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Modern distributed systems consisting of powerful

workstations and high-speed interconnection networks

are an economical alternative to special-purpose su-

per computers. The technical issues that need to be

addressed in exploiting the parallelism inherent in a

distributed system include heterogeneity, high-latency

communication, fault tolerance and dynamic load bal-

ancing. Current software systems for parallel program-

ming provide little or no automatic support towards

these issues and require users to be experts in fault-

tolerant distributed computing. The Paralex system is

aimed at exploring the extent to which the parallel ap-

plication programmer can be liberated from the com-

plexities of distributed systems. Paralex is a complete

programming environment and makes extensive use of

graphics to define, edit, execute and debug parallel sci-

entific applications. All of the necessary code for dis-

tributing the computation across a network and repli-

cating it to achieve fault tolerance and dynamic load

balancing is automatically generated by the system. In

this paper we give an overview of Paralex and present

our experiences with a prototype implementation,

1 Introduction

There is general agreement that significant future

increases in computing power will be possible only

through exploiting parallelism. One of the many ad-
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vantages of distributed systems is their potential for

true parallel execution across multiple processing ele-

ments, In fact, the amount of raw computing power

that is present in a typical modern distributed system

with dozens, if not hundreds, of general-purpose work-

stations may be comparable to an expensive, special-

purpose super computer. Thus, it is tempting to try to

harness the massive parallelism available in these sys-

tems for single, compute-intensive applications. There

are, however, several obstacles that remain before net-

works of workstations can become ‘(a poor man’s super-

computer.”

Distributed systems differ from special-purpose par-

allel computers in that they (i) exhibit asynchrony with

respect to computation and communication, (ii) com-

municate over relatively low-bandwidth, high-latency

networks, (iv) lack architectural and linguistic homo-

geneity, (v) exhibit increased probability of communica-

tion and processor failures, and (vi) fall under multiple

administrative domains.

As a consequence, developing parallel programs in

such systems requires expertise not only in distributed

computing, but also in fault tolerance. A large number

of important applications (e.g., genome analysis) require

days or weeks of computations on a network with dozens

of workstations [14]. In these applications, many hours

of computation can be wasted not only if there are gen-

uine hardware failures, but also if one of the processors

is turned off, rebooted or disconnected from the net-

work. Given that the most common components of a

distributed system are workstations and that they are

typically under the control of multiple administrative

domains (typically individuals who “own” them), these

events are much more plausible and frequent than real

hardware failures.

We claim that current software technology for paral-

lel programming in distributed systems is comparable

to assembly language programming for traditional se-

quential systems — the user must resort to low-level

primitives to accomplish data encodingldecoding, com-

munication, remote execution, synchronization, failure
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detection and recovery. It is our belief that reasonable

technologies already exist to address each of these prob-

lems individually. What remains a challenge is the task

of integrating these technologies in software support en-

vironments that permit easy development of reliable ap-

plications to exploit the parallelism and fault tolerance

offered by distributed systems.

The Paralex project has been undertaken to explore

the extent to which the parallel application program-

mer can be isolated from the complexities of distributed

systems. Our goal is to realize an environment that

will encompass all phases of the programming activity

and provide automatic support for distribution, fault

tolerance and heterogeneity in distributed and parallel

applications. Paralex makes extensive use of graphics

for expressing computations, controlling execution and

debugging. The programming paradigm supported by

Paralex promotes the view of parallel computations as

collages of ordinary sequential programs. The “glue”

necessary for combining computations consists of inter-

dependencies and data flow relations that are expressed

using a graphical notation. In the limit, interesting new

parallel programs can be constructed by reusing exist-

ing sequential software and without having to rewrite

a single line of traditional code. As such, Paralex also

addresses the issue of “software reusability” [10].

