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Abstract

We present the first consensus protocol that reaches
asynchronous Byzantine consensus in two communication
steps in the common case. We prove that our protocol is op-
timal in terms of both number of communication step, and
number of processes for 2-step consensus. The protocol can
be used to build a replicated state machine that requires
only three communication steps per request in the common
case.

1 Introduction

The consensus problem can be described in terms of the
actions taken by three classes of agents: proposers, who
propose values, acceptors, who together are responsible for
choosing a single proposed value, and learners, who must
learn the chosen value [12]. A single process can act as
more than one kind of agent. Consensus can be specified
using the following three safety properties and two liveness
properties:

CS1 Only a value that has been proposed may be chosen.

CS2 Only a single value may be chosen.

CS3 Only a chosen value may be learned by a correct
learner.

CL1 Some proposed value is eventually chosen.

CL2 Once a value is chosen, correct learners eventually
learn it.

Since the unearthing of the simple and practical Paxos
protocol [11], consensus, which for years had largely been
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the focus of theoretical papers, has once again become pop-
ular with practitioners. This popularity should not be sur-
prising, given that consensus is at the core of the state ma-
chine approach [10, 19], the most general method for im-
plementing fault tolerant services in distributed systems.
Yet, many practitioners had been discouraged by the prov-
able impossibility of solving consensus deterministically in
asynchronous systems with one faulty process [6]. Paxos
offers the next best thing: while it cannot guarantee progress
in some scenarios, it always preserves the safety proper-
ties of consensus, despite asynchrony and process crashes.
More specifically, in Paxos one of the proposers is elected
leader and it communicates with the acceptors. Paxos guar-
antees progress only when the leader is unique and can com-
municate with sufficiently many acceptors, but it ensures
safety even with no leader or with multiple leaders.
Paxos is also attractive because it can be made very ef-

ficient in gracious executions, i.e. executions where there
is a unique correct leader, all correct acceptors agree on its
identity, and the system is in a period of synchrony. Except
in pathological situations, it is reasonable to expect that gra-
cious executions will be the norm, and so it is desirable to
optimize for them. For instance, FastPaxos [1] in a gra-
cious execution requires only two communication steps1 to
reach consensus in non-Byzantine environments, matching
the lower bound formalized by Keidar and Rajsbaum [8].
Consequently, in a state machine that uses FastPaxos, once
the leader receives a client request it takes just two commu-
nication steps, in the common case, before the request can
be executed. Henceforth, we use the terms “common case”
and “gracious execution” interchangeably.
In this paper, we too focus on improving the common

case performance of Paxos, but in the Byzantine model. Re-
cent work has shown how to extend the Paxos consensus
protocol to support Byzantine fault tolerant state machine
replication. The resulting systems perform surprisingly
well: they add modest latency [2], can proactively recover

1To be precise, this bound is only met for stable intervals in which no
replica transitions between the crashed and “up” state.
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from faults [3], can make use of existing software diversity
to exploit opportunistic N-version programming [17], and
can be engineered to protect confidentiality and reduce the
replication costs incurred to tolerate f faulty state machine
replicas [20].
These Byzantine Paxos protocols fall short of the orig-

inal, however, in the number of communication steps re-
quired to reach consensus in the common case. After a
client request has been received by the leader, Byzantine
Paxos needs a minimum of three additional communica-
tion steps (rather than the two required in the non-Byzantine
case) before the request can be executed2.
In this paper we make two contributions. First, we prove

that any 2-step Byzantine consensus protocol needs at least
5 f +1 processes to tolerate f Byzantine faults. Second, we
show that this lower bound is tight by presenting a 2-step f -
tolerant Byzantine consensus protocol—Fast Byzantine (or
FaB) Paxos—that uses 5 f + 1 acceptors. In the common
case, FaB Paxos requires no expensive digital signature op-
eration. More broadly, we show that FaB Paxos requires
3 f + 2t + 1 acceptors to achieve 2-step consensus despite
t ≤ f Byzantine acceptors.
Since building a replicated state machine from consensus

adds a single communication step, FaB Paxos can be used
to build a Byzantine fault-tolerant replicated state machine
that requires only three communication steps per operation
in the common case. By comparison, Castro and Liskov’s
Practical Byzantine Fault-tolerance protocol [2] uses four
communication steps in the common case3.
For traditional implementations of the state machine ap-

proach, in which the roles of proposers, acceptors and learn-
ers are performed by the same set of machines, the ex-
tra replication required by our protocol may appear pro-
hibitively large, especially when considering the software
costs of implementing N-version programming (or oppor-
tunistic N-version programming) to eliminate correlated
Byzantine faults [17]. However, an architecture for Byzan-
tine fault tolerant state machine replication that physically
separates agreement from execution [20] makes this trade-
off look much more attractive. In this architecture, a cluster
of acceptors or agreement replicas is responsible for pro-
ducing a linearizable order of client requests, while a sep-
arate cluster of learners or execution replicas executes the
ordered requests.
Decoupling agreement from execution leads to agree-

ment replicas (i.e. acceptors) that are much simpler and
less expensive than state machine replicas used in tradi-
tional architectures—and can therefore be more liberally
used. In particular, such acceptors replicas are cheaper

2No protocol can take fewer than two rounds to reach Byzantine con-
sensus. In fact, in a synchronous system where one process may crash, all
consensus protocols must take at least two rounds [5].

