
Bounded Wait-Free Implementation of
Optimally Resilient Byzantine Storage without

(Unproven) Cryptographic Assumptions

Amitanand S. Aiyer1, Lorenzo Alvisi1 ?, and Rida A. Bazzi2

1 Department of Computer Sciences,
University of Texas at Austin

2 Department of Computer Sciences,
Arizona State University

Abstract. We present the first optimally resilient, bounded, wait-free
implementation of a distributed atomic register, tolerating Byzantine
readers and (up to one-third of) Byzantine servers, without the use of
unproven cryptographic primitives or requiring communication among
servers. Unlike previous (non-optimal) solutions, the sizes of messages
sent to writers depend only on the actual number of active readers and
not on the total number of readers in the system. With a novel use of
secret sharing techniques combined with write back throttling we present
the first solution to tolerate Byzantine readers information theoretically,
without the use of cryptographic techniques based on unproven number-
theoretic assumptions.

1 Introduction

Distributed storage systems in which servers are subject to Byzantine
failures have been widely studied. Results vary in the assumptions made
about both the system model and the semantics of the storage implemen-
tation. The system parameters include the number of clients (readers and
writers), the synchrony assumptions, the level of concurrency, the fraction
of faulty servers, and the faulty behavior of clients. In the absence of syn-
chrony assumptions, atomic [8] read and write semantics are possible, but
stronger semantics are not [7]. We consider implementations with atomic
semantics in this paper.

We consider solutions in an asynchronous system of n servers that
do not communicate with each other (non-communicating servers) and
in which up to f servers are subject to Byzantine failures (f -resilient),
any number of clients can fail by crashing (wait-free), and readers can be

? This work was supported in part by NSF awards CSR—PDOS 0509338 and Cy-
berTrust 043051.

subject to Byzantine failures. Systems in which servers do not commu-
nicate with each other are interesting because solutions that depend on
communication between servers tend to have high message complexity,
quadratic in the number of servers [10, 4].

In the non-communicating servers model, the best previous solution
that provides wait-free atomic semantics requires 4f + 1 servers [3]. That
solution (i) requires clients and servers to exchange a finite number of
messages and (ii) limits the size of the messages sent by the servers to
the readers: the size of these messages is bound by a constant times the
logarithm of the number of write operations performed in the system—or,
equivalently, by a constant times the size of a timestamp. Unfortunately,
this solution allows messages sent to writers to be as large as the maxi-
mum number of potential readers in the system, even during times when
the number of actual readers is small. Recently, and concurrently with
our work, a wait-free atomic solution that requires not more than 3f + 1
servers was proposed, but that solution requires unbounded storage, mes-
sage of unbounded size, and an unbounded number of messages per read
operation [6].

None of these solutions consider Byzantine readers. Byzantine be-
havior of readers is relevant because wait-free atomic solutions require
that readers write to servers [5]. All existing work that considers Byzan-
tine readers uses cryptographic techniques based on unproven number-
theoretic assumptions [4, 9].

So, the existing results leave open two fundamental questions:

– Is the additional cost of f replicas over the optimal for unbounded
solutions required to achieve a bounded wait-free solution?

– Is the use of cryptographic techniques required to tolerate Byzantine
readers?

We answer both questions in the negative. We show that tolerating Byzan-
tine readers can be achieved with information-theoretic guarantees and
without the use of unproven number-theoretic assumptions. We also show
that a bounded wait-free implementation of a distributed storage with
atomic semantics is possible for n = 3f + 1 (which is optimal). Our
solution also bounds the size of messages sent to writers—a significant
improvement over Bazzi and Ding’s non-optimal solution [3].

To achieve our results, we refine existing techniques and introduce
some new techniques. The ideas we refine include concurrent-reader de-
tection and write-back throttling, originally proposed in the atomic wait-
free solution of Bazzi and Ding [3]. In what follows we give a high level
overview of the new techniques we introduce.

