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Abstract. This paper introduces dual-quorum replication, a novel data
replication algorithm designed to support Internet edge services. Dual-
quorum replication combines volume leases and quorum based techniques
in order to achieve excellent availability, response time, and consistency
the references to each object (a) tend not to exhibit high concurrency
across multiple nodes and (b) tend to exhibit bursts of read-dominated
or write-dominated behavior. Through both analytical and experimen-
tal evaluation of a prototype, we show that the dual-quorum protocol
can (for the workloads of interest) approach the excellent performance
and availability of Read-One/Write-All-Async (ROWA-A) epidemic al-
gorithms without suffering the weak consistency guarantees and resulting
design complexity inherent in ROWA-Async systems.

1 Introduction

This paper introduces dual-quorum replication, a novel data replication algo-
rithm motivated by the desire to support data replication for edge services [1,
3, 10, 29]. As Figure 1 illustrates, the Internet edge service model attempts to
improve service availability and latency by allowing clients to access the closest
available edge servers rather than a centralized server (or a centralized server
cluster). But as Figure 1 also indicates, in order to provide a single service from
multiple locations, service logic (code) replicated on all edge servers must access
a collection of shared data. Thus, support for data replication is a key problem
in realizing the promise of Internet edge services.

By exploiting object-specific workload characteristics, we seek to design a
replication system for edge services that offers optimized trade-offs among avail-
ability, consistency, and response time. Although it is impossible to simultane-
ously provide optimal consistency, availability, and performance for general-case

wide-area-network replication [5, 17], we can, perhaps, provide nearly optimal
behavior for specific objects by taking advantage of a given application’s work-
load characteristics. For example, our previous studies show how to provide
nearly optimal replication for information dissemination applications such as
news [22] and e-commerce applications such as TPC-W [10]. In particular, we
developed customized consistency protocols for three categories of objects: (1)
single-writer, multi-reader objects like product descriptions and prices; (2) multi-
writer, single-reader objects like customer orders; and (3) commutative-write,
approximate-read objects like the inventory count of each product.
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However, a key limitation of our previous efforts to support edge services
was our decision to use weak consistency—and thereby introduce undesirable
complexity—for a fourth category of objects: multi-writer, multi-reader objects
such as TPC-W’s per-customer profile information (e.g., name, account num-
ber, recent orders, credit card number, and address.) We, like several other sys-
tems [24, 26, 33], made use of a Read-One, Write-All-Asynchronously (ROWA-
Async) protocol based on local reads and asynchronous epidemic propagation of
writes. ROWA-Async protocols provide excellent read performance and availabil-
ity; and although ROWA-Async protocols allow applications to observe incon-
sistencies between reads and writes, such inconsistencies should be rare because
multi-reader, multi-writer shared objects often have workloads with low concur-
rency to any given object. For example, in our edge-server TPC-W application,
reads and writes to a given customer’s profile typically come from just one edge
server for some interval of time, until the customer is redirected to a differ-
ent server. Unfortunately, although inconsistencies are rare for the workloads of
interest, these rare cases introduce considerable complexity into the system de-
sign, because all cases must be handled no matter how rare they are and because
reasoning about corner cases in consistency protocols is complex. Furthermore,
because reads can always complete locally, these protocols provide no worst-case
bound on staleness (i.e., it is possible for a read to return stale data arbitrarily
long after a write) which can be unacceptable for some applications.

By introducing dual-quorum replication, this paper provides the key missing
piece to achieve highly-available, low-latency, and consistent data replication
for a range of edge services. In particular, dual-quorum replication optimizes
these properties for data elements that can be both read and written from many
locations, but whose reads and writes exhibit locality in two dimensions: (1) at
any given time access to a given element tends to come from a single node and
(2) reads tend to be followed by other reads and writes tend to be followed by
other writes. For other workloads, our algorithm continues to provide regular
consistency semantics [16], but its performance and availability may degrade.

Our dual-quorum replication protocol combines ideas from volume leases [30]
and quorums [11, 12]. The protocol employs two quorum systems, an input quo-
rum system (IQS ) and an output quorum system (OQS). Clients send their
writes to the IQS and they read from the OQS. The two quorum systems syn-
chronize the state of replicated objects among them when necessary. By using
two quorum systems, we are able to optimize construction of the OQS ’s read
quorums to provide low latency and high availability for reads while optimizing
construction of the IQS ’s write quorums to provide modest overhead and high



availability for writes. In particular, OQS nodes cache data from the IQS servers
using a quorum-based generalization of Yin et al.’s volume lease protocol [30],
which invalidates individual cached objects as they are updated. The protocol
uses short-duration volume leases to allow writes to complete despite network
partitions and aggregates these leases across large numbers of objects in a volume
to amortize the cost of renewing short leases. Using our dual-quorum protocol,
workloads with large numbers of repeated reads (or writes) perform well because
reads (or writes) can often be supplied by a read-optimized OQS read quorum
(or write-optimized IQS write quorum) without requiring communication with
the IQS (or OQS ).

Through both analytical and experimental evaluations, we compare the avail-
ability, response time, communication overhead, and consistency guarantees of
the dual-quorum protocol against other popular replication protocols: the syn-
chronous and asynchronous Read-One/Write-All (ROWA) protocol family,3 ma-
jority quorums, and grid quorums [7]. For the important special configuration
of single-node OQS read quorums, average read response time can approach
a node’s local read time, making the read performance of this approach com-
petitive with ROWA-Async epidemic algorithms such as Bayou [26]. But, the
dual quorum approach avoids suffering the weak consistency guarantees and re-
sulting complexity inherent in ROWA-Async designs. Additionally, the overall
availability of the dual-quorum protocol is competitive with the optimal majority
quorum protocol for the targeted workloads. Finally, for the targeted workloads,
the communication overheads of this approach are comparable with existing ap-
proaches. However, in the worst-case scenario in which the workload consists
of only interleaved reads and writes, the dual-quorum protocol requires signifi-
cantly more message exchanges than traditional quorum protocols to coordinate
internal nodes.

