
(Position Paper) BFT: the Time is Now

Allen Clement
University of Texas at Austin

aclement@cs.utexas.edu

Mirco Marchetti
University of Modena and

Reggio Emilia
mirco@cs.utexas.edu

Edmund Wong
University of Texas at Austin
elwong@cs.utexas.edu

Lorenzo Alvisi
University of Texas at Austin
lorenzo@cs.utexas.edu

Mike Dahlin
University of Texas at Austin
dahlin@cs.utexas.edu

Categories and Subject Descriptors
D.4.5 [Software]: Operating Systems—Reliability, Fault Tol-
erance

General Terms
Fault Tolerance, Reliability

Keywords
Byzantine Fault Tolerance

1. INTRODUCTION
Data centers strive to provide reliable access to the data
and services that they host. This reliable access requires the
hosted data and services hosted by the data center to be both
consistent and available. Byzantine fault tolerance (BFT)
replication offers the promise of services that are consistent
and available despite arbitrary failures by a bounded number
of servers and an unbounded number of clients.

The thesis of this position paper is simple: BFT is on the
verge of becoming a practical reality—but clearing the last
hurdles will require to rethink, once again, how BFT systems
must be designed and implemented.

Three fundamental trends support our thesis that widespread
adoption of Byzantine fault tolerance is at hand.

First, falling hardware costs and the increased value and im-
portance of services are making significant non-BFT repli-
cation a standard commercial practice [5, 12, 13]. Although
fault tolerance has long been an after-thought for non-critical
applications, it is becoming increasingly worthwhile to use
hardware generously to defend against component failures
and geographic catastrophes [20]. For example, the Google

file system (GFS) relies on three-way replication as a way to
protect data from crash failures [13].

Second, in systems where both reliability and availability are
important properties, crash tolerance is not enough. Byzan-
tine faults are a frequent occurrence in the wild, manifesting
themselves as disks that do not operate in a fail-stop man-
ner [4], file systems that implement inadequate actions to
recover from disk faults [22], file systems with bugs in their
crash recovery code [25, 26], human errors [14, 21], or pro-
cessors that exhibit transient Byzantine behavior because
of soft errors [19, 23] and so on. Simple hardware failures
can have dramatic consequences. For example, a single mal-
functioning NIC at Los Angeles International Airport stalled
immigration for more than 12 hours [8, 10].

Third, ten years of research in practical Byzantine fault tol-
erance [7, 6, 1, 11, 18, 17, 15, 16, 24, 27] have reduced
significantly the costs traditionally associated with BFT.
Throughput and latency of BFT replicated services are now
competitive with those offered by their unreplicated counter-
parts [17] and, by separating agreement from execution [27],
the effective overhead for BFT replication has been brought
in line with the 3-way replication used by existing commer-
cial systems such as GFS.

In summary, we believe that we are on the verge of reaching
the inflection point where it becomes advantageous to trade
increasingly inexpensive hardware for the piece of mind pro-
vided by BFT replication. However, we also believe that,
unless the community changes fundamentally its approach
towards building high performance BFT systems, this op-
portunity may be lost.

From PBFT [6, 7] to Zyzzyva [17], the design and implemen-
tation of high performance BFT systems has adopted the
common-sense engineering principle of optimize for the com-
mon case, carefully tuning their systems to be extremely ef-
ficient during fault-free execution. We contend that this oth-
erwise sound approach should be considered harmful when
designing BFT system, as it encourages the proliferation of
corner cases that result in dramatic performance degrada-
tions in the presence of faults. In other words, the design
choices that have informed today’s BFT systems may have
made them too fragile for actual deployment: current BFT

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© ACM 2008 ISBN: 978-1-60558-296-2 ...$5.00

systems can safely survive Byzantine faults, but can hardly
be said to tolerate them, as Byzantine faults can render these
systems virtually unavailable.

We conclude by briefly reporting on Aardvark, our recent
effort that demonstrates that true Byzantine fault tolerance
can be achieved without sacrificing high performance. For
complete details of the protocol and system design see [9].

Section 2 reviews the advances that have reduced the over-
heads of BFT replication. Section 3 exposes the dangers of
over aggressive optimizations in existing BFT systems. Sec-
tion 4 makes the case for a new approach in designing BFT
systems which we demonstrate

2. LOW OVERHEAD BFT
Existing BFT replication systems achieve low overheads by
paying careful attention to the common case in which exe-
cutions are gracious. In PBFT [7] and Zyzzyva [17] a gra-
cious execution is one in which the network is well behaved
and there are no faulty clients or replicas; in Q/U [1] and
HQ [11] a gracious execution has the additional constraint
that client requests do not contend with each other. System
designers are able to take advantage of properties of their
chosen common case in order to provide excellent system
throughput and reduce overheads as shown in the first col-
umn of Figure 1. In the remainder of this section we review
the design of existing systems.