2 The Paralex Programming Paradigm

The choices made for programming paradigm and no-

tation are fundamental in harnessing parallelism in a

particular application domain [11]. The programming

paradigm supported by Paralex can be classified as

static data flow [1]. A Paralex program is composed

of nodes and links. Nodes correspond to computations

(functions, procedures, programs) and the links indi-

cate flow of (typed) data. Thus, Paralex programs can

be thought of as directed graphs (and indeed are visu-

alized as such on the screen) representing the data flow

relations plus a collection of ordinary sequential code

fragments to indicate the computations.

Unlike claasical data flow, nodes of a Paralex pro-

gram carry out significant computations. This so-called

large-grain data flow model [6] is motivated by the high-

latency, low-bandwidth network that is available for

communication in distributed systems. Only by keeping

the communication-to-computation ratio to reasonable

levels can we expect reasonable performance from par-

allel applications in such systems.

While extremely simple, the above programming

paradigm has several desirable properties. First, appli-

cation parallelism is explicit in its notation — all nodes

that have no data interdependencies can execute in par-

allel. Second, the small number of abstractions that

the programmer has to deal with are familiar from se-

quential programming. In particular, there are no new

linguistic constructs for communication or synchroniza-

tion. Finally, composing parallel programs by intercon-

necting sequential computations allows automatic sup-

port for heterogeneity and fault tolerance and facilitates

soft ware reuse as discussed in subsequent sections.

2.1 Computation Nodes

The basic computational unit of a Paralex program is

a multi-junction mapping some number of inputs to

outputs. The graphical representation for the multi-

function itself is a node and that of the inputs and out-

puts are incoming and outgoing links, respectively. The

semantics associated with this graphical syntax obeys

the so-called “strict enabling rule” of data-driven com-

putations in the sense that when all of the incoming

links contain values, the computation associated with

the node starts execution transforming the input data

to outputs. Paralex functions must be “pure” in that

they can have no side effects. In particular, persistent

internal state or interactions with external components

such as files, devices and other computations are not

permitted.

The actual specification of the computation may be

done using whatever appropriate notation is available,

including sequential programming languages such as C,

C++, Fortran, Pascal, Modula or Lisp 1. It is also pos-

sible for computations to be carried out through com-

piled binaries or library functions subject to architec-

tural compatibility as discussed in Section 3.3.

How multiple outputs are specified for multi-functions

depends on the language being used to program the

nodes. One possibility is to implement the functions as

procedures and return results through call-by-reference

parameters. Another possibility is to use simple func-

tions and pack multiple results into composite data

types such as structures, records or arrays. We pursue

this option in the next section.

2.2 Filter Nodes

Filters permit multi-functions to be implemented using

simple functions. They allow the single (structured) re-

sult to be picked apart to produce multiple outputs. In

this manner, subsets of the data produced by the func-

tion may be sent to different destinations in the com-

putation graph. This is a principal paradigm for data-

parallel computing. For example, a single large matrix

produced by some node in the computation may be “fil-

tered” by extracting each of the quadrants to produce

four sub-matrixes to be processed in parallel at the next

level.

1 The exact list of programming languages permissible for node

computations is determined by type and calling convention com-

patibility with C
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Conceptually, filters are defined and manipulated just

as regular nodes and their “computations” are specified

through sequential programs. In practice, however, all

of the data filtering computations are executed in the

context of the single process that produced the data

rather than as separate processes. Associating filters

with the producer of the data not only saves network

bandwidth, it also economizes on data buffers necessary

at the consumers.

elettra spare, SunOS, rel=4, rev=l, fpu, gfxn2, specG21

xenia spare, SunOS, rel=4, rev=l, fpu, spec=13

fyodor spare, SunOS, rel=4, rev=l, fpu, gfx, spec=10

nabucco mips, fpu, gfx, color, spec=18

tosca m68020-Sun OS, SunOS, rel=4, rev=O, fpu, spec=9

violetta m68020-A/UX, spec=5

turandot RS6000, AIX, fpu, spec=12

carmen vax, gfx, memory= 16, spec=6

jago fyodor

2.3 Subgraph Nodes

Paralex computation graphs may be structured hier-

archically. Any node may contain a graph structure

rather than sequential code to carry out its computa-

tion. These sulrgraph nodes obey the same semantics as

primitive multi-function nodes and may be further de-

composed themselves. Subgraphs are to Paralex what

procedures are to sequential programs — a structur-

ing abstraction that renders programs not only easier

to understand, but also easier to construct using pre-

programmed components.