3Even with the optimization of tentative execution.

both in terms of hardware—because of reduced processing,
storage, and I/O requirements—and, especially, in terms of
software: application-independent agreement replicas can
be engineered as a generic library that may be reused across
applications, while with traditional replicas the costs of N-
version programming must be paid anew with each different
service.
This paper is organized as follows. We discuss related

work in Section 2 and, in Section 3, give a formal de-
scription of our system model. In Section 4 we prove the
lower bound on the number of processes required by 2-
step Byzantine consensus. We present f -tolerant FaB Paxos
in Section 5, and we show in Section 6 how to general-
ize FaB Paxos to tolerate t ≤ f Byzantine acceptors using
3 f +2t+1 acceptors. In Section 7 we discuss the FaB repli-
cated state machine before concluding.

2 Related Work

Consensus and state machine replication have generated
a gold mine of papers. The veins from which our work de-
rives are mainly those that originate with Lamport’s Paxos
protocol [11] and Castro and Liskov’s work on Practical
Byzantine Fault-tolerance (PBFT) [2]. In addition, the tech-
niques we use to reduce the number of communication steps
are inspired by the work on Byzantine quorum systems pi-
oneered by Malkhi and Reiter [14].
The two earlier protocols that are closest to FaB Paxos

are the FastPaxos protocol by Boichat and colleagues [1],
and Kursawe’s Optimistic asynchronous Byzantine agree-
ment [9]. Both protocols share our basic goal: to optimize
the performance of the consensus protocol when runs are,
informally speaking, well-behaved.
The most significant difference between FastPaxos and

FaB Paxos lies in the failure model they support: in Fast-
Paxos processes can only fail by crashing, while in FaB
Paxos they can fail arbitrarily. However, FastPaxos only re-
quires 2 f + 1 acceptors, compared to the 5 f + 1 necessary
for FaB Paxos. There is a subtler difference in the con-
ditions under which FastPaxos achieves consensus in two
communication steps: FastPaxos can deliver consensus in
two communication steps during stable periods, i.e. pe-
riods where no process crashes or recovers, a majority of
processes are up, and correct processes agree on the iden-
tity of the leader. The conditions under which we achieve
gracious executions are somewhat weaker than these, in that
during gracious executions processes can fail, provided that
the leader does not fail. Also, FastPaxos does not rely on
eventual synchrony but on an eventual leader oracle; how-
ever, since we only use eventual synchrony for leader elec-
tion, the difference is superficial.
In contrast to FastPaxos, Kursawe’s elegant optimistic

protocol assumes the same Byzantine failure model that



we adopt and operates with only 3 f + 1 acceptors, instead
of 5 f + 1. However, the notion of well-behaved execu-
tion is much stronger for Kursawe’s protocol than for FaB
Paxos. In particular, his optimistic protocol achieves con-
sensus in two communication steps only as long as channels
are timely and no process is faulty: a single faulty process
causes the fast optimistic agreement protocol to be perma-
nently replaced by a traditional pessimistic, and slower, im-
plementation of agreement. To be fast, FaB Paxos only re-
quires gracious executions, which are compatible with pro-
cess failures as long as there is a unique correct leader and
all correct acceptors agree on its identity.
There are also protocols that use failure detectors to com-

plete in two communication steps in some cases. The SC
protocol [18] achieves this goal when the failure detectors
make nomistake and the coordinator process does not crash.
The later FC protocol [7] achieves a similar result even in
executions where there are crashes. FaB Paxos differs from
these protocols because it can tolerate unreliable links and
Byzantine failures.
In his paper on lower bounds for asynchronous consen-

sus [13], Lamport, in his “approximate theorem” 3a, con-
jectures a bound N > 2Q+F + 2M on the minimum num-
ber N of acceptors required by 2-step Byzantine consensus,
where: (i) F is the maximum number of acceptor failures
despite which consensus liveness is ensured; (ii) M is the
maximum number of acceptor failures despite which con-
sensus safety is ensured; and (iii) Q is the maximum num-
ber of acceptor failures despite which consensus must be
2-step. Lamport’s conjecture is more general than ours—
we do not distinguish between M, F , and Q—and more
restrictive—Lamport does not allow Byzantine learners; we
do. Lamport’s conjecture does not technically hold in the
corner case where no learner can fail4. Dutta, Guerraoui
and Vukolić have recently derived a comprehensive proof
of Lamport’s original conjecture under the implicit assump-
tion that at least one learner may fail [4].

3 System Model

We make no assumption about the relative speed of pro-
cesses or communication links, or about the existence of
synchronized clocks. The network is unreliable: messages
can be dropped, reordered, inserted or duplicated. However,
if a message is sent infinitely many times then it arrives at
its destination infinitely many times. Finally, the recipient
of a message knows who the sender is. In other words, we
are using authenticated asynchronous fair links.
Following Paxos [12], we describe the behavior of FaB

Paxos in terms of the actions performed by three classes of
agents: proposers, acceptors, and learners. We assume that

4The counterexample can be found in our technical report [15].

the number n of processes in the system is large enough
to accommodate 3 f + 1 proposers, 5 f + 1 acceptors, and
3 f + 1 learners. Note that a single process may play mul-
tiple roles in the protocol. Each class may contain up to f
Byzantine faulty agents. When we consider FaB Paxos in
connection with state machine replication, we assume that
an arbitrary number of clients of the state machine can be
Byzantine. Unlike [13], we allow learners to fail in a Byzan-
tine manner.
FaB Paxos does not use digital signatures in the common

case; however, it does rely on digital signatures when elect-
ing a new leader. All acceptors have a public/private key
pair, and we assume that all proposers and acceptors know
all public keys and correct acceptors do not divulge their
private key. We also assume that Byzantine processes are
not able to subvert the cryptographic primitives.
Since it is impossible to provide both safety and live-

ness for consensus in the asynchronous model [6], we en-
sure safety at all times and only guarantee liveness during
periods of synchrony.