For review, Figure 2 illustrates the basic communication pat-
terns in Castro and Liskov’s PBFT protocol [7]. A set of
n ≥ 3f + 1 servers select one of their number to be the pri-
mary. A client sends its REQUEST message to the primary,
and the primary assigns the request a sequence number and
sends a PRE-PREPARE message to the other servers. The
servers then do an all-to-all exchange of PREPARE mes-
sages and then of COMMIT messages. Once a sufficient
number of servers agree on the request’s order in a lineariz-
able total order of all requests, they execute the request and
send a REPLY message to the client. A clients acts on the
REPLY once it has at least f + 1 matching replies.

To ensure progress, a client retransmits a request to all repli-
cas if it does not receive a reply by a timeout, and the repli-
cas forward the request to the primary. Each replica then
expects the request to complete execution of a request by
a timeout. If no requests complete execution in time, the
replica assumes that the primary is faulty and initiates a
view change by stopping all processing of messages in the
current view and sending a VIEW-CHANGE message to all
servers. Once a sufficient number of replicas initiate a view
change, they are able to start the next view with a different
primary. Additionally, if a server falls behind in this asyn-
chronous system, it is able to catch up by fetching a recent
checkpoint and recent messages from its peers.

A key performance optimization is the use of message au-
thentication codes (MACs) for authentication rather than
digital signatures. In particular, REQUEST, PRE-PREPARE,
PREPARE, and COMMIT messages contain an authenticator—
an array of n MACs, one for each server. For practical values
of n, generating n MACs is at least an order of magnitude
faster than verifying a signature. For example, on a 2.0GHz

C

0

1

2

3

REQUEST PRE−PREPARE PREPARE COMMIT REPLY

Figure 2: Basic communication pattern in PBFT

Pentium-M, openssl 0.9.8g can compute over 500,000 MACs
per second for 64 byte messages, but it can only verify 6455
1024-bit RSA signatures per second or produce 309 1024-bit
RSA signatures per second.1

Other representative protocols are similar in principle, but
vary their message patterns. For example, Zyzzyva [17]
speculatively executes requests, replies to clients after the
PRE-PREPARE phase, and can skip the subsequent steps
if enough replies match. Q/U [1] eliminates the primary and
uses client retransmissions to resolve conflicting updates.
HQ [11] is a hybrid protocol that resembles Q/U in the
absence of contention and relies on a protocol like PBFT
rather than client back-off to resolve conflicts.

3. THE DARK SECRET OF BFT
The dark secret of BFT replication protocols is that they
rely heavily on gracious execution in order to maintain high
throughput. One might hope that exotic “malicious server”
attacks requiring careful coordination or an uncooperative
network would be required to slow existing BFT systems
dramatically; unfortunately existing protocol designs and
implementations are sufficiently high strung that they can
be disrupted by decidedly non-exotic behaviors including
mal-formed messages from a single faulty client, primary,
or replica even when the network is well behaved. Figure 1
shows the impact of a variety of Byzantine behaviors on the
throughput of existing systems.

The malformed MAC column of Figure 1 shows the impact
of a big MAC attack on system throughput. In a big MAC
attack, a faulty client provides a MAC that can be authenti-
cated by a single server but not by any other servers. When
the primary orders the request, the other replicas are un-
able to authenticate its authenticity and a resolution sub
protocol is required. This problem does not arise during
gracious executions in which there are no faulty clients or
servers and the network is well behaved. Unfortunately a
single faulty client can force the resolution protocol to be
executed—additionally, a faulty primary or replica can re-
quest the resolution protocol and it is impossible for any
node to ascertain whether the client, primary, replica, or
network is at fault. Current implementations of PBFT [7]
and Zyzzyva [17] observe a throughput of 0 when faced with
this attack. HQ [11] is not vulnerable to the attack as de-
scribed above since it does not rely on a primary, but a sim-

1Elliptic curve algorithms have faster signature generation
(e.g., 2275 per second for 160-bit signatures, which are be-
lieved to be approximately equivalent in strength to 1024-
bit RSA signatures) but slower signature verification (e.g.,
499/s for 160-bit signatures); most PBFT messages are gen-
erated once and read n− 1 times.