2.4 Cycle Nodes

At the inter-node level, Paralex computation graphs are

acyclic. Any single node of the graph, however, can

be invoked repetitively during execution as long as its

outputs match (in number and type) exactly its inputs.

The termination condition for the cycle can be dynamic

as it is defined explicitly by the user as a function of the

node inputs.

The Paralex cycle construct has a “while-loop” se-

mantics and operates as follows. If the termination

function evaluates to false, the node computation is

skipped and the input values appear as output. Oth-

erwise, the outputs produced by the node computation

are “wrapped around” and become inputs for the next,

iteration. While the cycle is active, external input to

tile node is blocked.

3 Overview of Paralex

Paralex consists of four logical components: A gral)ljlcs

editor for program development, a compiler. an exec u-

tor aud a runtime support environment The first t II ree

comrjonents are in[egratmi within a single graphical ]Jro-

gra!uliling enviroril~ie]~t. It is, however, possible to edit,

(’ollll)ll~ or eX(3CUt,f ~’iMalFX prO~riiJTIS dSO frOl”ll IllaC])i I IFS

WI(II 110 graphics support, II) this section we illust ritl e

MJI]I<-,of the principal ollaracterisLics of the user interface

i Ill ougb example.,.

3.1 Site Definition

The distributed systel)l 011 wllicb Paralex is to rllll is

cleiined through a iIlc ( allt,d paralex site. Tills iilv

Figure 2: Paralex Site Definition File,

can be viewed as an “architecture description database.”

Each host of the system that is available for Paralex

has a single-line descriptor. The first field of the line is

the name of the host. Following the name is a comma-

separated list of attributes. An example of a site file is

shown in Figure 2.

Attributes may be binary (e.g., spare, fpu) or nu-

meric (e.g., gfx, spec). Including the name of a bi-

nary attribute for a host signals its presence, Numeric

attributes are associated integer values through assign-

ment and are set to one by default. Indicating another

host name as an attribute permits the two hosts to share

the same set of attributes (e.g., j ago has the same at-

tributes as f yodor). Paralex neither defines nor inter-

prets keywords as attribute names. They are used by

the Paralex loader to select sets of hosts suitable for ex-

ecuting nodes through a pattern matching scheme. This

mechanism allows new attributes to be introduced and

old ones to be modified at will by the user.

A minimum description of a host must contain its

name, the processor architecture family (e.g., spare,

mips, vax) and the raw processor power measured in

SPECmarks (spec) [13]. In case two hosts share the

same processor architecture family but are not binary

compatible, additional information (such as the oper-

ating system type, SunOS, A/UX ) must be included in

the chrrracterizatioll to distinguish them. The SPEC-

mark value of a host is used by the Inapping and dy-

nalriic load balancing algorithms to associate computa-

tlous with hosts.

Note t]] at the site definition contains no explicit infor-

rnatio]l abol]t the communication characteristics of the

distributt,d systeln. The current velsion of Paralex as-

sulllc~ t hat vach pair-wise communicant u-m between hosts

is possil)lv and uniform. This assumljt,ron is supported

by broadcast LAN-based systenls that are of immedi-

ate interest to us. With the dvent ot’ gigabit wide-

area Iletworliing technologies [17], the site definition file

~ould easily be exteuded to include expliclt communi-

( atlojl Lopology information and pfirlll]t parallel coni-
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puting over non-uniform and long-haul

networks.