The main contribution of this paper is to introduce the dual-quorum algo-
rithm, a novel data replication algorithm targeted at a key workload for Internet
edge service environments. Note that although our work is motivated by a spe-
cific replication scenario, we speculate that it will be more generally useful. In
particular, we believe that it may not be uncommon for systems that can, in prin-
ciple, have any node read or write any item of data to, in practice, experience
sufficient locality to benefit from our approach.

Our paper is organized as follows. Section 2 presents our system model and
a set of assumptions on which our system is built. In Section 3, we present our
system’s design. We compare our system with existing ones in Section 4 with
both analytical and experimental evaluations. In Section 5, we discuss related
work. Concluding remarks are presented in Section 6.

2 System Model and Definitions

Our edge service environment consists of a collection of edge server nodes that
each play one or more of the following three roles: (a) front end nodes that

3 Note that ROWA protocols are, in fact, a special case of quorum protocols, but they
are often treated separately in the literature.



handle application client requests from across the Internet, execute application-
specific processing, and act as service clients to the dual-quorum storage system;
(b) Output Quorum System (OQS ) nodes that process read requests; and (c)
Input Quorum System (IQS ) nodes that process write requests. We assume a
request redirection architecture that directs application clients to a good (e.g.,
nearby, lightly loaded, or available) front end edge server; a number of suitable
redirection systems are discussed in the literature [15, 31]. Note that application
clients are unaware of the underlying data storage system and never contact the
OQS or IQS interfaces directly.

In an edge service environment, servers typically process sensitive or valuable
information, so they must run on trusted machines such as dedicated servers in
a hosting center. We therefore assume a fail-stop model in which servers may
crash but cannot issue incorrect requests or replies. The network may delay,
duplicate, or reorder messages. We assume secure communication among nodes
and that if the network corrupts a message, this corruption is detected by low-
level checksums and the message is silently discarded. Each node can read a
local real-time clock and there exists a maximum drift rate maxDrift between
any pair of clocks.

For performance, our system assumes that concurrent reads and writes to a
given object by different nodes are rare. But, for correctness, we must define the
system’s consistency semantics in the presence of concurrent reads and writes
to the same object. The dual quorum design provides regular semantics [16]: a
read r that is not concurrent with any write returns the value of the latest write
that completed before r began and a read r that is concurrent with one or more
writes returns one of (a) the value of the last write that completed before r
began, or (b) the value of one of the writes concurrent with r.

For convenience of exposition, we describe interactions with a quorum sys-
tem in terms of a QRPC (quorum-based remote procedure call) operation [18].
replies = QRPC(system, READ/WRITE, request) sends request to a collec-
tion of nodes in the specified quorum system (e.g., the IQS or OQS ). The
QRPC call then blocks until a set of replies constituting the specified quorum
(READ or WRITE) on the specified system have been gathered. The call then
returns the set of replies that it received. The QRPC operator abstracts away
details of selecting a quorum, retransmissions, and timeouts, but our protocol
does not depend on any specific QRPC implementation. In particular, different
implementations may choose different ways to select which nodes from system
to send requests to, and they may select different retransmission strategies: our
simple prototype implementation always transmits requests to the local node if
the local node is a member of system; it then randomly selects a sufficient num-
ber of additional nodes to form a READ or WRITE quorum and transmits the
request to them; retransmissions are each to a new randomly selected quorum
using an exponentially-increasing retransmission interval. A more aggressive im-
plementation might send to all nodes in system and return when the fastest
quorum has responded or might track which nodes have responded quickly in
the past and first try sending to them.



3 Dual Quorum Protocol Design

This section describes the design of the dual-quorum replication system and the
key ideas for achieving our design goals. The basic idea is to separate the read
and write quorum into two quorum systems so that they can be optimized indi-
vidually to improve response time and availability for read-dominated or write-
dominated workloads. The read and write quorums of the OQS and IQS can
be separately configured in any way desired, but we would expect one common
configuration to be to optimize read performance by having the OQS span all
nodes in the system with a read quorum size of 1 and to get good write availabil-
ity by having the IQS span a modest number of nodes with any majority of the
IQS nodes forming a write quorum. As Figure 2 illustrates, in the dual quorum
system service clients retrieve objects from a read quorum in OQS and send ob-
ject updates to a write quorum in IQS. The two quorum systems conditionally
synchronize with each other to maintain the consistency of data replicated on
them when processing both reads and writes.
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Fig. 2. Dual quorum architecture overview. Note that client reads and writes are issued
by the service clients, not the application clients.

To simplify the discussion, we present the protocol in two steps. First, we
will discuss the basic dual-quorum protocol, a simplified asynchronous protocol,
in Section 3.1. This protocol allows separate optimizations of read and write
quorums, but because it assumes an asynchronous system model, a write can
block for an arbitrarily long period of time. Then, in Section 3.2 we describe
how we introduce volume leases to improve write availability while retaining
good read performance.

3.1 Dual quorum protocol

High level overview The basic idea of the dual quorum protocol is to process
reads and writes in two different quorum systems, IQS and OQS , and use
a cache invalidation strategy to synchronize the state of objects replicated in
IQS nodes and cached in OQS nodes.