System Gracious Execution Malformed MAC Client Spam Slow Primary Replica Spam
1ms 10ms 100ms

PBFT [7] 36350 0 crash 5396 4635 1097 0
Zyzzyva [17] 48253 0 crash 14547 5141 crash 0
HQ[11] 15873 0∗ 0 N/A 0
Aardvark [9] 40527 40527 7873 38084 39089 37903 11706

Figure 1: Operations per second of BFT Replication protocols under various node behaviors when the network
is well behaved and in the presence of 200 correct clients. Gracious execution corresponds to scenarios in
which the network and all participating nodes are well behaved. The Malformed MAC column corresponds
to scenarios in which a single client produces a MAC that can be authenticated by exactly one server. ∗ The
HQ prototype does not implement the full recovery path for malformed client MACs, so the attack cannot
technically be implemented. The Client Spam column covers the case where a single faulty client floods
the servers with 9000B messages. The Slow Primary column shows the throughput when a single primary
introduces a delays of 1ms, 10ms, and 100ms before sending PRE-PREPARE messages. The Replica Spam
columns show the impact of a replica that spams other servers with 9000B messages.

ilar attack is possible. The attack cannot be implemented
in HQ [11] since all clients and replicas are hard-coded to
share the same keys.

The client and replica spam attacks in Figure 1 are im-
plemented by a single process sending 9000 byte messages
to all of the replicas from either a client or non-primary
server machine. Current implementations of PBFT [7] and
Zyzzyva [17] crash under the strain of these attacks and the
throughput of HQ [11] is driven to 0 as the attacking node
prevents legitimate clients from opening TCP connections
to the servers.

The primary is a distinguished replica that is uniquely posi-
tioned to control the system’s throughput—no request can
be executed until it is assigned a sequence number by the pri-
mary. During gracious executions, the primary is always cor-
rect and provides optimal throughput. Previous authors [2,
3] have observed that a slow primary can have a substantial
impact on system throughput. The slow primary column
of Figure 1 shows the dramatic drop in system throughput
when the primary delays ordering requests by 1, 10, and
100ms. HQ [11] does not rely on a primary to order re-
quests so is not subject to a slow primary attack; the lack
of a primary leaves HQ unable to batch requests and is the
primary reason its peak throughput is a factor of 2 slower
than PBFT and a factor of 3 slower than Zyzzyva.

Existing BFT systems guarantee consistency at all times and
provide excellent performance during gracious executions in
which there are no failures. Unfortunately, the design and
implementation decisions made to achieve optimal perfor-
mance during gracious executions leave the systems vulner-
able to severe disruption by a single faulty client or server.

4. BFT: FROM Z TO A
We argue that many BFT systems should be willing to give
up some best case performance in order to provide good
performance over a wider range of situations for two reasons.

First, in current systems the best case is fragile, so building a
system around its best case performance may be dangerous.
In particular, (1) the best case is achieved only when very
strong assumptions hold and (2) departing from the best
case can devastate performance because the system then

provides at best eventual progress and at worst no practi-
cal progress. This fragility is not just a theoretical problem,
as shown in Section 3.

Second, many systems may be insensitive to modest reduc-
tions in peak agreement throughput because of limited de-
mand or other bottlenecks.

In particular, many services’ peak demands are far under the
best case throughput offered by existing BFT replication
protocols. For such systems, good enough is good enough,
and modest reductions in best case agreement throughput
will have little effect on end to end system performance. In
such systems, increased robustness may come at effectively
no cost.

Similarly, when systems have other bottlenecks, Amdahl’s
law limits the impact of changing the performance of agree-
ment. For example, Zyzzyva can execute about 50,000 null
requests per second [17], suggesting that agreement con-
sumes 20µs per request. If, rather than a null service, we
replicate a service for which executing an average request
consumes 100µs of processing time, then peak throughput
with Zyzzyva would be about 8333 requests per second. If,
instead, agreement were accomplished via a protocol with
double the overhead of Zyzzyva (e.g., 40µs per request),
peak throughput would still be about 7100 requests/second.
In this hypothetical example, doubling agreement overhead
reduces peak end-to-end throughput by less than 15%. Cas-
tro and Liskov [7] observed that the overheads of Byzantine
consensus is in the noise compared to the overheads associ-
ated with running an NFS server.

In [9] we present Aardvark, a BFT replication system de-
signed to provide good performance in all fault scenarios by
avoiding common case optimizations that expose obscure
corner cases. In the context of previous systems, Aardvark
takes the surprising steps of judiciously relying on signa-
tures during normal operation, frequently undergoing view
changes in order to elect a new primary, and forgoing IP
multicast for inter-replica communication. As shown in fi-
nal row of Figure 1 these design decisions impose a 30% hit
to throughput when compared to Zyzzyva, but result in a
protocol that performs significantly better in the presence
of failures.