3.2 The Graphics Editor

Figure 1: Paralex Graphics Editor.

communication

The Paralex graphics editor allows computation graphs

to be constructed using a pointing device such as a

mouse and pull-down menus. An actual screen image of

a Paralex session is displayed in Figure 1, The applica-

tion being programmed is a parallel solution to the Syn-

thetic Aperture Radar (SAR) problem where radar echo

data collected from an aircraft or spacecraft flying at a

constant altitude are used to reconstruct contours of the

terrain below despite cloud cover, speed fluctuations,

etc. The steps necessary for producing high-quality im-

ages from SAR data consist of the following sequence of

computations: two-dimensional discrete Fourier trans-

form, binary convolution, two-dimensional inverse dis-

crete Fourier transform and intensity level normaliza-

tion for visualization.

As can be seen from the Figure, the application con-

sists of a top-level graph called SAR and a number of sub-

graphs corresponding to the two-dimensional discrete

Fourier transform, convolution, two-dimensional inverse

discrete Fourier transform and intensity level normaliza-

tion computations. Nodes that are subgraphs or cycles

can be opened to reveal their structure in separate win-

dows. Primitive nodes, subgraphs and cycles are dis-

tinguished by their graphical representation. Function

out-puts are designa~ed ‘as small bubbles attached to a

node, They act as place holders for naming the output

and associating a filter with it, Links originating from

the same bubble carry the same data. In their expanded

form, subgraphs and cycles have their inputs and out-

puts named through anchors drawn as gray (virtual)

nodes. Finally, multiple links between a pair of nodes

can be bundled together to eliminate visual clutter. This

is the case for all of the links in the top-level graph SAR.

3.3 Specifying Program Properties

Next stage in program development is to specify the

properties of the various program components, This is

accomplished by filling in property charts called panels.

At the application level, the only property to specify is

the fault tolerance degree. As described in Section 4,

Paralex will use this information to automatically repli-

cate the application. At the node level, the properties

to be specified are more numerous.

Figure 3 displays the node panel associated with the

highlighted node of subgraph convolve where the fol-

lowing fields can be specified:

Name Used to identify the node on the screen.

File Name of the file containing the computation as-

sociated with the node. It may be a source file,
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Figure 3: Specifying Node Properties and Computations.

compiled binaries or a library.

Include Name of a file to be included before compi-

lation. Used to include user-defined constants and

data types in a Paralex program.

Header The interface specification for the function

computed by the node. Must declare all input pa-

rameters and results along with their types. The

syntax used is ANSI C with an extension to per-

mit multiple return values for functions. Note that

ANSI C is used only as an interface specification

language and has no implications on the language

in which the function is programmed.

Cycle Control Declaration of a Boolean function to

be used for controlling cycle termination. The de-

cision to continue the cycle can be a function of the

same inputs that the computation is based on.

Output Size In case the dimension of an output struc-

tured type is not evident from the header declara-

tion, it must be specified here. For instance, this is

the case for C arrays declared as pointers.

Obligatory A Boolean query that must be satisfied

in order for the node to execute on a host. Used

primarily for including compiled binaries or library

functions of a specific architecture as node compu-

tations.

Preferred Further constrains the above list of hosts

for performance reasons. The Paralex loader uses

this information as a hint when making mapping

decisions.

Node Type Identities the node as one of Function,

Subgraph or Cycle.

Obligatory and preferred host specifications are done

using the site definition file described in Section 3.1. A

query is formulated using C Boolean expression syntax.

As an example, the obligatory query

! (vax I I (SunOS && rel < 3))

of Figure 3 prevents the node from executing on any

host that either has the Vax architecture or is running

a release of SunOS earlier than 3.0. Recall that the se-

mantics associated with host attributes are user defined

and Paralex uses them simply as tokens in constructing

sets of hosts.

Clicking on the Edit button in the node panel in-

vokes a text editor on the source file or the include file

of a node. Figure 3 shows such an editor invoked on

the file convolve. c containing the source code for the

highlighted node “conv2”. In this example, the function

is programmed in C and makes use of two internal func-

tions to perform the point-by-point convolution between

its input and a data matrix read from the file system.
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Note that the code is ordinary sequential C and con- 3.5 Executing Paralex Programs

tains nothing having to do with remote communication,

synchronization or fault tolerance.