Clients perform similar tasks for reading and writing data as in the conven-
tional quorum based protocols. When a client read arrives in OQS , two possible
scenarios can happen, as illustrated in Figure 3 (a) and (b). In a read hit case,
the OQS read quorum contains a valid cache copy of the requested object, which



is immediately sent back to the client. When there is a read miss, i.e. the cache
copy on the OQS read quorum is invalid, the OQS read quorum validates the
cache copy by querying an IQS read quorum for the latest update. Once the
cache copy of the OQS read quorum is validated, the OQS read quorum sends
the updated value to the client. There are also two scenarios when processing
client writes, as illustrated in Figure 3 (c) and (d). In a write suppress case, the
cache copy in an OQS write quorum is already invalid. The IQS write quorum
can just apply the write to the local object and send the completion acknowl-
edgment to the client. In the case of a write through, an OQS write quorum
may hold a valid cache copy. Therefore, the IQS write quorum that receives the
client write has to invalidate the cache copy on one OQS write quorum before
the write can complete.

For workloads consisting of read bursts, the first read forces all OQS nodes
of the read quorum to validate their cached copies. Therefore, all subsequent
reads via that quorum are read hits. If we configure the OQS read quorum to
contain only one node, reads becomes local, and the protocol can yield near
optimal read response time and availability for read-dominated workloads. For
workloads consisting of write bursts of the same data, the first write invalidates
cached copies in an OQS write quorum, making all subsequent writes write

suppresses. Naturally, we can configure IQS as a majority quorum system to
provide near optimal write availability for such workloads.
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Fig. 3. Request processing scenarios

Protocol details The following paragraphs provide the details of the basic
dual-quorum protocol by describing the actions taken at individual nodes.

Data structures. Each IQS node maintains the following state for each object o:
lastWriteLCo stores the logical clock of the last write to o, lastReadLCo stores
the value of lastWriteLCo from the time of the last read of o, lastAckLCo,j

stores the logical clock contained in the highest invalidation reply from OQS node
j for o, and valueo stores the value of o. Each node in IQS maintains a logical
clock logicalClock whose value is always at least as large as the node’s largest
lastWriteLCo for any object o. Each node in OQS maintains the following
per-object o per-IQS-node i state: logicalClocko,i indicates the highest version
number (logical clock) of o for which an invalidation or update has been received
from i, and valido,i is true if logicalClocko,i corresponds to an update (false if
it corresponds to an invalidate). Finally valueo stores the update body for the
highest logical clock received in any update message for o from any node.



Object validity. The system maintains the following key invariant: If node j in
OQS has from node i in IQS a valid object o (j.valido,i) then node i in IQS knows
node j in OQS has a valid object callback (i.lastReadLCo > i.lastAckLCo,j).

Client read. From the client’s point of view, a dual-quorum read is the same
as a standard quorum read [11, 12]. client sends a read request to the OQS via
QRPC. After receiving replies from a read quorum in OQS, client selects the
value with the highest logical clock.

A node j in OQS that receives a client read request first checks whether the
object o is valid. This check is done by first finding the IQS nodes i that sends
the highest logicalClocko,i to j. Object o is valid if valido,i = TRUE, invalid
otherwise. If o is valid, j returns the object’s locally-stored logical clock and
value. If not, j renews the object by sending object renewal messages to IQS
using QRPC. After receiving replies R from a read quorum in IQS, j updates its
local state (∀i, s.t. i ∈ R: if R.ro,i.lc ≥ logicalClocko,i, then logicalClocko,i :=
R.ro,i.lc and valido,i := true). Then, j updates valueo with the value in the reply
with the highest logical clock and returns both the value valueo and the highest
logical clock to the client. Each IQS server that receives an object renewal
message returns to the OQS server valueo and lastWriteLCo and then updates
lastReadLCo = max(lastReadLCo, lastWriteLCo).

Client write. Just like the standard quorum write protocol [11, 12], client first
queries IQS using QRPC to retrieve the highest logical clock from a read quo-
rum in IQS. Next, client advances the logical clock and embeds it in the write
request that is then sent to the IQS via QRPC. The write completes after client

receives acknowledgments from a write quorum in IQS.
An IQS server i that receives a client request for the highest logical clock

of the last completed write responds with its logical clock logicalClock. When
i receives a client write whose logical clock is larger than that associated with
the last completed write of o on i (lastWriteLCo), i updates lastWriteLCo and
valueo with those in the write. Then, to ensure that a write quorum in OQS is
unable to read the old version of the data, i performs one of the following tasks:
(a) if no OQS server has renewed since the completion of the last write, (e.g.
∀j, s.t. j ∈ OQS, lastReadLCo < lastAckLCo,j), i suppresses invalidations to
OQS; (b) otherwise, i sends invalidations with the logical clock of the write to
OQS using QRPC. The write completes after receiving invalidation replies from
a write quorum in OQS, at which point i updates lastAckLCo,j for all j in the
QRPC reply and returns to the client.

An OQS server j that receives from node i in IQS an invalidation with
a logical clock lco,i compares lco,i with logicalClocko,i. If the invalidation has
the higher logical clock, j updates the local state (logicalClocko,i = lco,i and
valido,i = false). Finally, j sends an invalidation acknowledgment back to i.

3.2 Dual quorum with volume leases (DQVL)
The basic protocol just described allows one to vary read and write quorum
sizes independently. However, our application would benefit from using a read
quorum size of 1 so that reads can be serviced locally; any larger read quorum



size introduces a network delay to every read and provides qualitatively worse
read response time. However, a read quorum size of 1 could lead to unacceptable
write availability because it could require a write to contact all nodes in the OQS
to invalidate cached data. We therefore adapt Yin et al.’s volume lease proto-
col [30] to support very small read quorums in OQS while retaining acceptable
availability on writes.