Increasing resiliency We increase the resiliency of our solution by intro-
ducing a new way by which a reader selects the timestamp of the value
it will try to read. Instead of choosing the f + 1’st largest among the
received timestamps, in our protocol the reader chooses the 2f + 1’st
smallest. In fact, we realized that the f + 1 largest timestamp worked
well for n = 4f + 1 simply because, for that value of n, the f + 1 largest
received timestamp coincides with the 2f + 1 smallest. We guarantee the
liveness of our new selection process by having the reader continuously
update the value of the 2f + 1’st smallest timestamp as it receives re-
sponses from new servers.

Bounding message sizes to writers We bound the sizes of messages sent to
servers using three rounds of communication between writers and servers.
These rounds occur in parallel with the first two rounds of the write
protocol and no server receives a total of more than two messages across
the three rounds. In the first round, the writer estimates the number of
concurrent readers; in the second and third rounds it determines their
identities.

Tolerating Byzantine readers We use write back throttling combined with
secret sharing to tolerate Byzantine readers. The idea is to associate a
random secret with each write and share the secret among the servers in
such a way that it can only be reconstructed if enough servers reveal their
shares. By requiring that a correct server only divulge its share if the write
has made sufficient progress, we use a reader’s ability to reconstruct the
secret as a proof that the reader is allowed to write back. By using secret
sharing, we avoid relying on unproven number theoretic assumptions and
achieve instead information-theoretic guarantees.

2 Model/Assumptions

The system consists of a set of n replicas (servers), a set of m writers and
a set of readers. Readers and writers are collectively referred to as clients.
Clients have unique identifiers that are totally ordered. When considering
boundedness of the sizes of messages, we assume that a read operation in
the system can be uniquely identified with a finite bit string (otherwise
any message sent by a reader can be unbounded in size). The identifier
consists of a reader identifier and a read operation tag. Similarly write
operations are identified by the writer identifier and the timestamp of the
value being written. Since timestamps are non-skipping [2], writes can
also be represented by finite strings.

Clients execute protocols that specify how read and write operations
are implemented. We assume that clients do not start a new operation
before finishing a previous operation. We assume that up to f servers may
deviate arbitrarily from the specified protocol (Byzantine) and that the
remaining (n − f) servers are correct. We require that the total number
of servers n be at least 3f + 1.

We assume that messages cannot be spoofed. While this is typically
enforced in practice using digital signatures, based on public key cryptog-
raphy, such techniques are not necessarily required to enforce our require-
ment. We assume FIFO point-to-point asynchronous channels between
clients and servers. Servers do not communicate with other servers.

Writers are benign and can only fail by crashing. In Section 3 we also
assume that the readers are benign; we relax this assumption in Section 5
where we consider Byzantine readers . When considering Byzantine read-
ers, we make the additional assumption that the channels between the
servers and the writers are private i.e. messages sent over these channels
cannot be eves-dropped by the adversary.

For our implementation, the probability that a given read operation
by a Byzantine reader improperly writes back a value is 2−k where k is
a security parameter. We choose k to be sufficiently large so that the
probability of failure for all operations is small. If k = o+k′ bits, where o
is the number of bits required to represent one operation, then the system
failure probability is 2−k′ .

Schemes based on public key cryptography, in the best case, also suffer
from this negligible small probability of error. If the unproven assumptions
that they are based upon do not hold, their probability of error can be
significantly larger.

3 Bounded Atomic Register

We present a single-writer protocol that implements a wait-free atomic
register using 3f + 1 replicas where the size and the number of messages
exchanged per operation is bounded.

Figures 1–3 present a single-writer-multiple-reader version of the pro-
tocol that assumes that the readers are benign. In Section 5 we show how
to extend this protocol to handle Byzantine readers. These protocols can
also be easily extended to support multiple-writers, using ideas from [3].
We refer the reader to [1] for proofs and a more detailed discussion.

3.1 Protocol Overview

The write operation The write operation is performed in two phases.
In phase 1, the writer sends the value to all the servers and waits

for (n − f) acknowledgements. The writer also initiates, in parallel, the
GetConcurrentReaders protocol to detect concurrent readers. The Get-
ConcurrentReaders is a bounded protocol, described in Section 3.3, that
detects all read operations which are considered to be active at all the
non-faulty servers, when the protocol is executed.