The attributes of a filter are specified and edited ex-

actly in the same manner as an ordinary node through

a panel associated with the output bubble. The only

difference is that most of the fields in the filter panel

are inherited from the parent node and are not modi-

fiable, Finally, a link panel is used to name the input

parameter of the destination function that is to receive

the data value.

3.4 Compiling Paralex Programs

Once the user has fully specified the Paralex program by

drawing the data flow graph and supplying the compu-

tations to be carried out by the nodes, the program can

be compiled. The textual representation of the Paralex

program along with all of the source code for the node

computations are fed as input to the compiler. Although

the compiler may be invoked manually as a command,

it is typically invoked from the graphical interface where

the program was composed.

The first pass of the Paralex compiler is actually a

precompiled to generate all of the necessary stubs to

wrap around the node computations to achieve data

representation independence, remote communication,

replica management and dynamic load balancing. Type

checking across links is also performed in this phase.

Currently, Paralex generates all of the stub code as or-

dinary C. As the next step, a collection of standard

compilers are invoked: C compiler for the stubs, per-

haps others for the node computations. For each node,

the two components are linked together to produce an

executable module.

The compiler must also address the two aspects of

heterogeneity — data representation and instruction

sets. Paralex uses the ISIS toolkit [9] as the infrastruc-

ture to realize a universal data representation. All data

that is passed from one node to another during the com-

putation are encapsulated as ISIS messages. Paralex

automatically generates all necessary code for encoding-

decoding basic data types (integer, real, character) and

linearizing arrays of these basic types. The user must

supply routines to linearize all other data types.

Heterogeneity with respect to instruction sets is han-

dled by invoking remote compilations on the machines

of interest and storing multiple executable for the

nodes. Versions of the executable code corresponding

to the various architectures are stored in subdirectories

(named with the architecture class) of the current pro-

gram. A network file server that is accessible by all of

the hosts acts as the repository for the executable.

The Paralex executor consists of a loader, controller and

debugger. The debugger is incorporated into the graph-

ical interface and uses the same display as the editor. It

is described in [5]. The loader takes the output of the

compiler and the textual representation of the computa-

tion graph as input and launches the program execution

in the distributed system. As with the compiler, the

loader can be invoked either manually as a command or

through the graphical interface.

Before a Paralex program can be executed, each of

the nodes (and their replicas, in case fault tolerance

is required) must be associated with a host of the dis-

tributed system. Intuitively, the goals of this mapping

problem are to improve performance by maximizing par-

allel execution and minimizing remote communication,

to distribute the load evenly across the network, and

to satisfy the fault tolerance and heterogeneity require-

ments. Since an optimal solution to this problem is

computationally intractable, Paralex bases its mapping

decisions on simple heuristics described in [4].

The units of our mapping decision are chains de-

fined as sequences of nodes that have to be executed

sequentially due to data dependence constraints. The

initial mapping decisions, as well as modifications dur-

ing execution, try to keep all nodes of a chain mapped

to the same host. Since, by definition, nodes along a

chain have to execute sequentially, this choice minimizes

remote communication without sacrificing parallelism.

Each node is executed as a Unix process that contains

both the computation for the node and all of its associ-

ated filters.

4 Fault Tolerance

One of the primary characteristics that distinguishes a

distributed system from a special-purpose super com-

puter is the possibility of partial failures during com-

putations. As noted earlier, these may be due to real

hardware failures or, more probably, as consequences

of administrative interventions. To render distributed

systems suitable for long-running parallel computations,

automatic support for fault tolerance must be provided.

The Paralex run-time system contains the primitives

necessary to support fault tolerance and dynamic load

balancing.