High level overview We group objects into collections called volumes. To
process a read, a read quorum in OQS must hold both a valid volume lease and
a valid object lease for some read quorum in IQS. A lease represents permission to
access some object that expires at some specified time [13]. Similar to the basic
dual quorum protocol described in the previous section, when an OQS read
quorum holds both valid leases, all client reads processed by this read quorum
are read hit. A read miss implies that either or both leases are invalid - they can
be renewed by querying from an IQS read quorum. Similarly, a write suppress

occurs when either or both leases are invalid in at least one OQS write quorum.
To process a write in the write through scenario, the IQS write quorum can (a)
invalidate the object lease in an OQS write quorum or (b) wait for the lease to
expire on the volume containing the requested object in an OQS write quorum.

The key challenge in introducing volume leases is to manage the callback state
when invalidations are suppressed at IQS when the volume lease expires in an
OQS write quorum. When an IQS write quorum processes a write to o while
the lease expires for the volume v containing o in an OQS write quorum, i.e. a
write suppress scenario, the IQS write quorum has to enqueue the invalidation
of o as a delayed invalidation [30]. All delayed invalidations of objects under v
must be processed by the OQS write quorum before v’s lease can be renewed so
that all required callbacks to IQS are installed on OQS . Those callbacks ensure
that OQS queries IQS to retrieve possible updates suppressed at IQS.

A final implementation detail we take from Yin et al. [30] is to bound the
size of the list of delayed invalidations for OQS using epochs. Volume lease re-
newals are marked with an epoch number, and when this epoch number changes,
OQS conservatively assumes all object callbacks have been revoked by IQS.
In this case, OQS suspects that all objects under this volume are updated at
IQS and OQS needs to query an IQS read quorum to validate the cache copy
before sending any object to a client.

The key benefit of volume leases is that they can be of short duration while
object leases are of long duration.4 This combination yields good read response
time; nodes in OQS can cache objects locally for a long time, and although
they must frequently renew volume leases, this cost is amortized across many
objects in a volume. This combination also yields good write responsiveness and
availability: a write can complete by invalidating nodes caching data or waiting
for a (short) volume lease to expire.

4 For simplicity, we will assume infinite-length object leases or callbacks [14]. Gener-
alizing to finite-length object leases is straightforward and can help optimize space
and network costs [9].



Protocol details The protocol details at the node level are similar to the basic
dual quorum protocol except that each IQS node tracks the volume lease and
callback state on all OQS nodes. The pseudo-code describing actions at an IQS
and an OQS node is shown in Figures 4 and 5.

Data structures. Each node in IQS maintains a real time clock currentT ime
(with bounded drift with respect to the other clocks as described in Section 2)
and a logical clock logicalClock. Each IQS node also maintains the following
per-volume v, per-OQS-node j state: expiresv,j which indicates when v expires
at j, delayedv,j which contains a list of delayed invalidations that must be de-
livered to j before v is renewed, and epochv,j which indicates j’s current epoch
number for v. Finally, each IQS node maintains the following per-object o state:
lastWriteLCo stores the logical clock of the last write to o, lastReadLCo stores
the value of lastWriteLCo from the time of the last read of o, lastAckLCo,j

stores the logical clock contained in the highest invalidation reply from node j
for o, and valueo stores the value of o.

Each node in OQS maintains a bounded-drift real time clock currentT ime. In
addition, it maintains the following per-volume v per-IQS-node i state: epochv,i

is the highest epoch number for which a valid volume lease from i was held on v
and expiresv,i is the time when the lease on v from i will expire. And, it maintains
the following per-object o per-IQS-node i state: epocho,i indicates the last epoch
for which a valid object lease on o from i was held, logicalClocko,i indicates the
highest version number (logical clock) of o for which an invalidation or update
has been received from i, and valido,i is true if logicalClocko,i corresponds to an
update (false if it corresponds to an invalidate). Finally valueo stores the update
body for the highest logical clock received in any update message for o from any
node.

Volume and object validity. The system maintains the following key invariant: If
node j in OQS has from node i in IQS both a valid volume v (expiresv,i >
currentT ime) and a valid object o (epochv,i = epocho,i && valido,i) then
node i in IQS knows node j in OQS has a valid volume lease (expiresv,j >
currentT ime) and valid object callback (lastReadLCo > lastAckLCo,j).

Client read. As detailed by processReadRequest in the pseudo-code, a node j
in OQS processes a client read of object o by ensuring Condition C: there exists
a read quorum irq in IQS such that j holds both a valid volume lease and valid
object lease from irq. If C is already true, then j can immediately return the
value valueo and the associated logical clock MAX∀i, s.t. i∈IQS(logicalClocko,i).

If C is not true, then j performs a variation on QRPC. QRPC as defined
in Section 2 sends and resends a request to different nodes until it receives
a quorum of replies. This variation sends different requests to different nodes
and processes replies until condition C becomes true. In particular, for each
target node i selected, j sends one of three things: (a) if the volume from i has
expired and the object from i is invalid, it sends a combined volume renewal
and object read; (b) if just the volume has expired, it sends a volume renewal;
or (c) if just the object is invalid, it sends an object read. As detailed in the



1 processLCReadRequest ( ) {
2 sendMsg (CLIENT LC READ REPLY , logicalClock) ;
3 }
4
5 processWriteRequest ( Object o , Value v ,
6 Logi ca lClock lc){
7 i f ( lc > lastWriteLCo ){
8 valueo := v ;
9 lastWriteLCo := lc ;