4 The Lower Bound

The FaB Paxos protocol requires 5 f +1 acceptors, so at
least 5 f + 1 processes. We show that this is the optimal
number of processes for 2-step consensus. Our proof does
not distinguish between proposers, acceptors and learners
because doing so would restrict the proof to Paxos-like pro-
tocols.
We consider a system of n processes that communicate

through a fully connected network. Processes execute se-
quences of events, which can be of three types: local, send,
and deliver. We call the sequence of events executed by a
process its local history.
An execution of the protocol proceeds in asynchronous

rounds. In a round, each correct process (i) sends a message
to every other process, (ii) waits until it receives a (possibly
empty) message sent in that round from n− f distinct pro-
cesses (ignoring any extra messages), and (iii) performs a
(possibly empty) sequence of local events. We say that the
process takes a step in each round. During an execution,
the system goes through a series of configurations, where a
configuration C is an n vector that stores the state of every
process.
This proof depends crucially on the notion of indistin-

guishability. The notions of view and similarity help us cap-
ture this notion precisely.

Definition Given an execution ρ and a process pi, the view
of pi in ρ, denoted by ρ|pi, is the local history of pi together
with the state of pi in the initial configuration of ρ.

Definition Let ρ1 and ρ2 be two executions, and let pi be
a process which is correct in ρ1 and ρ2. Execution ρ1 is



similar to execution ρ2 with respect to pi, denoted as ρ1
pi∼

ρ2, if ρ1|pi = ρ2|pi.
If an execution ρ results in all correct processes learn-

ing a value v, we say that v is the consensus value of ρ,
which we denote c(ρ). For the remainder of this section we
only consider executions that result in all correct processes
learning a value.

Lemma 1. Let ρ1 and ρ2 be two executions, and let pi be
a process which is correct in ρ1 and ρ2. If ρ1

pi∼ ρ2, then
c(ρ1) = c(ρ2).
Definition LetF be a subset of the processes in the system.
An execution ρ is F -silent if in ρ no process outside F
delivers a message from a process in F .
Definition Let a 2-step execution be an execution in which
all correct processes learn by the end of the second round. A
consensus protocol is 2-step if for every initial configuration
I and every set F of at most f processes, there exists a 2-
step execution of the protocol from I that is F -silent.
Definition Given a 2-step consensus protocol, an initial
configuration I is 2-step bivalent if there exist two disjoint
sets of processes F0 and F1, (|F0| ≤ f and |F1| ≤ f ) an F0-
silent 2-step execution ρ0 and an F1-silent 2-step execution
ρ1 such that c(ρ0) = 0 and c(ρ1) = 1.

Lemma 2. For every 2-step consensus protocol with n> 2 f
there exists a 2-step bivalent initial configuration.
Proof. Consider a 2-step consensus protocol C. For each i,
0≤ i≤ n, let Ii be the initial configuration in which the first
i processes propose 1, and the remaining processes propose
0. By the definition of 2-step, for every Ii and for all F
such that |F | ≤ f there exists at least one F -silent 2-step
execution ρi of P. By property CS1 of consensus, c(ρ0) = 0
and c(ρn) = 1. Consider now F0 = {p j : 1≤ j ≤ f}. There
must exist two neighbor configurations Ii and Ii+1 and two
F0-silent 2-step executions ρi and ρi+1 where the value that
is learned flips for the first time from 0 to 1. Note that i ≥
f , since both ρi and ρi+1 are F0-silent and the consensus
value they reach cannot depend on the value proposed by
the silent processes inF0. We claim that one of Ii and Ii+1 is
2-step bivalent. To prove our claim, we set x=min(i+ f ,n)
and define F1 as the set {p j : x+1− f ≤ j ≤ x}. Note that,
by construction, F0 and F1 are disjoint. By the definition
of C, there must in turn exist two new 2-step executions πi

and πi+1 that are F1-silent. The only difference between
configurations Ii and Ii+1 is the value proposed by pi+1,
which is silent in πi and πi+1, since it belongs to F1. Hence,
all processes outside of F1 (at least one of which is correct)
have the same view in πi and πi+1, and c(πi) = c(πi+1).
To summarize, we have shown that in one of Ii and Ii+1

there exist two 2-step executions that lead to different con-
sensus values for two disjoint silent sets F0 and F1—that is,
either Ii or Ii+1 is 2-step bivalent.

Theorem 1. Any 2-step Byzantine fault-tolerant consensus
protocol requires at least 5 f +1 processes.

Proof. We prove the theorem by contradiction, supposing
there exists a 2-step fault-tolerant consensus protocol P that
tolerates up to f Byzantine faults and requires only 5 f pro-
cesses. We partition the processes in five sets of size f . For
simplicity and without loss of generality, for the remaining
of this proof we assume that f = 1 and that our system is
comprised of five processes, p1 through p5. If f > 1 and
each set contains more than one process, the following dis-
cussion must be modified so that in each execution all the
processes in a set receive the same set of messages, and, if
they fail, they do so in the same way and at the same time.
By Lemma 2 there exist a 2-step bivalent configuration Ib

and two 2-step executions ρ0 and ρ1, respectively F0-silent
and F1-silent, such that c(ρ0) = 0 and c(ρ1) = 1. Without
loss of generality, assume F0 = {p5} and F1 = {p1}.
We focus on the state of p1, . . . , p5 at the end of the first

round. In particular, let si and ti denote the state of pi at the
end of the first round of ρ0 and ρ1, respectively. Process pi
will be in state si (respectively, ti) at the end of any execu-
tion that produces for it the same view as ρ0 (respectively,
ρ1). It is possible for some processes to be in an s state
at the end of the first round while at the same time others
are in a t state. Consider now three new (not necessarily 2-
step) executions of P, ρs, ρt , and ρc, that at the end of their
first round have p1 and p2 in their s states and p4 and p5 in
their t states. The state of p3 is different in the tree execu-
tions: in ρs, p3 is in state s3; in ρt , p3 is in state t3; and in
ρc, p3 crashes at the end of the first round. Otherwise, the
three executions are very much alike: all three executions
are p3-silent from the second round on—in ρc because p3
has crashed, in ρs and ρt because p3 is slow. Further, all
processes other than p3 send and deliver the same messages
in the same order in all three executions, and all three ex-
ecution enter a period of synchrony from the second round
on, so that in each execution consensus must terminate and
some value must be learned. We consider three scenarios,
one for each execution.