As part of the program definition, Paralex permits

the user to specify a fault tolerance level for the compu-

tation graph. Paralex will generate all of the necessary

code such that when a graph with fault tolerance k is

executed, each of its nodes will be replicated at k + 1

distinct hosts to guarantee success for the computation

despite up to k failures. Failures that are tolerated are

of the benign type for processors (i.e., all processes run-

ning on the processor simply halt) and communication
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Figure 4: Replication and Group Communication for Fault Tolerance.

components (i.e., messages may be lost). There is no

attempt to guard against more malicious processor fail-

ures nor against failures of non-replicated components

such as the network interconnect.

Paralex uses passive replication as the basic fault tol-

erance technique. Given the application domain (par-

allel scientific computing) and hardware platform (net-

works of workstations), Paralex favors efficient use of

computational resources over fast recovery times in the

presence of failures. Passive replication not only satis-

fies this objective, it provides a uniform mechanism for

dynamic load balancing through late binding of compu-

tations to hosts as discussed in Section 5.

Paralex uses the ISIS coordinator-cohort toolkit to im-

plement passive replication. Each node of the compu-

tation that requires fault tolerance is instantiated as a

process group consisting of replicas for the node. One

of the group members is called the coordinator in that it

will actively compute. The other members are cohorts

and remain inactive other than receiving broadcasts ad-

dressed to the group. When ISIS detects the failure of

the coordinator, it automatically promotes one of the

cohorts to the role of coordinator.

Data flow from one node of a Paralex program to an-

other results in a broadcast from the coordinator of the

source group to the destination process group, Only the

coordinator of the destination node will compute with

the data value while the cohorts simply buffer it in an

input queue associated with the link. When the coordi-

nator completes computing, it broadcasts the results to

the process groups at the next level and signals the co-

horts (through another intra-group broadcast) so that

they can discard the buffered data item corresponding

to the input for the current invocation. Given that Par-

alex nodes implement pure functions and thus have no

internal state, recovery from a failure is trivial — the

cohort that is nominated the new coordinator simply

starts computing with the data at the head of its input

queues.

Figure 4 illustrates some of these issues by consider-

ing a 3-node computation graph shown at the top as an

example, The lower part of the figure shows the pro-

cess group representation of the nodes based on a fault

tolerance specification of 2. Arrows indicate message

arrivals with time running down vertically. The gray

process in each group denotes the current coordinator.

Note that in the case of node A, the initial coordinator

fails during its computation (indicated by the X). The

process group is reformed and the right replica takes

over as coordinator. At the end of its execution, the co-

ordinator performs two broadcasts. The first serves to

communicate the results of the computation to the pro-

cess group implementing node C and the second is an

internal group broadcast. The cohorts use the message

of this internal broadcast to conclude that the current

buffered input will not be needed since the coordina-

tor successfully computed with it. Note that there is a

small chance the coordinator will fail after broadcasting

the results to the next node but before having informed

the cohorts. The result of this scenario would be multi-

ple executions of a node with the same (logical) input.

This is easily prevented by tagging each message with
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an iteration number and ignoring any input messages

with duplicate iteration numbers.

The execution depicted in Figure 4 may appear de-

ceptively simple and orderly. In a distributed system,

other executions with inopportune node failures, mes-

sage losses and event orderings may be equally possible.

What simplifies the Paralex run-time system immensely

is structuring it on top of ISIS that guarantees “virtual

synchrony” with respect to message delivery and other

asynchronous events such as failures and group mem-

bership changes. Paralex cooperates with ISIS toward

this goal by using a reliable broadcast communication

primitive that respects causality [19].

6 1 ,

4-way +——
8-way -+--

5.0
5 , *,

~-- .,
,.- ~..

+-~”’ . . .
,’ ~.

a 4
. . .

{’ . . .
4 1’ s.,
0
0 ,/’ s.

‘.4
2 3 -’ f

, 2.7

,’
)’

2

1 1!

64 128 256 512 1024

5 Dynamic Load Balancing

To achieve failure independence, each member of a

process group representing a replicated node must be

mapped to a different host of the distributed system.

