(p™") and '™ is the lowest-numbered execution Wm}irst round, where the state of is a set of local states,

consensus value 1. Note that ¢, since bothy' andp”l one for each process ip;. In particular, lets; andt;
are Fy-silent and the consensus value they reach cannot P . 1N P ’ ! '

depend on the value proposed by the silent proces(sjggmte the state of; at the end of the first round ¢

in Fo. We claim that one off’ and I'*! is (t,2)-step and py, respectivelyp; has states; (respectively;) at
: . - the end of any execution that produces for its nodes the
bivalent. To prove our claim, we set= min(i + ¢, n)

and define, as the setp; : o+ 1 —t < j <). same view ag, (respectivelyp;). Itis possible for some

Note that by constructionz and Z. are disioint and Processes to be in anstate at the end of the first round
(1) e yBy the definiti’oon of 0 ':here mqut n turn While at the same time others are irt atate. Consider
1' 1

exist two new two-step executiond and i+ that are now three new (not necessarily two-step) executions of

Fi-silent. The only difference between configuratidihs P, pss pry ?‘”dpc: that at the end of thel_r f|rst_round have
andTi+! is the value proposed by, which is silent in p1 andps in their s states ang, andps in their t states.

7t and7i*!, since it belongs t¢F;. Hence, all processes-rh(.e state ops S differentin the three gxecut!ons: M.
3 is in statess; in py, p3 is in statets; and in p., p3

outside Off.l (aF Iezast Onirf)f which 'Z-S (:_orrecltllhaVéérashes at the end of the first round. Otherwise, the three
the same view int* and '™, and ¢(n") = c(n"*).

Sincec(p’) # c(p1) ande(r) = e(xi 1), either I o executions are very much alike: all three executions are

I'*1 has two two-step executions that lead to differegp-Silent from the second round on—jn. becauseps

consensus values. This is the definition oft@)-step has crashed, ip; and p; because all processes n
are slow. Further, all processes other than thosgsin

We focus on the state qfi, ..., ps; at the end of the

bivalent configuration. [| . .
9 send and deliver the same messages in the same order
in all three executions, and all three execution enter a
Po S2| 83 || 54 > similar with respect to ps period of synchrony from the second round on, so that
CoT in each execution consensus must terminate and some
ps 82 83 It4 | L . . .
> similar with respect to p; value must be learned. We consider three scenarios, one
Pe sa| X | ta for each execution.

a) ps scenario: In this scenario, thg' nodes inpy
are Byzantine: they follow the protocol correctly in their
messages to all processes but thosgsinThe messages
that nodes irp, send tops in round two are consistent
Fig. 6. Contradiction sketch: The figure represents a systém \yith pa being in states,, rather thart,. Further, in the

too few (3f + 2¢t) processes. Each row represents an execution, a
the boxes represent sets of processes. Dotted boxes cBytaintine ggcond round op, the messages from; to p; are the

nodes. The first executionp() learns 0, and the last learns 1. Eaciast to reachpz (and are therefore not delivered by),
execution is similar to the next, leading to the contraditti and all other messages are deliveredp@y'n the same

order as inpg. The view ofps at the end of the second
Figure 6 shows a sketch of the idea at the core of theund of p, is the same as in the second roundpgf
proof: with only 3 f + 2t acceptors we can construct twdhence nodes ips learn 0 at the end of the second round
executions fo and p;) that are indistinguishable, everof p, (it must learn then becausg is two-step). Since
though they learn different values. nodes inps are correct and for each nogec p3 ps £
Theorem 1:Any (¢,2)-step Byzantine fault-tolerantpy, thenc(ps) = c(pg) and all correct processes jn
consensus protocol requires at le@st-2t+1 processes. eventually learn O.

