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Server-driven consistency protocols can reduce read latency and improve data freshness for a given
network and server overhead, compared to the traditional consistency protocols that rely on client
polling. Server-driven consistency protocols appear particularly attractive for large-scale dynamic
Web workloads because dynamically generated data can change rapidly and unpredictably. How-
ever, there have been few reports on engineering server-driven consistency for such workloads.
This article reports our experience in engineering server-driven consistency for a sporting and
event Web site hosted by IBM, one of the most popular sites on the Internet for the duration of
the event. We also examine an e-commerce site for a national retail store. Our study focuses on
scalability and cachability of dynamic content. To assess scalability, we measure both the amount
of state that a server needs to maintain to ensure consistency and the bursts of load in sending out
invalidation messages when a popular object is modified. We find that server-driven protocols can
cap the size of the server’s state to a given amount without significant performance costs, and can
smooth the bursts of load with minimal impact on the consistency guarantees. To improve perfor-
mance, we systematically investigate several design issues for which prior research has suggested
widely different solutions, including whether servers should send invalidations to idle clients. Fi-
nally, we quantify the performance impact of caching dynamic data with server-driven consistency
protocols and the benefits of server-driven consistency protocols for large-scale dynamic Web ser-
vices. We find that (i) caching dynamically generated data can increase cache hit rates by up to
10%, compared to the systems that do not cache dynamically generated data; and (ii) server-driven
consistency protocols can increase cache hit rates by a factor of 1.5-3 for large-scale dynamic Web
services, compared to client polling protocols. We have implemented a prototype of a server-driven
consistency protocol based on our findings by augmenting the popular Squid cache.
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1. INTRODUCTION

Although Web caching and prefetching have the potential to reduce read latency
significantly, the inefficiency of the cache consistency protocols in the current
version of HTTP prevents this potential from being fully realized. HTTP uses
client polling in which clients query servers to determine if cached objects are
up to date. Thus, clients may need to poll servers before returning cached objects
to users even when these objects are valid. For example, in the workloads that
we examine, more than 20% of requests to the servers can be client polls to
revalidate unmodified cached objects. Thus, client polling not only increases
server and network load, but also significantly increases read latency.

Many of the drawbacks of the traditional client polling protocols can be ad-
dressed with server-driven consistency protocols. In server-driven protocols,
servers inform clients of updates [Howard et al. 1988]. Thus, clients can re-
turn cached objects without contacting the server if these objects have not been
invalidated. A range of server-driven consistency protocols have been proposed
and evaluated in both unicast and multicast environments using client Web
traces [Yin et al. 1998], synthetic workloads [Yin et al. 1999a], single Web
pages [Yu et al. 1999], and proxy workloads [Li and Cheriton 1999].

Server-driven consistency appears particularly attractive for large-scale Web
sites containing significant quantities of dynamically generated and frequently
changing data. There are two reasons for this. First, in these workloads, data
changes often and at unpredictable times. Therefore, client polling is likely to
result in obsolete data unless polling is done frequently—in which case the over-
head becomes prohibitive. Second, the ability to cache dynamically generated
data is critical for improving server performance. Requests for dynamic data can
require orders of magnitude more time than requests for static data [Iyengar
and Challenger 1997] and can consume most of the CPU cycles at a Web site,
even if they only make up a small percentage of the total requests.

However, to deploy server-driven consistency protocols for large-scale dy-
namic Web services, several design issues critical to scalability and performance
must be examined. This article provides one of the first studies of server-driven
consistency for Web sites serving large amounts of dynamically generated data.
We examine two workloads. Our first workload is generated by a major sporting
and event Web site hosted by IBM,! which in 1998 served 56.8 million requests
on the peak day, 12% of which were dynamically generated data [Iyengar et
al. 1999]. Our second workload is taken from the e-commerce site of a national
retail store. This site generated more than one million hits a day, 6.4% of which
were to dynamically generated data.

IThe 1998 Olympic Games Web site.
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The first issue we address is scalability. In server-driven consistency, scala-
bility can be limited by a number of factors:

—As the number of clients increases, the amount of memory required to keep
track of the content of clients’ caches may become large.