In phase 2, the writer asks all the servers to update their current
timestamp, and to forward the values that they have to all the concurrent
readers detected in phase 1. On receiving (n− f) acknowledgements, the
write operation completes.

This two-phase mechanism guarantees that if a non-faulty server up-
dates its current timestamp, then at least f + 1 non-faulty servers must
have already received the value.

The read operation To understand the reader’s protocol, we consider a
simple scenario. The reader starts by requesting second phase information
from the servers. Each server replies with the most current timestamp for
which it knows that the corresponding write operation reached its sec-
ond phase. Now, assume that the reader receives replies from all correct
servers in response to its request for second phase information. The times-
tamps returned by these correct servers can be quite different because the
reader’s requests could reach them at different times and the writer could
have executed many write operations during that time. Of special interest
is the largest second phase timestamp returned by a correct server. Let
us call that timestamp tlargest. If the writer executes no write operation
after its write of tlargest, then, when the reader receives the second phase
response with tlargest, it can simply request all first phase messages and
be guaranteed to receive f + 1 replies with identical value v and times-
tamp tlargest; at that time, the reader would be able to determine that, by
reading v, it would not violate atomic semantics. The reader then writes
back the value and then the timestamp in two phases to complete the
read operation.

While this scenario is instructive, it overlooks some complications. For
instance, a fast writer might write many values with timestamps larger
than tlargest. Also, the reader does not know when it has received replies
from all correct servers. If we assume, for now, that the reader can tell
when it has received values from all correct servers, then we can solve
the problems caused by a fast writer by having the fast writer help the

write() {
inc(ts)

// Phases W1
cobegin {
writeVal();
CR = GetConcurrentReaders()
} coend

// Phase W2
send (WRITE TS, ts, CR) to all

wait for (n− f) acks.
}
writeVal() {

send (WRITE VAL, 〈v, ts〉) to all
wait for (n− f) acks.

}

Fig. 1. The Writer’s Protocol

reader to terminate. This is done by having the writer detect concurrent
read operations and then have the writer request from the server to flush
out the written value to concurrent readers. Our solution requires that
servers keep the 3 most up to date written values because the detection of
concurrent readers is only guaranteed when the writer completely writes
a value whose timestamp is larger than tlargest + 1.

There remains the problem of the reader not knowing when it has
received replies from all correct servers. In fact, in response to its request
for second phase information, the reader can receive replies only from n−f
servers—f of which may be faulty—and it might not be able to terminate
based on these responses. We handle this situation by simply assuming
that these n− f messages are all from correct servers. If they indeed are,
then the reader will for sure be able to decide on tlargest by requesting
the first phase information (it is possible that the reader will be able to
decide even if they are not correct). If, however, the reader is unable to
decide, then there are other correct servers whose replies are not amongst
the n− f replies, and, by waiting long enough, the reader will eventually
receive some message from one of those servers. When an undecided reader
receives a new message, it recalculates tlargest assuming that, with the
new messages it received, it must finally have replies from all correct
servers: therefore, the reader re-requests the first phase information from
all servers. This process continues until the reader indeed receives replies
from all correct servers, in which case, it is guaranteed to decide.

Finally, in the above discussion we have assumed that the reader
knows what tlargest is—in reality, in our protocol the reader can only
estimate tlargest by using the 2f + 1’st smallest second phase timestamp.
We can show that this is sufficient to guarantee that the reader can decide
and that its decision is valid [1].

3.2 Protocol Guarantees

The protocol presented provides atomic semantics. The reader and the
writer protocols always terminate and are wait-free.