Thus, the computation associated with the node can be

carried out by any host where there is a replica. To

the extent that nodes are replicated for fault tolerance

reasons, this mechanism also allows us to dynamically

shift the load imposed by Paralex computations from

one host to another.

As part of stub generation, Paralex produces the ap-

propriate ISIS calls so as to establish a coordinator for

each process group just before the computation proper

commences. The default choice for the coordinator will

be as determined by the mapping algorithms at load

time, This choice, however, can be modified later on by

the Paralex run-time system based on changes observed

in the load distribution on the network. This situation is

depicted in Figure 4 where the coordinator for the pro-

cess group representing node C is switched from the left

(default) to the right replica just before execution be-

gins. By delaying the establishment of a coordinator to

just before computation, we effectively achieve dynamic

binding of nodes to hosts, to the extent permitted by

having replicas around.

Perhaps the most dramatic effects of our dynamic

load balancing scheme are observed when the compu-

tation graph is executed not just once, but repetitively

on different input data. This so-called “pipelined oper-

ation” offers further performance gains by overlapping

the execution of different iterations [5]. Whereas be-

fore, the nodes of a chain executed strictly sequentially,

now they may all be active simultaneously working on

different instances of the input.

6 Performance Results

The Synthetic Aperture Radar application described in

Section 3.2 was compiled and run on a network of Sun-

4/60 (SparcStation 1) hosts, each with 16 Megabytes of

Input Dimension

Figure 5: SAR Speedup for 4-way (5 Processors) and

8-way (9 Processors) Parallelism.

real memory. The communication medium was a stan-

dard 10-Megabit Ethernet connecting several hundred

other hosts typical of an academic installation.

Experiments were performed to compare the perfor-

mance of the 4- and 8-way parallel implementations of

SAR with that of a sequential version coded in C. The

resulting speedup is displayed in Figure 5 as a func-

tion of the input dimension ranging from 64 x 64 to

1024 x 1024 matrixes. The experiments were conducted

with the hosts configured and running as if in normal

use but with no external users logged in. The hosts

involved in the experiment were not isolated from the

rest of the network, which continued to serve the normal

Departmental traffic. The program was run with fault

tolerance set to zero, thus disabling replication and pro-

hibiting the possibility for dynamic load balancing. The

mapping for the parallel executions were as follows: the

input and output (display) nodes mapped to one host

while the internal nodes, grouped into vertical chains,

mapped to a different host associated with that chain.

This resulted in the 4- and the 8-way parallel implemen-

tations using 5 and 9 hosts, respectively.

The results confirm our expectations — the larger

the data size, the more significant the speedup. The

fact that performance degrades for the largest input

size is totally an artifact of thrashing due to paging.

Note that in the case of a 1024 x 1024 image, the input

data (radar signal and filter matrixes of complex num-

bers with 8 bytes per entry) amount to more than 16

Megabytes. Furthermore, even in the parallel versions,

the input and output nodes are strictly sequential and

have to process the entire radar signal and gray-scale

matrixes, respectively. As a consequence, the host to

which they are mapped has to support a demand for

virtual memory significantly greater than the available
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16 Megabytes of real memory, resulting in severe pag-

ing. In the case of small input sizes, it hardly pays to

parallelize. The overhead of communication and process

management outweigh the gain in processing (which is

minimal for these dimensions).

7 Related Work

The idea of viewing a collection of workstations on a

network as a parallel multiprocessor appears to be a

popular one. There are numerous projects that have

been experimenting with different abstractions to pro-

vide on top of such a system.

The Amber System [12] creates a shared memory mul-

tiprocessor abstraction over a network of Firefly multi-

processor workstations, The system is programmed us-

ing the shared objects paradigm with Amber handling

all remote invocation and consistency issues.