10 // ensure an i nva l i d OQS wr i te quorum
11 whi le ( ! isOWQInvalid (o , lc) ){
12 invalidateOWQ(o , lc) ;
13 // se e t ext f o r d e s c r i p t i o n s
14 }
15 }
16 sendMsg (CLIENT WRITE ACK, o , lc) ;
17 }
18
19 proces sInva lAck ( Object o , Sender j ,
20 Logica lC lo ck lc){
21 //update the l a s t inva l ack in
22 // the r ecord f o r the sender
23 lastAckLCo,j := MAX(lastAckLCo,j, lc) ;

24 }

24 processVLRenewal (Volume v , Sender j ,
25 RequestorTime tv,0 ){

26 expiresv,j := L + currentT ime ;

27 sendMsg (VOLUME RENEW REPLY, delayedv,j ,

28 L , epochv,j , tv,0 ) ;

29 }
30
31 processVLRenewalAck (Volume v , Sender j ,
32 LogicalC lc){
33 //remove delayed i n va l s a lr eady
34 // app l i ed at the sender
35 ∀k, s.t. invalk,j ∈ delayedv,j{

36 i f (lc ≥ invalk,j .lc){

37 de l e t e invalk,j ;

38 }
39 }
40 }
41
42 processObjRenewal ( Object o){
43 //update la s t−read l o g i c a l c l o ck
44 lastReadLCo := lastWriteLCo ;
45 sendMsg (OBJECT RENEW REPLY, valueo ,
46 lastW riteLCo ) ;
47 }

Fig. 4. IQS server operations (pseudocode) - Dual quorum with volume leases

pseudo-code processVLRenewReply, j processes replies to volume renewal
requests from IQS node i by applying the delayed invalidations included in the
reply (in the same way as applying normal invalidations as described below)
and updating expiresv,i as well as epochv,i. To account for worst-case clock
drift, j conservatively sets expiresv,i = to + L ∗ (1 − maxDrift) where to is the
time that j sent the volume lease renewal request, L is the volume lease length
granted in the reply, and maxDrift is as defined in Section 2. Finally, j sends
i a volume lease renewal acknowledgment (which i uses to clear its delayed
invalidation queue.) As detailed in the pseudo-code processRenewReply, j
processes object renewal replies from i by updating epocho,i, logicalClocko,i, and
valido,i; furthermore, if valido,i is true and logicalClocko,i exceeds the logical
clock of any other valid logical clock for this object, j updates valueo. The
repeated sends and the processing of replies in this QRPC variation ensure that
C eventually becomes true, at which point j returns valueo and the associated
logical clock (logicalClocko,imax

) as the result of the read.
On the IQS side, node i in IQS processes volume renewal messages for vol-

ume v from node j as described in the pseudo-code processVLRenewal: i
sends the delayed invalidations delayedv,j and the volume renewal, containing
the epoch number epochv,n and lease length L. i then records the volume ex-
piration time (expiresv,j = L + currentT ime). When i receives a volume lease
renewal acknowledgment for volume v and logical clock lc from j, as detailed
in the pseudo-code processVLRenewalAck, i clears all delayed invalidations
with logical clocks up to lc from delayedv,j . As processObjRenewal indicates,
when i in IQS processes a read of object o from OQS node j, it replies with
valueo and lastWriteLCo and updates lastReadLCo = lastWriteLCo. Note
that lastReadLCo, lastAckLCo,j , and lastWriteLCo allow i in IQS to track
which nodes j in OQS may hold valid object callbacks. Finally, if an IQS server
i wishes to garbage collect delayed invalidation state for j, i advances epochv,j

and deletes the delayed invalidations delayedv,j . Note that if j receives from i
a volume lease with a new epoch, then epochv,i 6= epocho,i for all o. So all pre-



1 processVLRenewReply (Volume v , Sender i ,
2 Lease L , Epoch e , DI di ,
3 RequestorTime tv,0 ){

4 expiresv,i := MAX(expiresv,i, tv,0 + L ∗ (1 − maxDrift))

5 ;
6 epochv,i := MAX(epochv,i, e) ;

7 // apply delayed i nva l s in the r ep ly
8 ∀k, s.t. invalk,i ∈ di {

9 i f (invalk,i.lc > logicalClockk,i ){

10 logicalClockk,i := invalk,i.lc ;

11 validk,i := false ;

12 }
13 }
14 sendMsg (VOLUME RENEW REPLY ACK,
15 v , MAX(di.lc)) ;
16 }
17
18 p roc e s s I nva l ( Object o , Sender i ,
19 Logi ca lClock lc){
20 //update the l o c a l l o g i c c l ock
21 //and obj e c t s ta tu s
22 i f ( logicalClocko,i < lc){

23 logicalClocko,i := lc ;

24 valido,i := false

25 }
26 sendMsg (INVAL ACK, l c ) ;
27 }

27 processReadRequest ( Object o){
28 // ensure va l id l o c a l ob je c t and volume
29 whi le ( ! i sLoca lVa l id (o) ){
30 // renew in va l i d volume and ob j ec t
31 va l i da t eLoca l (o) ;
32 }
33 // send rep ly to c i l e n t
34 lc := MAX∀i, s.t. valueo,i=true(logicalClocko,i) ;

35 sendMsg (CLIENT READ REPLY, valueo , lc) ;
36 }
37
38 processRenewReply ( Object o , Sender i ,
39 Epoch epoch , Log i ca lClock lc ,
40 ObjectValue value){
41 epocho,i := MAX(epocho,i, epoch) ;

42 i f ( logicalClocko,i ≤ lc){

43 logicalClocko,i := lc ;

44 valido,i := true ;

45 }
46 i f (valido,i = true &&

logicClocko,i ≥ MAX∀k,k∈IQS(logicalClocko,k)

47 ){
48 valueo := value ;
49 }
50 }

Fig. 5. OQS server operations (pseudocode) - Dual quorum with volume leases

viously valid object leases from i immediately become invalid. Thus, if j misses
some object invalidations from i when its volume lease from i has expired, a
volume lease renewal from i can resynchronize j’s state by either (a) updat-
ing valido,i with the missing delayed invalidations or (b) advancing epochv,i by
sending a volume renewal with a new epoch number.