Definitions:

valid(〈v, ts〉) , |{s : 〈v, ts〉 ∈ Values[s] }| ≥ f + 1

notOld(〈v, ts〉) , |{s : last comp[s] ≤ ts}| ≥ 2f + 1

fwded(〈v, ts〉) , |{s : fwd[s] = 〈v, ts〉}| ≥ f + 1

read() {
∀s: last comp[s] = ⊥ ; fwd[s] = ⊥ ; Values[s] = ∅
// Phase R1
send (GET TS) to all

repeat
on receive (TS, s, ts) from server s

last comp[s] = ts
on receive (FWD, s, 〈v, ts〉, V als) from server s

fwd[s] = 〈v, ts〉
Values[s] = Values[s] ∪ V als

until (|{x : last comp[x] 6=⊥}| ≥ n− f)

// Phase R2
send (GET VAL) to all

repeat
on receive (TS, s, ts) from server s

last comp[s] = ts
send (GET VAL) to all

on receive (VALS, s, V als) from server s
Values[s] = Values[s] ∪ V als

on receive (FWD, s, 〈v, ts〉, V als) from server s
fwd[s] = 〈v, ts〉
Values[s] = Values[s] ∪ V als

until (∃〈vc, tsc〉 : fwded(〈vc, tsc〉)
∨(notOld(〈vc, tsc〉) ∧ valid(〈vc, tsc〉)))

// Phase R3
WriteBack(tsc)
return 〈vc, tsc〉
}

WriteBack(ts) {
// Round 1
send (WBACK VAL, 〈v, ts〉) to all

wait for (n− f) acks.
// Round 2
send (WBACK TS, ts) to all

wait for (n− f) acks.
}

Fig. 2. Reader’s protocol

Initialization:
READERS := ∅
RNextVal:= ⊥

server() {
// Write Protocol messages
on receive (WRITE VAL, 〈v, ts〉) from writer

if (RVal.ts < ts)
(RPrev2 , RPrev , RVal) := (RPrev , RVal, 〈v, ts〉)

send WRITE-ACK1 to the writer
on receive (WRITE TS, ts, CR) from writer

if (Rcts< ts)
Rcts:= ts

for each r ∈ CR:
send (FWD, s, RVal, { RVal, RPrev , RPrev2 })

to r
READERS = READERS \ CR
send WRITE-ACK2 to the writer

// Read Protocol messages
on receive (GET TS) from reader r:

READERS .enqueue(r)
send (TS, s, Rcts) to r

on receive (GET VAL) from reader r
send (VALS, s, { RVal, RPrev }) to r

// Write back Messages
on receive (WBACK VAL, 〈v, ts〉) from reader r

wait for (Rcts≥ ts− 1)
if (RVal.ts < ts)

(RPrev2 , RPrev , RVal) := (RPrev , RVal, 〈v, ts〉)
send WBACK-ACK1 to r

on receive (WBACK TS, ts) from reader r
wait for (RVal.ts ≥ ts)
if (Rcts< ts)

Rcts:= ts
READERS .remove(r)
send WBACK-ACK2 to r

// GetConcurrentReaders Protocol messages
on receive (GET ACT RD CNT) from writer

send (RDRS CNT, s, READERS .size())
to writer

on receive (GET ACT RDS, count) from writer
send (READERS, s, READERS [1:count])

to writer
on receive (GET ACT RDS INS, A) from writer

send (RDRS INS, s, READERS ∩ A) to writer }

Fig. 3. Protocol for server s

Boundedness A solution is amortized bounded if m operations do not
generate more than m × k messages, for some constant k without some
servers being detected as faulty. In an amortized bounded solution, a client
executing a particular operation might have to handle an unbounded
number of late messages. In a bounded solution a client operation will
always handle no more than k messages for some constant k and if more
than k messages are received, the faulty behavior of some servers will be
detected.

Our solution is amortized bounded. This does not rule out the pos-
sibility that a reader receives many unsolicited messages from a server.
All we can do in that case is to declare the server faulty and our proof
of boundedness does not apply to such rogue servers that are detected to
be faulty.