T > similar with respect to p;

ts || ta

2]

[

==
w
[\

Pt

p1 to || t3 || ta

similar with respect to ps
5

13

. . . . request
b) p: scenario: In this scenario, the’ nodes inp, ., reseonse

are Byzantine: they follow the protocol correctly in their ~ ©fe™ 0 . . .
messages to all processes but thosesinin particular, Proposers __.-_
the messages that nodesyin send tops in round two :
are consistent wittp, being in states, rather thanss.
Further, in the second round @f the messages from Learners
p1 to p3 are the last to reachs (and are therefore not

delivered byps), and all other messages are delivered by

p3 in the same order as W‘l The view ofps at the end Fig. 7. FaB state machine with tentative execution.

of the second round g#, is the same as in the second

round of p1; hence nodes ip3 learn 1 at the end of the

second round ofy;. Since nodes imp; are correct and and the requests are eventually re-executed in the correct

for each node € ps3, p; £ p1, thenc(p,) = ¢(p1) and order.

all correct processes ip, eventually learn 1. FaB Paxos loses its edge, however, in the special case
c) p. scenario: In this scenario, thef nodes inp; of read-only requests that are not concurrent with any

have crashed, and all other processes are correct. Sifgad-write request. In this case, a second optimization

Pe is Synchronous from round two on, every Corre(ﬁroposed by Castro and Liskov allows both PBFT and

Acceptors

tentative
execution

verification

process must eventually learn some value. FaB Paxos to service these requests using just two
Consider now a procegsn p; that is correct irps, py, rounds.
and p.. By constructionp, X p;, and therefore:(p,) = The next section shows further optimizations that re-

c(py) = c(p1) = 1. However, again by construction, £ duce the number of learners and allow nodes to recover.

ps, and thereforex(p.) = c(ps) = ¢(pp) = 0. Hencep
in p. must learn both 0 and 1: this contradicts CS2 and VIIl. OPTIMIZATIONS
CS3 of consensus, which together imply that a corre&t

. 2f 4+ 1 Learners
learner may learn only a single value. |

Parameterized FaB Paxos (and consequently FaB
Paxos, its instantiation for = f) requires3f + 1
learners. We show how to reduce the number of learners

Fast consensus translates directly into fast state m@a2f + 1 without delaying consensus. This optimization
chine replication: in general, state machine replicatiorquires some communication and the use of signatures
requires one fewer round with FaB Paxos than withia the common case, but still reaches consensus in two
traditional three-round Byzantine consensus protocolscommunication steps in the common case.

A straightforward implementation of Byzantine state In order to ensure that all correct learners eventually
machine replication on top of FaB Paxos requires onlgarn, Parameterized FaB Paxos uses two techniques.
four rounds of communication—one for the clients t&irst, the retransmission part of the protocol ensures that
send requests to the proposers; two (rather than the trd-+ f + 1)/2] learners eventually learn the consensus
ditional three) for the learners to learn the order in whickalue (line 204) and allows the remaining correct learners
requests are to be executed; and a final one, after thepull the decided value from their up-to-date peers
learners have executed the request, to send the respdlises 266—282).
to the appropriate clients. FaB can accommodate existingilo adapt the protocol to an environment with only
leader election protocols (e.g. [3]). 2f + 1 learners, we first modify retransmission so that

The number of rounds of communication can be r@roposers are content with+ 1 acknowledgments from
duced down to three usirtgntative executiof8], [9], an learners—retransmission may now stop when only a
optimization used by Castro and Liskov for their PBF§ingle correct learner knows the correct response.
protocol that applies equally well to FaB Paxos. As Second, we have to modify the “pull” mechanism
shown in Figure 7, learners tentatively execute clientsecause now a single correct learner must be able to
requests as supplied by the leader before consensusasvince other learners that its reply is correct. We
reached. The acceptors send to both clients and learrntbesefore strengthen the condition under which we call
the information required to determine the consensasvalue stable (line 204) by adding information in the
value, so clients and learners can at the same timeknowledgments sent by the learners. In addition to
determine whether their trust in the leader was well puhe client’s request and reply obtained by executing that
In case of conflict, tentative executions are rolled backquest, acknowledgments must now also confain1

VIl. STATE MACHINE REPLICATION

14

signatures from distinct learners that verify the sanies answer). Checkpoints could be used for faster state

reply. transfer as has been done before [3], [12].
After learning a value, learners now sign their ac-
knowledgment and send that signature to all learners, IX. CONCLUSION

expecting to eventually receivg + 1 signatures that FaB Paxos is the first Byzantine consensus protocol

verify their acknowledgment. Since there afe+ 1 . o o
; to_achieve consensus in just two communication steps
correct learners, each is guaranteed to be able to even;