ρs scenario: In this scenario, p4 is Byzantine: it follows
the protocol correctly in its messages to all processes but
p3. In particular, the message p4 sends to p3 in round two is
consistent with p4 being in state s4, rather than t4. Further,
in the second round of ρs the message from p5 to p3 is the
last to reach p3 (and is therefore not delivered by p3), and
all other messages are delivered by p3 in the same order as
in ρ0. The view of p3 at the end of the second round of ρs
is the same as in the second round of ρ0; hence p3 learns 0
at the end of the second round of ρs. Since p3 is correct and
ρs

p3∼ ρ0, then c(ρs) = c(ρ0) and all correct processes in ρs
eventually learn 0.



ρt scenario: In this scenario, p2 is Byzantine: it follows
the protocol correctly in its messages to all processes but
p3. In particular, the message p2 sends to p3 in round two is
consistent with p2 being in state t2, rather than s2. Further,
in the second round of ρt the message from p1 to p3 is the
last to reach p3 (and is therefore not delivered by p3), and
all other messages are delivered by p3 in the same order as
in ρ1. The view of p3 at the end of the second round of ρt
is the same as in the second round of ρ1; hence p3 learns 1
at the end of the second round of ρt . Since p3 is correct and
ρt

p3∼ ρ1, then c(ρt) = c(ρ1) and all correct processes in ρt
eventually learn 1.

ρc scenario: In this scenario, p3 has crashed, and all other
processes are correct. Since ρc is synchronous from round
two on, every correct process must eventually learn some
value.
Consider now a process (e.g. p1) which is correct in ρs,

ρt , and ρc. By construction, ρc
p1∼ ρt , and therefore c(ρc) =

c(ρt) = 1. However, again by construction, ρc
p1∼ ρs, and

therefore c(ρc) = c(ρs) = 0. Hence, p1 in ρc must learn
both 0 and 1: this contradicts CS2 and CS3 of consensus,
which together imply that a correct learner may learn only
a single value.

5 Fast Byzantine Consensus

We now present FaB Paxos, a 2-step Byzantine fault-
tolerant consensus protocol that requires 5 f + 1 processes,
matching the lower bound of Theorem 1. More precisely,
FaB Paxos requires a ≥ 5 f + 1 acceptors, p ≥ 3 f + 1 pro-
posers, and l ≥ 3 f + 1 learners; as in Paxos, each process
in FaB Paxos can play one or more of these three roles. We
describe FaB Paxos in stages: we start by describing a sim-
ple version of the protocol that relies on relatively strong
assumptions, and we proceed by progressively weakening
the assumptions and refining the protocol accordingly.

5.1 The Common Case

We first describe how FaB Paxos works in the common
case, when there is a unique correct leader, all correct ac-
ceptors agree on its identity, and the system is in a period of
synchrony.
FaB is very simple in the common case, as can be ex-

pected by a protocol that terminates in two steps. Figure 1
shows the protocol’s pseudocode. The number variable
(proposal number) indicates which process is the leader; in
the common case it will not change. The code starts exe-
cuting in the onStart methods. In the first step, the leader
proposes its value to all acceptors (line 3). In the second
step, the acceptors accept this value (line 21) and forward it
to the learners (line 22). Learners learn a value v when they

observe that �(a+ 3 f + 1)/2� acceptors have accepted the
value (line 24). FaB avoids digital signatures in the common
case because they are computationally expensive. Adding
signatures would not reduce the number of communication
steps nor the number of servers since FaB is already optimal
in these two measures.

Correctness We defer the full correctness proof for FaB
until we have discussed the recovery protocol in Sec-
tion 5.4—in the following we give an intuition of why the
protocol is safe in the common case.
Let correct acceptors only accept the first value they

receive from the leader and let a value v be chosen if
�(a+ f + 1)/2� correct acceptors have accepted it. These
two requirements are sufficient to ensure CS1 and CS2:
clearly, only a proposed value may be chosen and there can
be at most one chosen value since at most one value can be
accepted by a majority of correct acceptors. The last safety
clause (CS3) requires correct learners to only learn a cho-
sen value. Since learners wait for �(a+3 f +1)/2� identical
reports and at most f of those come from faulty acceptors,
it follows that the value was necessarily chosen.
Proving liveness in the common case is also

straightforward—the detailed proof for the common
case can be found in [15].

5.2 Fair Links and Retransmissions

So far we have assumed synchrony. While this is a rea-
sonable assumption in the common case, our protocol must
also be able to handle periods of asynchrony. We weaken
our network model to consider fair asynchronous authenti-
cated links (see Section 3). Note that now consensus may
take more than two communication steps to terminate, e.g.
when all messages sent by the leader in the first round are
dropped.
Our end-to-end retransmission policy is based on the fol-

lowing pattern: the caller sends its request repeatedly, and
the callee sends a single response every time it receives a
request. When the caller is satisfied by the reply, it stops re-
transmitting. We alter the pattern slightly in order to accom-
modate the leader election protocol: other processes must
be able to determine whether the leader is making progress,
and therefore the leader must make sure that they, too, re-
ceive the reply. To that end, learners report not only to the
leader but also to the other proposers (line 27). When pro-
posers receive enough acknowledgments, they are “satis-
fied” and notify the leader (line 9). The leader only stops
resending when it receives �(p+ f + 1)/2� such satisfied
acknowledgments (line 4). If proposers do not hear from
�(l+ f +1)/2� learners after some time-out, they start sus-
pecting the leader (line 14). If �(p+ f + 1)/2� proposers
suspect the leader then a new leader is elected5. The re-