Definitions:

notLarge(s) , |{x : count[x] ≥ count[s]}| ≥ f + 1
GetConcurrentReaders() {
∀s: readers[s] := ⊥
∀s: count[s] := ⊥
∀s: sent[s] := false
union set := ⊥
// Get Active reader count
send (GET ACT RD CNT) to all servers
// Get Active reader lists from servers with valid count
repeat

on receive (RDRS CNT, s, count) from server s
count[s] = count
∀p: if (notLarge(p) ∧ sent[p] = false)

send (GET ACT RDS) to server p
sent[p] := true

on receive (READERS, s, R) from server s
if (¬ sent[s] ∨ (sent[s] ∧ count[s] 6= |R|))

detect failure of s
else

readers[s] := R
until (|{readers[s] : readers[s] 6=⊥}| ≥ f + 1)
union set := ∪sreaders[s]

// Get union set ∩ Active reader lists from the rest
for each (s : sent[s] 6= true)

send (GET ACT RDS INS, union set) to server s
repeat

on receive (READERS, s, R) from server s
if (¬ sent[s] ∨ (sent[s] ∧ count[s] 6= |R|))

detect failure of s
else

readers[s] := R
on receive (RDRS INS, s, R) from server s

if (R 6⊂ union set)
detect failure of s

else
readers[s] := R

until (|{s : readers[s] 6=⊥}| ≥ n− f)
CR = {x : |{s : x ∈ readers[s]}| ≥ (f + 1)}
return CR
}

Fig. 4. Bounded detection of readers: Writer code

To make the solution bounded for the reader techniques such as [3]
can be used.

3.3 Bounded Detection of Readers

The protocol requires that the writer be able to detect ongoing read op-
erations . A writer that invokes GetConcurrentReaders() after all correct
servers have started processing a read request r issued by client cr must
be able to identify r (assuming r does not terminate before the end of the
execution of the detection protocol).

A simple way to implement the required functionality is for the writer
to collect, from all servers, the sets of ongoing read operations (the active
reader operations) and to identify those among them that appear in at
least f + 1 sets: this is the approach taken in [3]. Because it is possible
that some servers may have begun processing read requests that have not
yet reached the other servers, faulty servers can send arbitrarily long lists
of bogus active operations without being detected as faulty. Our protocol
rectifies this problem, and is shown in Figure 4.

Protocol Description The idea of the protocol is to first estimate the
number of active read operations in the system and then accept lists
of active reader operations whose size is bounded by this estimate. The
difficulty is in ensuring that all genuinely active operations, and only
those, are detected. The protocol has two phases. In the first phase, the
writer determines a set of servers who are returning a valid active list

count, i.e. a count of active reader operations that does not exceed the
count returned by at least some correct server. In the second phase, the
writer requests these servers for their active lists, which are known not to
be too large.

For servers, whose count is not known to be valid, the writer cannot
request the active list since it could be too large. However, once the writer
has collected f + 1 active lists from servers with a valid count, the writer
sends the union of these lists to the remaining servers and only requests
for the elements in the server’s active list that is present in the union.

On receiving the active sets (or their intersection) from at least n− f
servers, the writer computes the set of concurrent readers.

Protocol guarantees Since the writer only needs to wait for (n − f)
responses, this sub-protocol always terminates. The number of messages
exchanged in this sub-protocol is bounded as the writer does not send
or receive more than two messages to any server. The messages sent in
the first two phases are bounded in size because the writer only requests
active lists from servers with a valid count. The messages in the third
step is also bounded in size, because the size of the computed union set
is bounded.

4 Tolerating Byzantine Readers

In a wait-free atomic implementation of replicated storage, readers must
write to servers to ensure read-read atomicity [5]. With Byzantine read-
ers, servers need guarantees that the values written by readers are valid.
This can be satisfied by having the reader present a proof that a correct
server vouches for the value and such a proof can be satisfied by having
the reader present evidence that f +1 servers vouch for the value it wants
to write back. Traditionally, such vouchers or proofs rely on public key
cryptography, which depend on unproven assumptions such as the hard-
ness of factoring, or the hardness of computing discrete logarithms [9].

In general, it is not sufficient for a reader to prove that the value it is
writing originated from the writer. For instance, if the reader is expected
to write more than one value in some order, then the reader should not
write a later value without having completed writing the previous value in
the order. Omitting to write some values can in general lead to violations
of the protocol’s requirements.