Client write. A client first determines the highest logical clock of any com-
pleted write by calling IQS’s processLCReadRequest. A node i in IQS re-
sponds to such a call for object o by returning the node’s global logical clock
logicalClock. A client then issues the actual write of object o. As detailed in
processWriteRequest in the pseudo-code, if the write’s logical clock exceeds
that of the highest write seen so far (lastWriteLCo), node i stores the write’s
logical clock and value. i then ensures that a write quorum in OQS is unable
to read the old version of the data by performing a variation on QRPC that
“sends” differently to different nodes depending on whether their volume and
object leases are valid. There are three cases for i to consider for node j, object o,
and volume v: (a) if i knows o is invalid at j (e.g., lastReadLCo < lastAckLCo,j)
then i need take no action for j; (b) otherwise if o is valid at j but v is invalid at
j (e.g., expiresv,j < currentT ime) then i enqueues an invalidation in delayedv,j

which will be processed at j when it renews its volume; or (c) both the ob-
ject and volume are valid (e.g., lastReadLCo > lastInvalLCo,j) then j sends
an object invalidation containing the write’s logical clock (lastWriteLCo) to j.
In this last case, if j receives an invalidation from i for object o with logical
clock lc, then as the pseudo-code in processInval describes, j applies the in-
validation: if the invalidation is the newest information about o from i (e.g.,
lc > logicalClocko,i) then j updates the logical clock and validity information
({logicalClocko,i = lc; validi = false}). Finally, if i receives an invalidation-



acknowledgment from j for logical clock lc, then as the pseudo-code in process-
ClientInvalAck describes, i updates lastAckLCo,j = max(lastAckLCo,j , lc).

3.3 DQVL Correctness

Because of space constraints, we omit the proof 5 that the system has regular
semantics [16]. In particular, the proof shows (1) a read of o that is not con-
current with any writes of o can return only the value and logical clock from
the completed write of o with the highest logical clock and (2) a read of o that
is concurrent with one or more writes of o can return only (a) the value and
logical clock from the completed write of o with the highest logical clock or (b)
the value and logical clock from some concurrent write of o.

To give intuition for why DQVL provides regular semantics, consider the
invariant: If node j in OQS has from node i in IQS both a valid volume v
(expiresv,i > currentT ime) and a valid object o (epochv,i = epocho,i &&
valido,i) then node i in IQS knows node j in OQS has a valid volume lease
(expiresv,j > currentT ime) and valid object callback (lastReadLCo > lastAckLCo,j).

For a read that is not concurrent with any writes: This invariant is established
by having j renew its volume v and (or) object o from i. Therefore, j contains
the last completed write valueo on node i when j has both a valid volume v
and a valid object o from node i. Furthermore, j will contain the last completed
write valueo on a write quorum in IQS (iwq) when j has both a valid volume
v and a valid object o from a read quorum in IQS (irq) (because an OQS read
quorum (orq) and an OQS write quorum (owq) intersect by at lease one node).
Because a client write is performed on an iwq, valueo held on j is actually the last
completed client write in the system. Because j can not process any client read
unless it holds both a valid volume v and a valid object o from a read quorum
irq, j guarantees to always return the value valueo of the last completed write
in the system.

For a read that is concurrent with some writes: Assume that the last com-
pleted write has logical clock lc0 and a read r that is concurrent with some
writes with logical clock lc1...lcn (lct > lc0) is sent to an orq. If the invariant is
established in the orq, r returns the value associated with lc0. Otherwise, the orq
will try to establish the invariant by querying an irq. Because some writes are
being processed in IQS, the irq may return to the orq the value associated with
any of the logical clock o.lc0...o.lcn. Meanwhile, some iwq may send invalidations
with logical clock inval.lc0...inval.lcn to the orq as the result of the concurrent
writes. When the maximum logical clock received in the renew replies is less than
that of any invalidations on any server j of the orq, this server keeps renewing
from some irq. As long as those concurrent writes terminate, j will eventually
receive o.lcn (the highest logical clock among all concurrent writes) from some
irq. Therefore, r may return the value associated with any of the logical clock
lc0...lcn.

5 The details are presented in Chapter 4 of Lei Gao’s dissertation available at
www.cs.utexas.edu/users/lgao/papers/dissertation.pdf.



4 Evaluation

Through both analytical and experimental evaluations, we compare the availabil-
ity, performance, and communication overhead of DQVL against other popular
replication protocols. We show that DQVL yields a read performance competi-
tive with ROWA epidemic algorithms and overall availability competitive with
the majority quorum protocol.

4.1 Response time

A prototype has been implemented by using DQVL and other popular replica-
tion protocols, such as primary/backup, majority quorum, ROWA-Async and
ROWA, to compare their response times. The prototype is similar to a read-
/write register in that it allows clients to read and write the value of a single

object. But our prototype supports reads and writes on multiple objects and
ensures a consistent view of all objects on every server.

All the prototypes are built in Java. In our prototype experiment, we set the
“LAN” delay between an application client and its closest edge server to 8 ms.
The “WAN” delay between the application client and other edge servers is 86 ms.
And the network delay among edge servers is 80 ms. Because the experiments
focus on how various protocols can minimize WAN delays by taking advantage
of having an edge server near every application client, we assume a constant
processing delay on every edge server for both reads and writes. An application
client sends requests to the system with a specified write ratio. The application
client sends the next request only after it receives the response of the current
request. We run up to nine edge servers and three application clients in the
experiment.