5We do not show the election protocol, because existing leader election



1 l e a d e r . o n S t a r t ( ) :
2 / / p r opo s i ng ( PC i s n u l l u n l e s s r e c o v e r i n g )
3 send ( PROPOSE , va lue , number , PC) t o a l l a c c e p t o r s
4 u n t i l | S a t i s f i e d | >= �(p+ f +1)/2�
5
6 p r o po s e r . onLearned ( ) : from l e a r n e r l
7 Learned : = Learned un ion { l }
8 i f | Learned | >= �(l+ f +1)/2� t h en
9 send ( SATISFIED ) t o a l l p r o p o s e r s
10
11 p r o po s e r . o n S t a r t ( ) :
12 wa i t f o r t imeou t
13 i f | Learned | < �(l+ f +1)/2� t h en
14 s u s p e c t t h e l e a d e r
15
16 p r o po s e r . o n S a t i s f i e d ( ) : from p r opo s e r x
17 S a t i s f i e d : = S a t i s f i e d ∪ { x}
18
19 a c c e p t o r . onPropose ( va lue , number , p r o g c e r t ) : from l e a d e r
20 i f no t a l r e a d y a c c e p t e d t h en
21 a c c e p t e d : = ( va lue , number ) / / a c c e p t i n g
22 send (ACCEPTED, a c c e p t e d ) t o a l l l e a r n e r s

23 l e a r n e r . onAccepted ( va lue , number ) : from a c c e p t o r ac
24 a c c e p t e d [ ac ] : = ( va lue , number )
25 i f t h e r e a r e �a+3 f +1)/2� a c c e p t o r s x
26 such t h a t a c c e p t e d [ x ] = = ( va lue , number ) t h en
27 l e a r n e d : = ( va lue , number ) / / l e a r n i n g
28 send (LEARNED) t o a l l p r o p o s e r s
29
30 l e a r n e r . o n S t a r t ( ) :
31 wa i t f o r t imeou t
32 wh i l e ( no t l e a r n e d ) send ( PULL) t o a l l l e a r n e r s
33
34 l e a r n e r . o nPu l l ( ) : from l e a r n e r l n
35 I f I l e a r n e d some p a i r ( va lue , number ) t h en
36 send ( LEARNED, va lue , number ) t o l n
37
38 l e a r n e r . onLearned ( va lue , number ) : from l e a r n e r l n
39 Learn [ l n ] : = ( va lue , number )
40 i f t h e r e a r e f +1 x
41 such t h a t l e a r n [ x ] = = ( va lue , number ) t h en
42 l e a r n e d : = ( va lue , number ) / / l e a r n i n g

Figure 1. FaB pseudocode (excluding recovery)

transmission policy therefore ensures that in periods of syn-
chrony, the leader will retransmit until it is guaranteed that
no leader election will be triggered. Note that the proposers
do not wait until they hear from all learners before becom-
ing satisfied (since some learners may have crashed). It is
possible therefore that the leader stops retransmitting be-
fore all learners have learned the value. The pull protocol in
lines 29-41 ensures that the remaining correct learners will
eventually learn from their peers.

Correctness The proofs of CS1, CS2, and CS3 for the
common case apply, unchanged, in this weaker network
model. The liveness proof is different, because it must han-
dle fair, rather than reliable, links—it can found in [15].

5.3 Recovery protocol

When proposers suspect the current leader of being
faulty, they elect a new leader who then invokes the recov-
ery protocol. There are two scenarios that require special
care.
First, some value v may have already been chosen: the

new leader must then propose the same v to maintain CS2.
Second, a previous malicious leader may have performed
a poisonous write [16], i.e. a write that prevents learners
from reading any value—for example, a malicious leader
could propose a different value to each acceptor. If the
new leader is correct, consensus in a synchronous execution
should nonetheless terminate.
In our discussion so far, we have required acceptors to

only accept the first value they receive. If we maintained
this requirement, the new leader would be unable to recover
from a poisonous write. We therefore allow acceptors to
change their mind and accept multiple values. Naturally,
we must take precautions to ensure that CS2 still holds.

protocols can be used here without modification, e.g. the leader election
protocol in [2].

5.3.1 Progress certificates and the recovery protocol

If some value v was chosen, then in order to maintain CS2
a new correct leader must not propose any value other than
v. In order to determine whether some value was chosen,
the new leader must therefore query the acceptors for their
state. It can gather at most a− f replies. We call the set
of these replies a progress certificate (pc). The pc serves
two purposes. First, it allows the new leader to determine
whether some value v may have been chosen, in which case
the leader proposes v. We say that the correct leader will
only propose a value that the progress certificate vouches
for—we will discuss in Section 5.3.2 how a progress certifi-
cate vouches for a value. Second, the pc allows acceptors
to determine the legitimacy of the value proposed by the
leader, so that a faulty leader may not corrupt the state after
some value was chosen. In order to serve the second pur-
pose, we require the answers in the process certificate to be
signed.

A progress certificate pc must have the property that if
some value v was chosen, then pc only vouches for v (since
v is the only proposal that maintains CS2). It must also have
the property that it always vouches for at least one value, to
ensure progress despite poisonous writes. Before examin-
ing progress certificates in more detail, let us examine how
we would like to use them in the recovery protocol.