) : IN the common case. This protocol is optimal in that it
tually gather an acknowledgment with+ 1 signatures P P

- . . uses the minimal number of steps for consensus, and it
that will satisfy the leader. The leader is then assurea . P
udses the minimal number of processes to ensure two-step

that at least one_of the leamers yvho sent it a VaIIﬂperation in the common case. Additionally, FaB Paxos
acknowledgment is correct and will support the pu

In the common case does not require expensive digital
subprotocol: learners query each other, and eventuasﬂ natures a P g

all correct learners receive the valid acknowledgmen : T
The price for common-case two-step termination is a

and learn the decided value. This exchange of signatufes .) :
. . . “higher number of acceptors than in previous Byzantine

takes an extra communication step, but this step is ng .

) " : consensus protocols. These additional acceptors are pre-

in the critical path: it occursifter learners have learned _. :

the value cisely what allows a newly elected leader in FaB Paxos

. to determine, using progress certificates, whether or not
The additional messages are also not in the critical g prog

& value had already been chosen—a key property to
path when this consensus protocol is used to implem y y property

.) Jarantee the safety of FaB Paxos in the presence of
a replicated state machine: the learners can execpt

o o : . ffures.
the client’s operation immediately when learning the

.) . In traditional state machine architectures, the cost
operation, and can send the result to the client W|thog{ this additional replication would make FaB Paxos
waiting for the f + 1 signatures. Clients can alread

L2 : . Ninattractive for all but the applications most committed
distinguish between correct and incorrect replies since

only correct replies are vouched for y+ 1 learners Fo reducing latency. However, the number of additional
y P T " acceptors is relatively modest when the goal is to tolerate

a small number of faults. In the state machine architec-
B. Rejoin ture that we have recently proposed, where acceptors are
es&gnificantly cheaper to implement [23], the design point

By allowing repaired servers (for example, a crash iod by FaB P b h ntriaui
node that was rebooted) to rejoin, the system can cdif:cupied by Fab Faxos becomes much more intriguing.

tinue to operate as long as at all times no more tfian Even thoughSf + 1 acceptors is the lower bound

servers are either faulty or rejoining. The rejoin protoc&’r two-step termination, it is possible to sometimes

must restore the replicas’s state, and as suchiitis diﬂfergﬂmplete In two communlcatlon steps even with fewer
depending on the role that the replica plays. acceptors. Parameterized FaB Paxos decouples fault-

The only state in proposers is the identity of th%olerance from two-step terminaf[ion by spanning the

current leader. Therefore, a joining proposer queries Sti'g[]h space beltweenba By?antme consetniﬁstprotlocol

qguorum of acceptors for their current proof-of-leadersh ' € minimal number of Servers (but that only

and adopts the largest valid response uarantees two-step execution when there are no faults)
: to the full FaB protocol in which all common case

Acceptors must never accept two different values for

the same proposal number. In order to ensure that tﬁféecutlons are two-step executions. Parameterized FaB

st i a opving sicoprcueres e onfILATSL] | 2 11 s o wleee By

acceptors for the last instance of consenguand it the common case when there are at lures (we
then ignores all instances untih- & (k is the number of . N
g Mk (say that it is {,2)-step). We have seen that this is the

instances of consensus that may run in parallel). oncd

the system moves on to instanée- &, the acceptor has _rmmmal number of servers with which it is possible to

completed its rejoin. implement {,2)-step consensus.
The state of the learners consists of the ordered list
of operations. A rejoining learner therefore queries other
learners for that list. It accepts answers that are vouchedVe would like to acknowledge the anonymous referees
by f + 1 learners (either becausé+ 1 learners gave for their insightful suggestions toward improving the
the same answer, or in the case2gf+ 1 Parameterized presentation of the paper. Moreover, this work was
FaB a single learner can shoyv+ 1 signatures with supported in part by NSF CyberTrust award 0430510, an

ACKNOWLEDGMENTS

15

Alfred P. Sloan Fellowship and a grant from the Texdg2] F. B. Schneider. Implementing fault-tolerant sergiessing the
Advanced Technology Program.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

state machine approach: a tutorighCM Computing Surveys
22(4):299-319, Sept. 1990.