This section compares the response time of five protocols under our target
workloads. We show that DQVL yields better response time than protocols pro-
viding strong consistency guarantees and competitive response time to protocols
with relaxed consistency guarantees.

Write ratio We first evaluate the response time by fixing the write rate to 5%,
which is the update rate for TPC-W6 profile object, i.e. a workload with a low
update rate and strong access locality. Accesses to the profile object consist of
95% reads on a customer’s purchase history, credit information, and addresses
and 5% writes on a customer’s shipping address when processing an online pur-
chase. When the profile is replicated on edge servers, a customer is routed to the
closest edge server to access its profile information.

As illustrated in Figure 6 (a), DQVL provides at least a six times read re-
sponse time improvement over primary/backup and majority quorum protocols
that are used to provide strong consistency guarantees. DQVL yields compara-
ble read response time to ROWA and ROWA-Async protocols because it allows
most client reads to be processed locally at the client’s closest edge server while
maintaining the same level of consistency guarantees as both primary/backup

6 TPC-W is a transaction processing benchmark for the web [8].
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Fig. 6. Response time vs. write rate

and majority quorum protocols by running the dual-quorum protocol between
the closest replica and the rest of the replicas in the system.

Figure 6 (b) is the sensitivity graph illustrating the response time as we
vary the write rate. As writes dominate the workload, DQVL’s response time
approximates that of the majority quorum protocol and becomes higher than
those of primary/backup and ROWA. The main reason is that DQVL clients,
following the same procedure as the majority quorum protocol, need to obtain
the latest timestamp from a read quorum before sending the write to a write
quorum in IQS. Two round trips are required for both the majority quorum
protocol and DQVL while only one round trip is needed for primary/backup
and ROWA protocols. For this reason, the average response times of both DQVL
and the majority quorum protocol are worse than that of ROWA although both
protocols do not require every write to be processed by all nodes.

Access locality In this subsection, we evaluate response time when some por-
tion of client requests are routed to replicas other than the client’s closest one.
Under normal circumstances, requests are routed to the client’s closest server.
But the unavailability of the closest replica or the geographical movement of the
client can sometimes result in a request being routed to a distant replica.

Figure 7 (a) illustrates the protocols’ response times at our target 5% write
rate and at 90% access locality (i.e. 10% of client requests are sent to distant
replicas and 90% of client requests are sent to the client’s closest replica). The
90% access locality is a pessimistic measure for Internet edge servers given typical
network failure rates below 10% and infrequent mobility by most end users.
DQVL outperforms both primary/backup and majority quorum protocols for
the workload while preserving the same consistency level in cases where client
requests are directed to distant replicas. Note that that ROWA-Async protocol
yields the optimal response time at the cost of serving reads with potentially
inconsistent data when requests are directed to the distant replicas.

In the DQVL protocol, the response time of reads at distant replicas is higher
than the normal response time experienced when reading from the closest one.
As the access locality varies, the overall response time changes accordingly. Fig-
ure 7 (b) indicates the relationship between the access locality and the overall



response time of five protocols. DQVL suffers when access locality is low be-
cause both reads and writes need to contact replicas in both input and output
quorum systems. But DQVL’s response time keeps improving as the access local-
ity becomes higher. The majority quorum and primary/backup protocols are not
affected by the access locality because neither protocol is designed to take advan-
tage of the access locality in the edge service environment. This graph suggests
that when the access locality is 70% or higher, DQVL should be preferred over
primary/backup or majority quorum protocols for replication systems requiring
low response time and strong consistency guarantees.
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4.2 Availability

In this section, we provide analytical models to evaluate the availability of the
dual quorum protocol in comparison with other popular replication protocols.

We define the availability (av) as the number of client requests successfully
processed by the system over the total number of requests submitted to the
system during a given time period. A request is rejected by the system when
target consistency semantics can not be satisfied. In the context of this paper,
systems are required to provide regular semantics [16]. For example, if more than
half of the nodes are unavailable in the IQS of a dual quorum system or in a
majority quorum system, a client write will be rejected because the system can
no longer guarantee that a later read can always retrieve the value of this write.
Because the ROWA-Async protocol allows reads to return stale data from nodes
without the latest update, it does not provide regular semantics. Therefore, to
make the comparison fair [32], our analysis of the system implementing ROWA-
Async protocol assumes that the system rejects client reads that would return
stale data.

Figure 8 illustrates the unavailability of DQVL in comparison with other
protocols in log scale. The unavailability is computed as 1−av. An unavailability
of 10−i corresponds to the availability of i 9’s. Our simple model assumes a per
node unavailability p = 0.01 and that node failures (including server crashes and
network failures) are independent. Read and write rates are defined as 1−w and
w.



For DQVL, the availability of both read hit and read miss are min(avorq, avirq).
The availability of both write through and write suppress are min(avirq, aviwq).
Therefore, the availability of DQVL is avDQV L = (1 − w) ∗ min(avorq, avirq) +
w ∗ min(aviwq, avirq).
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Figure 8 (a) illustrates the unavailability of our target protocols as we vary
the write ratio and fix the number of replicas to 15 (in both IQS and OQS ).
The key result is that DQVL’s availability tracks that of the majority quorum.
Note that the DQVL’s availability measurement is pessimistic because a read can
proceed without contacting any read quorum in IQS if the read quorum in OQS
holds valid volume and object leases; this effect may mask some failures that
are shorter than the volume lease duration. Note that ROWA-Async protocol
provides excellent availability by allowing reads to return arbitrary stale data
to clients. But if we allow no stale reads by the ROWA-Async protocol, its
availability decreases to several orders of magnitude worse than other quorum
based protocols and our DQVL protocol.