With respect to the protocol presented in Section 3, the servers should
verify two things:

1. A reader is allowed to write back a value only if it proves that it
received the value from a correct server (i.e. by having f + 1 servers
vouch for the value).

2. A reader is allowed to perform a second round write back of the times-
tamp only after f + 1 correct servers have accepted the first round
write back message (i.e. 2f + 1 servers accepted the first round write
back).

With public key cryptography, these proofs can be easily implemented.
A server signs messages it sends to a reader and a reader can provide as
proof the requisite number of signed messages.

An important observation is that these (signed) messages indicate the
progress in terms of the server state and are not specific to the particular
read operation. The protocol remains correct even if these proofs are put
together from signed messages sent by servers in response to different
read operations.

We present a secret-sharing-based approach that can be used to im-
plement these types of proofs. This shows that the (strong) assumption
of computationally one-way functions, used by PKIs, is not required for
these applications. We believe that our approach can be used not just
with the protocol presented in Section 3, but also with other protocols
that have a similar structure—however, characterizing such protocols and
developing a general framework to replace cryptographic-based techniques
with our techniques are left for future work.

4.1 Provably correct proofs using secret sharing

Consider the read and write protocols in Figure 5, which are typically
part of larger protocols.

Write(value, ts)
send (value, ts) to all
wait for n− f acks

Read(ts)
send READ REQUEST to all
wait for t replies with same value v and timestamp ts
send v to all
wait for n− f acks

Fig. 5. Simple client protocols

In the protocol, the reader is attempting to read a value whose times-
tamp is ts and the writer writes a value whose timestamp is ts (not nec-
essarily the same). The server code corresponding to these two protocols
is the obvious one.

As presented, the reader protocol is not guaranteed to terminate and
typically, it will be part of a larger protocol that ensures termination.

We will not concern ourselves with termination in the remainder of this
section.

We would like to transform the two protocols so that correct readers
are not affected and faulty readers cannot write back a value that was
not written by the writer.

We achieve the transformation by splitting the write operation into
two parts. In a first part, the writer sends the value to be written along
with some other information that we will explain shortly. In the second
part of a write operation, the writer sends a message indicating that the
first part has finished. The servers process the message with the values,
exactly as in the simple protocol, but only when it receives the FIN-
ISHED SENDING VALUES message. In other words, the values received
in the first part are hidden and are not processed (or sent to readers) un-
less the server knows that the writer finishes the first part. This knowledge
can be obtained directly from the writer or indirectly from the reader.

So, we need a way for a reader that received t identical values to
convince a correct server that only received a first message from the writer
to open the value that the server received from the writer. By doing this,
the reader is effectively writing back a value but without having to sign
the value. The write back consists of making a hidden value non-hidden.
A reader knows that it can write back to all correct servers if it knows
that the writer finished the first part and started the second part at some
correct server because, in that case, all correct servers will eventually
receive the value from the writer which is sent in the first part.

So, the question is how can we provide a proof that the writer made
enough progress. This is where the other information enter the picture.
The main idea is to have the writer associate a randomly generated secret
with the value it wants to write. The writer generates this secret, creates
shares, and sends these shares to servers before (roughly speaking) start-
ing the actual write operation.

A server which knows that the writer has completed the first part
and started the second part, is willing to provide the value as well as
shares of the secret. The secret is shared such that if (and only if) enough
messages are received, the reader will be able to reconstruct the secret.
Thus, reconstructing the secret can be used as a proof that the writer
made enough progress in its write operation. The details of the secret
sharing scheme are given below.