[23] J.Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and.\dahlin.

REFERENCES

R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Recon
structing PaxosSIGACT News34(2):42-57, 2003.

M. Castro and B. Liskov. Practical Byzantine fault t@ace.

In OSDI: Symposium on Operating Systems Design and Imple-
mentation 1999.

M. Castro and B. Liskov. Practical Byzantine fault taace and
proactive recovery., ACM Transactions on Computer Systems
20(4):398-461, 2002.

P. Dutta, R. Guerraoui, and M. Vukolic. Best-case commpl

ity of asynchronous Byzantine consensus. Technical Report
EPFL/IC/200499, EPFL, Feb. 2005.

M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty processurnal of the
ACM, 32(2):374-382, 1985.

R. Friedman, A. Mostefaoui, and M. Raynal. Simple and
efficient oracle-based consensus protocols for asyncheono

Separating agreement from execution for Byzantine fauldrto
ant services. IrProceedings of the 19th ACM Symposium on
Operating Systems Principlgsages 253-267. ACM Press, Oct.
2003.

Byzantine systems.|EEE Transactions on Dependable an Jean-Philippe Martin is a Ph.D. candidate at
Secure Computing?(1):46-56, Jan. 2005. the Department of Computer Sciences at The
M. Hurfin and M. Raynal. A simple and fast asynchronous University of Texas at Austin. He has a M.S.
consensus protocol based on a weak failure detdtstributed PLACE and received his B.S in Computer Sciences
Computing 12(4):209-223, Sept. 1999. PHOTO from the Swiss Federal Institute of Technology
I. Keidar and S. Rajsbaum. On the cost of fault-tolerant HERE (EPFL). His main research interests are trust-
consensus when there are no faults. Technical Report MIT- worthy systems, Byzantine fault-tolerance, and
LCS-TR-821, MIT, 2001. cooperative systems.
B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wies-
mann. Using optimistic atomic broadcast in transaction pro
cessing systemslEEE Transactions on Knowledge and Data
Engineering 15(4):1018-1032, 2003.
K. Kursawe. Optimistic Byzantine agreement. Pnoceedings
of the 21th IEEE Symposium on Reliable Distributed Systems
pages 262-267, Oct. 2002.
L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Communications of the ACM21(7):558—
565, July 1978.
L. Lamport. The part-time parliamentACM Transactions on
Computer Systemd6(2):133-169, 1998.
L. Lamport. Lower bounds for asynchronous consensus. |
Proceedings of the International Workshop on Future Dirats
in Distributed Computingpages 22—-23, June 2002. Lorenzo Alvisi received the Laurea degree
L. Lamport. Lower bounds for asynchronous consenseshT . :
; (summa cum laude) in physics (1987) from the
nical Report MSR-TR-2004-72, July 2004. . .
L. Lamport. Fast Paxos. Technical Report MSR-TR-20032; University of Bologna, Ital_y, the MS (1994)
2605 ' ' ' PLACE and PhD (1996) .degr.ees in gomputer science
L Lalmport and M. Fischer. Byzantine generals and tmatisn PHOTO from Comell University. He_ IS an assoclate
) . | L . HERE professor and faculty fellow in the Department
commit protocols. Technical Report 62, SRI Internation8B2. A . .
D. Malkhi and M. Reiter. Byzantine quorum systemBis- of Computer_Sme_nce_s at the Un|ve_r5|ty of
tri.buted Computin.g 11(4)_'203_213 1998 ’ Texas at Austin. His primary research interests
: ! : are in dependable distributed computing. Dr.

J.-P. Martin and L. Alvisi. Fast Byzantine Paxos. Techh
Report TR-04-07, University of Texas at Austin, Departme
of Computer Sciences, Feb. 2004.

J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzanie
storage. In16th International Conference on Distributed
Computing, DISC 20Q2pages 311-325, Oct. 2002.

R. Rodrigues, M. Castro, and B. Liskov. BASE: using adust
tion to improve fault tolerance. IfProceedings of the 18th
ACM Symposium on Operating Systems Principtesgjes 15—
28. ACM Press, Oct. 2001.