In the recovery protocol, the newly elected leader α first
gathers a progress certificate by querying acceptors and re-
ceiving a− f signed responses. Then, α decides which
value to propose: If the progress certificate vouches for
some value v, then α proposes v. Otherwise, α is free
to propose any value. Next, the leader follows the nor-
mal leader protocol to propose its value, and piggybacks
the progress certificate alongside its proposal to justify its
choice of value. The acceptors check that the new proposed
value is vouched for by the progress certificate, thus ensur-
ing that the new value does not endanger safety.

As in Paxos, acceptors who hear of the new leader (when



the new leader gathers the progress certificate) promise to
ignore messages with a lower proposal number (i.e. mes-
sages from former leaders). In order to prevent faulty pro-
posers from displacing a correct leader, the leader elec-
tion protocol provides a proof-of-leadership token to the
new leader (typically a collection of signed “election” mes-
sages).

5.3.2 Constructing progress certificates

A straightforward implementation of progress certificates
would consist of the currently accepted value, signed, from
a− f acceptors. If these values are all different, then clearly
no value was chosen: in this case the progress certificate
should vouch for any value since it is safe for the new leader
to propose any value.
Unfortunately, this implementation falls short: a faulty

new leader could use such a progress certificate twice to
cause two different values to be chosen. Further, this can
happen even if individual proposers only accept a given
progress certificate once. Consider the following situation.
We split the acceptors into four groups; the first group has
size 2 f + 1, the second has size f and contains malicious
acceptors, and the third and fourth have size f . Suppose
the values they have initially accepted are “A”,“B”,“B”, and
“C”, respectively. A malicious new leader λ can gather a
progress certificate establishing that no value has been cho-
sen. With this voucher, λ can first sway f acceptors from
the third group to “A” (by definition, “A” is now chosen) ,
and then, using the same progress certificate, persuade the
acceptors in the first and fourth group to change their value
to “B”—“B” is now chosen. Clearly, this execution violates
CS2.
To prevent progress certificates from being used twice

as in the scenario described above, we make three changes.
First, we only allow a proposer to propose a new value only
once while it serves as a leader. Specifically, we tie progress
certificates to a proposal number, whose value equals the
number of times a new leader has been elected.
Second, we associate a proposal number to proposed val-

ues to form a (value, number) pair. Acceptors now accept
pairs rather than just values. Learners learn a pair o if they
see that �(a+ 3 f + 1)/2� acceptors accepted it. We sim-
ilarly alter the definition of chosen to apply to pairs, so
(v, pn) is chosen if �(a+ f + 1)/2� correct acceptors have
accepted it.
Third, we change the conditions under which acceptors

accept a value (Figure 2). In addition to ignoring propos-
als with a proposal number lower than any they have seen
(line 16), acceptors only accept one proposal for every pro-
posal number (line 18) and they only change their accepted
value if the progress certificate vouches for the new (value,
number) pair (lines 20-21).
We are now ready to define progress certificates con-

1 l e a d e r . o nE l e c t e d ( newnumber ) :
2 number : = max ( number , newnumber )
3 i f ( no t l e a d e r f o r t h i s number ) t h en r e t u r n
4 send (QUERY, number , p r oo f ) t o a l l a c c e p t o r s
5 u n t i l g e t (REP , s i g n ed ( va lue , number ) ) from a−f a c c e p t o r s
6 PC : = t h e un ion o f t h e s e r e p l i e s
7 i f PC vouches f o r ( v ’ , number ) t h en v a l u e : = v ’
8 o n S t a r t ( )
9
10 a c c e p t o r s . onQuery ( pn , p r oo f ) : from l e a d e r
11 i f ( i n v a l i d p r oo f o r pn<l a r g e s t p n ) t h en
12 r e t u r n / / i g n o r e bad r e q u e s t s
13 l a r g e s t p n : = pn
14 send ( REP , s i g n ed ( va lue , pn ) ) t o t h e l e a d e r

15 a c c e p t o r . onPropose ( va lue , number , p r o g c e r t ) : from l e a d e r
16 i f number != l a r g e s t p n t h en
17 r e t u r n / / on ly l i s t e n t o c u r r e n t l e a d e r
18 i f a c c e p t e d ( v , pn ) and pn=number t h en
19 r e t u r n / / on ly once pe r prop . number
20 i f a c c e p t e d ( v , pn ) and v != v a l u e and
21 p r o g c e r t does no t vouch f o r ( va lue , number ) t h en
22 r e t u r n / / on ly change wi th change vouche r
23 a c c e p t e d : = ( va lue , number ) / / a c c e p t i n g
24 send (ACCEPTED, a c c e p t e d ) t o a l l l e a r n e r s

Figure 2. FaB recovery pseudocode

cretely. A progress certificate contains signed replies
(vi, pn) from a− f acceptors (Figure 2, line 14). These
replies contain that acceptor’s currently accepted value
and the proposal number of the leader who requested the
progress certificate.

Definition We say that a progress certificate
((v0, pn), . . . ,(va− f , pn)) vouches for the pair (v, pn)
if there is no value vi �= v that appears �(a− f +1)/2� times
in the progress certificate.

A consequence of this definition is that if some specific pair
appears at least �(a− f +1)/2� times in the progress certifi-
cate, then the progress certificate vouches for that pair only.
If there is no such pair, then the progress certificate vouches
for any pair with the right pn. As we prove in the next sec-
tion, progress certificates guarantee that if some pair (v, pn)
is chosen, then all progress certificates with a proposal num-
ber following pn will vouch for v and no other value.
Let us revisit the troublesome scenario of before in light

of these changes. Suppose, without loss of generality, that
the malicious leader λ gathers a progress certificate for
proposal number 0. Because of the poisonous write, the
progress certificate allows the leader to propose any new
value. To have “A” chosen, λ performs two steps: first, λ
sends a new proposal (“A”, 1) to the acceptors in the first
group; then l sends (“A”, 1) together with the progress cer-
tificate for proposal 0 to the acceptors in the third group.
Note that the first step is critical to have “A” chosen, as it
ensures that the 3 f +1 correct acceptors in the first and third
group accept the same pair.
Fortunately, this first step is also what prevents λ from

using the progress certificate to sway the acceptors in the
first group to accept “B”. Because they have last accepted
the pair (“A”, 1), when λ presents the acceptors in the first
group the progress certificate for proposal number 0, they



will refuse it as too low (line 16 of the protocol).