5. CONCLUSION
Barbara Liskov observed that researchers spent several years
working on using cryptography to secure distributed systems
without widespread deployment of these ideas, leading at
least one prominent researcher to muse publicly that this line
of research, while theoretically intriguing, had been a prac-
tical failure. Within a few years, however, technology had
reduced the costs of these techniques and applications had
become more demanding—and rather suddenly distributed
authentication was in wide use. Almost one decade after
Castro and Liskov’s seminal paper [6], we believe history is
about to repeat itself.

In the same way that RAID disks are standard techniques
for reliable storage despite the extra costs, BFT has the
promise to become the norm in reliable systems. To make
BFT the norm for deploying highly reliable and available
systems, however, it is necessary to revisit how BFT systems
are designed and implemented. We argue that optimizing
the common case at the expense of introducing complicated
corner cases and performance trapdoors in the presence of
failures is going after foolâĂŹs gold. Fortunately, we believe
that Aardvark demonstrates that one can have one’s cake
and eat it too—just hold the ice cream.

6. ACKNOWLEDGEMENTS
The authors would like to thank the LADIS PC for the com-
ments and feedback. This work was partially supported by
NSF grants CSR-PDOS-0509338 and CSR-PDOS-0720649.

7. REFERENCES
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter,

and J. Wylie. Fault-scalable byzantine fault-tolerant
services. In Proc. 20th SOSP, Oct. 2005.

[2] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P.
Martin, and C. Porth. BAR fault tolerance for
cooperative services. In Proc. 20th SOSP, Oct. 2005.

[3] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine
replication under attack. In DSN 2008, 2008.

[4] W. Bartlett and L. Spainhower. Commercial fault
tolerance: A tale of two systems. IEEE Transactions
on Dependable and Secure Computing, 1(1):87–96,
2004.

[5] M. Burrows. The chubby lock service for
loosely-coupled distributed systems. In OSDI 2006,
pages 335–350, Berkeley, CA, USA, 2006. USENIX
Association.

[6] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In Proc. 3rd OSDI, pages 173–186, Feb.
1999.

[7] M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery. ACM Trans.
Comput. Syst., 2002.

[8] At lax, computer glitch delays 20,000 passengers.
http://travel.latimes.com/articles/la-trw-lax12aug12.

[9] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and
M. Dahlin. Making Byzantine fault tolerant systems
tolerate Byzantine faults. In NSDI, 2009.

[10] Contingency planning, for technology and terrorism.
http://www.washingtonpost.com/wp-
dyn/content/article/2007/08/15/AR2007081502282.html.

[11] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol
for Byzantine fault tolerance. In Proc. 7th OSDI, Nov.
2006.

[12] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, 2007.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In Proc. 19th SOSP, pages 29–43.
ACM Press, 2003.

[14] J. Gray. A census of Tandem system availability
between 1985 and 1990. IEEE Trans. on Reliability,
39(4), Oct. 2000.

[15] J. Hendricks, G. R. Ganger, and M. K. Reiter.
Low-overhead byzantine fault-tolerant storage. In
SOSP, 2007.

[16] C. Ho, R. van Renesse, M. Bickford, and D. Dolev.
Nysiad: Practical protocol transformation to tolerate
byzantine failures. In NSDI, 2008.

[17] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: speculative byzantine fault
tolerance. In SOSP, 2007.

[18] R. Kotla and M. Dahlin. High throughput Byzantine
fault tolerance. In DSN, June 2004.

[19] S. S. Mukherjee, J. S. Emer, and S. K. Reinhardt. The
soft error problem: An architectural perspective. In
HPCA, pages 243–247, 2005.

[20] Hurricane Katrina.
http://en.wikipedia.org/wiki/Hurricanekatrina.

[21] D. Oppenheimer, A. Ganapathi, and D. Patterson.
Why do internet services fail, and what can be done
about it, 2003.

[22] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,
H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Iron file systems. In SOSP ’05:
Proceedings of the twentieth ACM symposium on
Operating systems principles, pages 206–220, New
York, NY, USA, 2005. ACM Press.

[23] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger,
and L. Alvisi. Modeling the effect of technology trends
on the soft error rate of combinational logic. In DSN,
pages 389–398, Washington, DC, USA, 2002. IEEE
Computer Society.

[24] A. Sing, T. Das, P. Maniatis, P. Druschel, and
T. Roscoe. Bft protocols under fire. In NSDI, 2008.

[25] J. Yang, C. Sar, and D. Engler. Explode: a
lightweight, general system for finding serious storage
system errors. In USENIX’06, pages 10–10, Berkeley,
CA, USA, 2006. USENIX Association.

[26] J. Yang, P. Twohey, D. Engler, and M. Musuvathi.
Using model checking to find serious file system errors.
In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation, pages 19–19, Berkeley, CA, USA,
2004. USENIX Association.

[27] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. In Proc. 19th SOSP,
2003.