The modified writer and reader protocols are shown in Figure 6.
Each secret is split using the techniques of [11] such that k.t shares are

required to reconstruct the secret, where k > f . Each server is given k+1

Write(value, ts)
generate secret s
∀1 ≤ i ≤ n generate shares si[1 . . . k + 1]
∀1 ≤ i ≤ n send (value, ts, si[1 . . . k + 1]) to serveri
send FINISHED SENDING VALUES to all
wait for n− f replies

Read(ts)
send READ REQUEST to all
value read = ⊥
repeat

receive message (v, ts, si[1 . . . k]) from server i
if received ≥ t messages with the same v and ts

fork {
send (v, collectedSharesFor(v)) to all
wait for n− f acks
value read = v
}

until (value read != ⊥)

Fig. 6. Modified client protocols

shares, along with the message that was going to be sent in the simple
protocol. After sending these messages to all the servers, the writer sends
the FINISHED SENDING VALUES message.

If a read request reaches a server after the server received the FIN-
ISHED SENDING VALUES message from the writer, the server sends
the value to the reader along with k of the shares the server received
from the writer. One share is never revealed and is used by servers only
for verifying that a reconstructed secret is correct. Secret sharing ensures
that the secret can be reconstructed if and only if t number of servers
give away their shares.

The server now accepts a write back from a reader only if the reader
can provide enough shares that can reconstruct the correct secret at the
server. The server can accept a write back even before receiving the FIN-
ISHED SENDING VALUES message. If the server decides to accept the
write back message, the server unhides the message and acts as if it
has received a FINISHED SENDING VALUES message directly from the
writer.

Note that unlike the case with cryptographic solution in which the
reader could determine locally whether the received signatures are valid,
in our protocol the reader needs the cooperation of the servers in order to
determine if the received shares can reconstruct the correct secret. Here,
the reader cannot determine if the proof is going to be valid because it
does not have any shares to verify against. This may cause the write
backs to not succeed if there are not enough correct shares. Also, the
shares that enable the reader to write back might not arrive all at once.
The reader might first receive n−f replies that do not include the crucial
shares of some slow correct servers. So, the reader’s protocol would have
the reader request verification from servers every time the reader receives
a new share. The reader can finish when it has received enough identical
values and it knows that it can write back.

5 Protocol tolerating Byzantine readers

To convert the protocol presented in Section 3 to a Byzantine reader tol-
erant protocol, the writer has to perform an extra phase. This extra phase
contains the secrets required for both the phases of the write protocol. So
phase 1 and Phase 2 of the original protocol are replaced with (Phase 1’
|| Phase 2’), Phase 1”, and Phase 2” where the primes and double primes
are used to indicate the transformed phases and the || indicates that the
first transformed phases are executed concurrently.

5.1 The write protocol

Before beginning the two phases of the write, the writer generates two
random secrets. The writer sends the shares for these secrets, along with
the value and timestamp information that it is going to write, to all the
servers before initiating the write phases.

The first secret is used to prove that the reader has received f + 1
identical values and is split such that t = f + 1. The second secret is used
to prove that the reader has received (n − f) acknowledgements to the
first phase write back and is split such that t = (n− f).

On receiving these shares and information regarding the value and
timestamp that is going to be written, the servers hold them separately
and do not update any values or timestamps that are used in the original
protocol.

After sending these shares and values to all the servers, the writer
begins the original write protocol, asking the servers to update the value
and then the timestamp. Only on receiving the message from writer to
update the value, or on accepting a write back message, will a server
update its value and reveal its secret shares. The same holds true for
updating the timestamp.

5.2 The read protocol

The read protocol is similar to the original read protocol in Section 3.
The only difference being that the reader needs to include the collected
shares as a proof to be allowed to perform the write back.

As in Section 3, the reader waits to collect f+1 matching responses for
an acceptable timestamp. It then tries to write back the value providing
as a proof the set of shares collected so far. Retrying each time it receives
more shares, or when it can try to write back a different value.

The server will only accept the write back if value being written back
matches the value that was initially received from the writer, and the
shares can reconstruct the correct secret. If at least one non-faulty server
has revealed the value, then all servers will eventually receive the value
and the shares sent by the writer to be able to verify the information
provided by the reader. Thus valid write backs from correct readers will
be eventually accepted.