A. Schiper. Early consensus in an asynchronous systgmav
weak failure detectorDistributed Computing10(3):149-157,
Apr. 1997.

Alvisi is the recipient of an Alfred P. Sloan Research FeBbip, an
NBm Faculty Partnership award, and a National Science Fation
CAREER award. He is a senior member of the IEEE.

201 leader.onStart():

202 Il proposing (PC is null unless recovering)

203 send (PROPOSE, value ,number,PC) to all acceptors
204 until |Satisfied| >= [(p+f+1)/2]

205

206 leader.onElected (newnumber, proof):

207 pnumber := newnumber // no smaller than previous pnumber
208 if (not leader for pnumber) then return

209 send (QUERY,pnumber, proof) to all acceptors

210 until get (REP,(value ,pnumber,commiproof,j))) from
211 a — f acceptors

212 PC := the union of these replies

213 if 3 v’ s.t. vouchesfor(PC, v',pnumber), then value := v’
214 onStart()

215

216 proposer.onLearned(): from learner |

217 Learned := Learned uniodl}

218 if |Learned >= [(I+f+1)/2] then

219 send (SATISFIED) to all proposers

220

221 proposer.onStart():

222 wait for timeout

223 if |Learned < [(I+f+1)/2] then

224 suspect the leader

225

226 proposer.onSatisfied () : from proposer x

227 Satisfied := Satisfiedu {x}

228

229 acceptor.onPropose(value ,pnumber, progcert): froeader
230 if pnumber != leade+election.getRegency() then

231 return // only listen to current leader

232 if accepted (v,pn) and ((pnumbepn) or ((v!=value)
233 and not vouchesfor(progcert,value ,pnumber))) then
234 return // only change with progress certificate
235 accepted := (value,number) // accepting

236 send (ACCEPTED, accepted) to all learners

237 Il i is the number of this acceptor

238 send (ACCEPTED, value ,pnumber)j to all acceptors

239

240 acceptor.onAccepted(value ,pnumber,j):

241 if pnumbertentativeecommit.proof[j]. pnumber then

242 tentativecommit-proof[j] := (ACCEPTED, valuej ,pnumber,) ;
243 if valid(tentativecommit_.proof ,value,leaderelection.

getRegency()) then

244 commitproof := tentativecommit_.proof

245 send (COMMITPROOF, commiproof) to all learners
246

247 acceptors.onQuery(pn, proof): from proposer

248 leader-election.consider(proof)

249 if (leaderelection.getRegency() != pn) then
250 return // ignore bad requests

251 leader :=

252 send (REP,(accepted.value,pn,commiroof,i);) to leader

leaderelection.getLeader ()

Fig. 5. Parameterized FaB (with recovery)

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

16

learner.onAccepted(value ,ponumber): from accepter a
accepted[ac] := (value,pnumber)
if there are[(a+3f+1)/2] acceptors x
such that accepted[x] == (value ,pnumber) then
learn (value ,pnumber) // learning
learner.onCommitProof(commigroof): from acceptor ac
cp[ac] := commitproof
(value ,pnumber) := accepted[ac]
if there are[(a+f+1)/2] acceptors x
such that valid(cp[x],value,pnumber) then
learn (value ,pnumber) // learning
learner.learn(value ,pnumber):
learned := (value,pnumber) //
send (LEARNED) to all

learning
proposers

learner.onStart():
wait for timeout
while (not learned) send (PULL) to all learners
learner.onPull(): from learner In
If this process learned some pair (value,pnumber) then
send (LEARNED, value ,pnumber) to In

learner.onLearned(value ,pnumber): from learner In

Learn[In] := (value,pnumber)

if there aref+1 learners x

such that learn[x] == (value,pnumber) then
learned := (value,pnumber)

valid (commitproof,value ,pnumber):
c := commitproof

if there are[(a+f+1)/2] distinct values of x such that
(c[x].value == value) and (c[x].pnumber == pnumber)

then return true

else return false
vouches-for (PC, value ,pnumber):
if there exist[(a—f+1)/2] x such that
all PC[x].value ==
and d != value
then return false
if there exists x, d!=value such that
valid (PC[x].commitproof,d, pnumber)
then return false

return true