5.4 Correctness

We now proceed to prove that, for execution that are
eventually synchronous, FaB Paxos solves consensus. Re-
call that a (value,number) pair is chosen iff �(a+ f +1)/2�
correct acceptors accept it.

CS1. Only a value that has been proposed may be chosen.

Proof. Correct acceptors only accept values that are pro-
posed. If a value is chosen, then it is accepted by correct
acceptors so it follows that it was proposed.

CS2. Only a single value may be chosen.

Proof. We prove this theorem by way of two lemmas.

Lemma 3. For every proposal number pn, at most one
value is chosen.

Proof. Correct acceptors only accept one value per proposal
number. Since to be chosen a (value, pn) pair must be ac-
cepted by at least a majority of the acceptors, at most one
value is chosen per proposal number.

Lemma 4. If some pair o = (v, pn) is chosen, then ev-
ery progress certificate for proposal number pn′ > pn will
vouch for o and no other value.

Proof. Assume o = (v, pn) is chosen; then, at least c =
�(a+ f + 1)/2� correct acceptors Q have accepted o. Let
pc be a progress certificate for proposal number pn′ > pn.
Consider the pairs contained in pc. Since these pairs are
signed, they cannot have been manufactured by the leader;
further, since by the protocol no correct acceptor would ac-
cept o if it had received pc with pn′ > pn, all correct ac-
ceptors that accepted o must have done so before receiving
pc. Since, by definition, pc contains a− f pairs signed by
acceptors, the number of these pairs that come from the ac-
ceptors in Q is at least a− f + c− a, which simplifies to
c− f = �(a+ f +1)/2− f � = �(a− f +1)/2�. By defini-
tion, then, pc vouches for o and no other value.

In short, the lemmas state that each leader can choose at
most one value, and if some leader chose a value then no
subsequent leader can choose a different value. It follows
directly that at most one value can be chosen.

CS3. Only a chosen value may be learned by a correct
learner.

Proof. Suppose that a correct learner learns value v from
(v, pn). There are two ways for a learner to learn a value in
FaB Paxos.

• �(a+ f+1)/2+ f � acceptors reported having accepted
(v, pn). At least �(a+ f +1)/2� of these acceptors are
correct, so by definition (v, pn) was chosen.

• f + 1 other learners reported that (v, pn) was chosen.
One of these learners is correct—so, by induction on
the number of learners, it follows that (v, pn) was in-
deed chosen.

We say that a value is stable if it is learned by �(l+ f +
1)/2� learners. FaB Paxos only guarantees liveness when
the execution is synchronous and there exists a time after
which leaders that do not create a stable value are correctly
deemed to be faulty. In this case, the leader election proto-
col ensures that a new leader is elected, and, further, that if
the leader is correct then it will not be suspected. We as-
sume this much in the the following lemma and proofs for
CL1 and CL2.

Lemma 5. Some value is eventually stable.

Proof. Since the number of proposers p is larger than f ,
eventually either some value is stable or a correct leader α
is elected. We show that if α is correct then some value will
be stable. Let us, for a moment, assume reliable links.
The correct leader will gather a progress certificate and

propose a value to all the acceptors. By construction, all
progress certificates vouch for at least one value—and cor-
rect acceptors will accept a value vouched by a progress cer-
tificate. Since α is correct, it will propose the same value to
all acceptors and all a− f correct acceptors will accept the
proposed value. Given that a> 3 f , �(a+ f +1)/2� ≤ a− f
and so by definition that value will be chosen.
However, links are not reliable, but only fair. The end-to-

end retransmission protocol ensures that α will continue to
resend its proposed value until it hears from �(l+ f +1)/2�
learners that they have learned a value—that is, until the
value is stable.

CL1. Some proposed value is eventually chosen.

Proof. By Lemma 5 eventually some value is stable, i.e.
�(l+ f + 1)/2� > f learners have learned it. One of these
learners is correct, and by CS3 a correct learner only learns
a value after it is chosen. Therefore, the stable value is cho-
sen.



To prove CL1 it suffices to show that the correct leader
does not stop retransmission until a value is chosen. In prac-
tice, it is desirable for the leader to stop retransmission once
it is. Since l > 3 f , there are at least �(l+ f +1)/2� correct
learners and so retransmissions will eventually stop.

CL2. Once a value is chosen, correct learners eventually
learn it.

Proof. By Lemma 5, some value v is eventually stable, i.e.
�(l + f + 1)� ≥ 2 f + 1 learners eventually claim to have
learned the value. Since at most f learners are faulty, at
least f + 1 of the learners that claim to have learned v are
correct.
Even if the leader is not retransmitting anymore, the re-

maining correct learners can determine the chosen value
when they query their peers with the “pull” requests and
receive f +1 matching responses. So eventually, all correct
learners learn the chosen value.