Moreover, since the servers receive the value from the writer directly,
the reader need not send the value along with the write back. It is suffi-
cient to use a lightweight tag, or the timestamp to identify the write [5].
Thus, preventing the servers from having to process large messages from
bad readers. For simplicity, we assume that the protocol does not have
this optimization.

On accepting the first write back for the value, the server responds
with its shares of the second secret. On receiving (n−f) of these responses,
the reader proceeds to write back the timestamp in the second phase
sending the shares it received in these responses as proof that (n − f)
servers have accepted the first phase write back. The reader retries writing
back whenever it receives additional shares. When all the correct servers
accept the write back value and respond with their shares of the second
secret, the reader will have enough correct shares to reconstruct the secret
correctly and complete the write back.

Late write backs One complication is that if a first round write back
arrives late at a server, the server might not have the shares to give the
reader because the old shares might have been replaced with newer ones
due to subsequent writes. If a server that receives a write back message has
a current timestamp that is larger than the timestamp being written back,
it simply sends a write back acknowledgment, but without the shares
(sending ⊥ for the shares).

The meaning of a write back without shares is that the writer has
started the second phase of the write of a value with a higher timestamp.
When the reader finishes its first round of write back it will collect (n−f)
acknowledgments, some with shares and some without shares, and send
these along with its second phase write back. If one of the acknowledg-
ments without shares is from a correct server, then this means that the
writer must have started writing a new value and finished the second
phase of the write operation for which the reader is sending a second
phase write back, and therefore all correct servers will eventually receive
the second phase message from the writer and can accept the write back.

If none of the acknowledgments without secrets is from a correct server,
then the reader will eventually receive either enough secrets (as we argued
in the previous paragraph) or one acknowledgment without secrets from
a correct server; in either case, the correct reader will be able to finish its
second phase write back.

Bounding number of retries The reader only tries to write back values
that have been received from at least f + 1 different servers. Since the
reader queries the servers for values up to f + 1 times and gets up to 2
values from each server in addition to 3 values in the forwarded message,
the reader can get up to 2(f + 1) + 3 different values from each server.
Thus a correct reader may only retry writing back a maximum of n(2f+5)

f+1
different values. Also, since each value will only be retried f + 1 times,
the number of messages exchanged due to the retries is still bounded.

Acknowledgements We thank Allen Clement and Harry Li for their helpful discus-
sions on secret verification.

References

1. A. Aiyer, L. Alvisi, and R. A. Bazzi. Bounded Wait-free Implementation of Op-
timally Resilient Byzantine Storage without (Unproven) Cryptographic Assump-
tions. Technical Report TR-07-32, University of Texas at Austin, Department of
Computer Sciences, July 2007.

2. R. A. Bazzi and Y. Ding. Non-skipping timestamps for byzantine data storage
systems. In DISC ’04, pages 405–419. Springer-Verlag, 2004.

3. R. A. Bazzi and Y. Ding. Bounded wait-free f-resilient atomic byzantine data
storage systems for an unbounded number of clients. In DISC ’06, pages 299–313.
Springer-Verlag, 2006.

4. C. Cachin and S. Tessaro. Optimal resilience for erasure-coded byzantine dis-
tributed storage. In DSN, pages 115–124, Washington, DC, USA, 2006. IEEE
Computer Society.

5. R. Fan and N. Lynch. Efficient replication of large data objects. In DISC ’03,
volume 2848 of LNCS, pages 75–91, Oct. 2003.

6. R. Guerraoui and M. Vukolic. Refined Quorum Systems. Technical Report LPD-
REPORT-2007-001, EPFL, 2007.

7. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124–149, January 1991.

8. L. Lamport. On interprocess communication. part i: Basic formalism. Distributed
Computing, 1(2):77–101, 1986.

9. B. Liskov and R. Rodrigues. Byzantine clients rendered harmless. In DISC 2005,
pages 311–325. Springer-Verlag, 2005.

10. J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine storage. In DISC ’02,
pages 311–325. Springer-Verlag, 2002.

11. M. Tompa and H. Woll. How to share a secret with cheaters. J. Cryptol., 1(2):133–
138, 1988.