Figure 8 (b) illustrates unavailability as we vary the number of replicas and
fix the write ratio at 25%. The unavailability of DQVL is similar to that of the
majority quorum system. The availability of quorum based protocols, including
DQVL, improves as the total number of nodes increases. The availability of
ROWA and ROWA-Async with no stale reads is insensitive to the number of
nodes in the system.

4.3 Communication Overhead

This section analyzes DQVL’s communication overhead in terms of the number
of message exchanges required in processing a client request. To simplify the
model, the study assumes the weights of all message types are equal. Because of
space constraints, we omit a detailed discussion of the communication overhead
model.5 Figure 9 shows the average number of messages required to process a
client request in log scale. As illustrated in Figure 9 (a), in the worst case where
the write ratio is 50%, DQVL can have high communication overhead as reads
and writes interleave with each other. In this case, most reads are read misses and
most writes are write throughs which involve both IQS and OQS in processing



requests. However, DQVL’s overhead should be comparable to other approaches
in practice. First, workloads that DQVL is designed to face are dominated by
reads. Consecutive reads are likely to benefit from having objects cached on OQS
servers, i.e. the target workloads have a large number of read hits. Second, the
design of DQVL allows us to vary the OQS size to meet read performance goals
while varying the IQS size to balance overhead vs. availability goals. As shown
in Figure 9 (b), once we fix IQS at a moderate size while letting the OQS size
grow, the communication overhead yielded by DQVL is comparable to that of
the majority quorum protocol without requiring many read hits in the workload.

Note that although the dual quorum protocol is described in terms of two
quorum systems, IQS and OQS , an IQS server could physically be on the same
node as an OQS server, reducing the overall communication overhead.

1

10

100

1000

0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 N
um

be
r 

of
 M

es
sa

ge
 E

xc
ha

ng
es

 p
er

 R
eq

ue
st

Write Ratio

Dual-Quorum-Worst

Majority
Dual-Quorum-Best

ROWA

Grid

1

10

100

1000

5 10 15 20 25 30 35 40 45 50A
ve

ra
ge

 N
um

be
r 

of
 M

es
sa

ge
 E

xc
ha

ng
es

 p
er

 R
eq

ue
st

Number of Replicas

Dual-Quorum-Worst

Majority

Grid

Dual-Quorum-Best
ROWA

Dual-Quorum-Worst (|IQS|=5)

(a) varying write ratio (b) varying the number of replicas

Fig. 9. Communication overhead

5 Related Work

In read-one/write-all (ROWA) protocol the “read-one” property yields excellent
read availability and response time. But this protocol has limited write avail-
ability and response time because writes can not complete if any of the replicas
are unavailable. Protocols with the read-one/write-all-async property (ROWA-
Async) [21, 24, 25] yield better write availability and response time by allowing
writes to be propagated to other replicas asynchronously, but they are only suit-
able for weakly consistent replication because they can not guarantee that reads
will always return the data modified by the latest completed write. A variation
of ROWA [4] performs writes synchronously on the available replicas to provide
better consistency, but it requires membership protocols to maintain a consistent
view of active members.

The primary-backup (or primary-copy) model [2] tolerates network partitions
by only allowing the partition with the primary server to perform writes. How-
ever, the primary server becomes the bottleneck when it can not meet required
levels of availability and performance. Group-communication based techniques,
such as extended virtual synchrony [19, 20], enable the election of a new primary
by actively propagating updates to all group members and constantly running



membership protocols to maintain the correct memberships. The new primary
can be selected from active members and the change of the primary is also
broadcast to all active members as well. This class of techniques has degraded
performance in WANs because the membership protocol may always need to run
to constantly include/exclude certain replicas when they are mistakenly consid-
ered as crashed/recovered due to slow WAN links. In addition, all primary-server
based protocols are inflexibly in favor of reads’ availability and performance.

Quorum based protocols [11, 12, 23, 27] tolerate network partitions as long as
connected replicas can form a quorum to process requests. However, the reads’
response time and availability of most quorum systems are worse than those of
ROWAA or primary-backup based protocols because reads usually need to query
a larger set of servers. Quorum based protocols may not be desirable to handle a
read-dominated workload, e.g. a workload from interactive online applications.

Some quorum based techniques use light-weight nodes, such as ghosts [28]
to help form quorums for processing requests. When propagating a write, a
replica only sends to these nodes the timestamp and object ID of the write.
Our dual-quorum invalidation protocol shares the idea of replacing writes with
invalidations when propagating to some replicas. But our use of invalidations
also allows us to reduce the future message propagation to other replicas.

The traditional cache invalidation protocols [13, 30] are primarily used in the
client-server model where the server hosts the objects and clients keep cached
copies. Those protocols assume that an object has a home location that can grant
leases to cached copies, but this single centralized server may hurt availability.

6 Conclusion

This paper presents dual-quorum replication, a novel replication algorithm de-
signed to support Internet edge services. Through both analytical and experi-
mental evaluations, we demonstrate that the protocol offers nearly ideal trade-
offs among high availability, good performance, and strong consistency for some
workloads of interest.

Several important issues will be addressed in our future work. It will be
interesting to configure both IQS and OQS to optimize other metrics. For ex-
ample, we can configure the read quorum size in OQS to be larger than one to
avoid timeouts on invalidations. We can also configure IQS as a grid quorum
system [6] to reduce the overall system load. We are also interested in modifying
DQVL to provide different consistency semantics (e.g. atomic semantics [16])
and comparing the cost difference.
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