6 Parameterized FaB

Previous Byzantine Paxos protocols requires 3 f +1 pro-
cesses and may complete in three communication steps
when there is no failure; FaB requires 5 f +1 processes and
may complete in two communication steps despite up to f
failures—FaB uses the additional replication for speed. It
may not be necessary to ensure 2-step operation even when
all f processes fail; in some circumstances we may only be
concerned with 2-step operation as long as, say, at most one
process is faulty.
The Parameterized FaB protocol generalizes FaB by de-

coupling replication for fault tolerance from replication for
speed. Parameterized FaB requires 3 f +2t+1 processes to
guarantee safety and liveness despite up to f Byzantine fail-
ures, and guarantees common-case 2-step operation despite
up to t Byzantine failures. In one extreme (a = 5 f +1) the
protocol has the same properties as non-parameterized FaB.
In the other, the protocol only requires the minimal number
of processes for consensus (3 f +1) while at the same time
allowing 2-step operation when there are no faults. For ex-
ample, if seven machines are available, an administrator can
choose between tolerating two Byzantine failures but slow-
ing down at the first failure ( f = 2, t = 0) or tolerating only
one Byzantine failure but maintaining 2-step operation de-
spite the failure ( f = 1, t = 1).
Parameterizing FaB adds one additional round, which is

only used when there are not enough correct acceptors to
ensure 2-step progress. This round is similar to that in ordi-
nary three-step Byzantine consensus protocols [2].
When an acceptor i accepts pair (v,r), it signs a message

(v,r, i) and sends it to all acceptors. When an acceptor has
proof that q= �(a+ f +1)/2� acceptors have accepted the
same value pair vp, it can generate a commit proof for vp.

The commit proof is the set of q signed (v,r, i) messages
from different acceptors but with the same value for v and
r. The acceptors report the commit proof along with their
accepted value to the learners.
A value pair vp is chosen if �(a+ f + 1)/2� correct ac-

ceptors have accepted vp or if �(a+ f + 1)/2� acceptors
have a commit proof for vp. Learners learn vp when they
know vp has been chosen.
We also modify the structure of progress certificates.

When the new leader queries n− f acceptors, the accep-
tors add to the signed pair they return either their commit
proof, or a signed statement that they have none. These
commit proofs (or non-commit proofs) are integrated into
the progress certificate. A progress certificate now vouches
for value v′ if there is no value d �= v′ contained �(a+ f +
1)/2− f � times in the progress certificate and the progress
certificate does not contain a commit proof for any value
d �= v′.
These changes maintain the properties that at most one

value can be chosen and that, if some value was chosen,
then future progress certificates will vouch only for it. This
ensures that the changes do not affect safety. Liveness
is maintained despite f failures because there are at least
�(a+ f + 1)/2� correct acceptors, so, if the leader is cor-
rect, then eventually all of them will have a commit proof,
thus allowing the proposed value to be learned.

7 State Machine Replication

Fast consensus translates directly into fast state machine
replication: in general, state machine replication requires
one fewer round with FaB Paxos than with a traditional
three-round Byzantine consensus protocols.
A straightforward implementation of Byzantine state

machine replication on top of FaB Paxos requires only four
rounds of communication—one for the clients to send re-
quests to the proposers; two (rather than the traditional
three) for the learners to learn the order in which requests
are to be executed; and a final one, after the learners have
executed the request, to send the response to the appropriate
clients. FaB can accomodate existing leader election proto-
cols (e.g. [2]).
The number of rounds of communication can be reduced

down to three using tentative execution [2], an optimization
proposed by Castro and Liskov for their PBFT protocol that
applies equally well to FaB Paxos. As shown in Figure 3,
learners tentatively execute clients’ requests as supplied by
the leader before consensus is reached. The acceptors send
to both clients and learners the information required to de-
termine the consensus value, so clients and learners can at
the same time determine whether their trust in the leader
was well put. In case of conflict, tentative executions are
rolled back and the requests are eventually re-executed in
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Figure 3. FaB state machine with tentative ex-
ecution.

the correct order.
FaB Paxos loses its edge, however, in the special case

of read-only requests that are not concurrent with any read-
write request. In this case, a second optimization proposed
by Castro and Liskov allows both PBFT and FaB Paxos to
service these requests using just two rounds.
The replicated state machine protocol can be further op-

timized to limit the amount of work in recovery and to re-
quire only 2 f + 1 learners (reducing the development cost
since each learner must have a different version of the pro-
gram being replicated). We discuss these optimizations in
our extended technical report [15].

8 Conclusion

FaB Paxos is the first Byzantine consensus protocol to
achieve consensus in just two communication steps in the
common case. This protocol is optimal in that it uses the
minimal number of steps for consensus, and it uses the min-
imal number of processes to ensure 2-step operation in the
common case. Additionally, FaB Paxos in the common case
does not require expensive digital signatures.
The price for common-case 2-step termination is a

higher number of acceptors than in previous Byzantine con-
sensus protocols. These additional acceptors are precisely
what allows a newly elected leader in FaB Paxos to deter-
mine, using progress certificates, whether or not a value had
already been chosen—a key property to guarantee the safety
of FaB Paxos in the presence of failures.
In traditional state machine architectures, the cost of this

additional replication would make FaB Paxos unattractive
for all but the applications most committed to reducing la-
tency. However, the number of additional acceptors is rel-
atively modest when the goal is to tolerate a small number
of faults. In the state machine architecture that we have re-
cently proposed, where acceptors are significantly cheaper
to implement [20], the design point occupied by FaB Paxos
becomes much more intriguing.
Even though 5 f + 1 acceptors is the lower bound for 2-

step termination, it is possible to sometimes complete in two
communication steps even with fewer acceptors. Param-
eterized FaB Paxos decouples fault-tolerance from 2-step
termination by spanning the design space between a Byzan-
tine consensus protocol with the minimal number of servers
(but that only guarantees 2-step execution when there are
no faults) to the full FaB protocol in which all common
case executions are 2-step executions. Parameterized FaB
requires 3 f +2t+1 servers to tolerate f Byzantine failures
and completes in two communication steps in the common
case when there are at most t failures.
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