The idea of broadcast-based parallel programming is

explored in the nigen++ system [2]. Using ISIS as the

broadcast mechanism, nigen++ supports a program-

ming style not unlike the Connection Machine — a

single master process distributes work to a collection

of slave processes. This paradigm has been argued by

Steele to simplify reasoning about asynchronous parallel

computations without reducing their flexibility [20].

The master/slave model forms the basis of the AERO

system [3]. Unlike nigen++, however, the model is com-

pletely asynchronous with the master having to explic-

itly accept results from parallel slave computations.

The Mentat system [15] is based on an object-oriented

programming language derived from C++. The user

encapsulates data and computation as objects and the

compiler performs all the necessary data flow analysis

to permit parallel invocations whenever possible. The

run-time system ensures correct object semantics even

though all invocations are performed asynchronously.

Yet another object-oriented approach to parallel pro-

gramming is TOPSYS [8]. The basic programming ab-

straction in TOPSYS consists of tasks, mailboxes and

semaphores realized through library routines. The em-

phasis of the system is a collection of graphical tools for

performance monitoring and debugging.

The system that perhaps comes closest to Paralex

in its design goals and implementation is HeNCE [7].

In HeNCE, the graphical representation of a computa-

tion captures the precedence relations among the vari-

ous procedures. Data flow is implicit through syntactic

matching of output names to parameter names. HeNCE

graphs are dynamic in that subgraphs could be condi-

tionally expanded, repeated or pipelined. Unlike Par-

alex, HeNCE has no automatic support for fault toler-

ance or dynamic load balancing.

8 Status and Conclusions

A prototype of Paralex is running on a network of

m680x0, SPARC, MIPS and Vax-architecture Unix

workstations. Paralex relies on Unix for supporting ISIS

and the graphical interface, The graphical interface is

based on X-Windows with the Open Look Intrinsic

Toolkit. As of this writing, the graphics editor, com-

piler and executor are functional. Dynamic load bal-

ancing and debugging support have been implemented

but have not yet been integrated into the environment.

The current implementation has a number of known

shortcomings. As computations achieve realistic realis-

tic dimensions, executing each Paralex node as a sepa-

rate Unix process incurs a large amount of system over-

head. In the absence of shared libraries, each process

must include its own copy of the ISIS services. This,

plus the memory required to buffer each input and out-

put of a node contribute to large memory consumption.

We are working on restructuring the system to create a

single Paralex process at each host and associate sepa-

rate threads (ISIS tasks) with each node of the computa-

tion. In this manner, the library costs can be amortized

over all the nodes and buffer memory consumption can

be reduced through shared memory. Yet another limi-

tation of the current implementation is its reliance on

NFS as the repository for all executable. Obviously,

the NFS server becomes a bottleneck not only for fault

tolerance, but also for performance since it must sup-

ply the initial binary data and then act as a paging and

swapping server for a large number of hosts. A satisfac-

tory solution to this problem requires basing the storage

system on a replicated file service such as Coda [18] or

Echo [16] .

Paralex provides evidence that complex parallel ap-

plications can be developed and executed on distributed

systems without having to program at unreasonably low

levels of abstraction. Many of the complexities of dis-

tributed systems such M communication, synchroniza-

tion, remote execution, heterogeneity and failures can

be made transparent automatically. Preliminary re-

sults indicate that the costs associated with this level

of transparency are completely acceptable. We were

able to obtain performances for the SAR application

that achieved maximum speedups of 2.7 and 5.0 for the

4-way and 8-way parallel versions, respectively. Given

the large amount of sequential code for reading in the

problem input and displaying the result, these figures

are probably not too far from the theoretical maximum

speedup possible. We should also note that SAR rep-

resents a “worst-case” application for Paralex since its

computation to communication ratio is very low. Most

importantly, however, the performance results have to

be kept in perspective with the ease with which the ap-

plication was developed.

Paralex is an initial attempt at tapping the enormous
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parallel computing resource that a network of work-

stations represents. Further experience is necessary to

demonstrate its effectiveness as a tool to solve real prob-

lems.
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