—Servers may experience bursts of load when they need to send invalidation
messages to a large number of clients as a result of a write.

Previous efforts to improve the scalability of server-driven consistency have
primarily focused on using multicast and hierarchies to flood invalidation mes-
sages [Li and Cheriton 1999; Yin et al. 1999a; Yu et al. 1999]. Although these
approaches are effective, relying on them would pose a barrier to deployment.
Our primary focus is on engineering techniques to improve scalability that are
independent of network layers. These techniques make it feasible to deploy
server-driven consistency for services as large as the IBM Sporting and Event
Web site on today’s infrastructure, and will continue to improve scalability in
the future as multicast and hierarchies become widespread.

We show that the maximum amount of state kept by the server to enforce con-
sistency can be limited without incurring a significant performance cost. Fur-
thermore, we show that although server-driven consistency can significantly
increase peak server load, it is possible to smooth out this burstiness without
significantly increasing the time during which clients may access stale data
from their caches.

The second issue we address is assessing the performance implications
of the different design decisions made by previous studies in server-driven
consistency.

Different studies have made widely different decisions in terms of the length
of time during which clients and servers should stay synchronized, i.e., the
length of time during which servers are required to notify clients whenever
an object in the clients’ cache becomes stale. Some studies argue that servers
should stop notifying idle clients to reduce network, client, and server load [Yin
et al. 1998], while others suggest that clients should stay synchronized with
servers for days at a time to reduce latency and to amortize the cost of joining
a multicast channel when multicast-based systems are used [Li and Cheriton
1999; Yu et al. 1999].

Using a framework that is applicable in both unicast and multicast environ-
ments, we quantify the trade-off between the low network, server, and client
overhead of maintaining synchronization for short periods of time on the one
hand, and the low read latency of maintaining synchronization for long periods
of time on the other hand. We find that for both of our workloads, there is lit-
tle performance cost in guaranteeing that clients will be notified of stale data
within a few hundred seconds. We also find that there is little benefit to hit
rate in keeping servers and clients synchronized for more that a few thousand
seconds.

Previous studies also propose significantly different resynchronization pro-
tocols to resynchronize servers’ and clients’ consistency state after recovering
from disconnections, which may be caused by choice, by a machine crash, or
by a temporary network partition. Proposals include invalidating all objects in
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clients’ caches [Liu and Cao 1997; Yu et al. 1999], replaying “delayed invali-
dations” upon resynchronization [Yin et al. 1998], bulk revalidation of cache
contents [Baker 1994], and combinations of these techniques. This study sys-
tematically compares these alternatives in the context of large-scale services.
We find that for desynchronizations that last less than 1000 seconds, delayed in-
validations result in significant performance advantages compared to the other
alternatives.

The final issue that we address is quantifying the performance implications
of caching dynamically generated data, data generated by server programs ex-
ecuted in response to HTTP requests, as opposed to static data, data contained
in static documents in a Web server. Although the high frequency and unpre-
dictability of updates make dynamically generated data virtually uncachable
with traditional client-polling consistency, server-driven consistency may allow
clients to cache dynamically generated data effectively. Through a simulation
study that uses both server-side access traces and update logs, we demonstrate
that server-driven consistency allows clients to cache dynamic content with
nearly the same effectiveness as static content.

We have implemented the lessons learned from the simulations in a proto-
type that runs on top of the popular Squid cache architecture (http://www.squid-
cache.org). Our implementation addresses the consistency requirements of
large-scale dynamic sites by extending basic server-driven consistency to pro-
vide consistent updates of multiple related objects and to guarantee fast resyn-
chronization and atomic updates. Preliminary evaluation of the prototype
shows that it introduces only a modest overhead.

The rest of the article is organized as follows. Section 2 reviews previous
work on WAN consistency, on which this study is built. Section 3 evaluates var-
ious scalability and performance issues of server-driven consistency for large-
scale dynamic services. Section 4 presents an implementation of server-driven
consistency based on the lessons that we learned from our simulation study.
Section 5 and Section 6 discuss related work and summarize the contributions
of this study.

2. BACKGROUND

The guarantees provided by a consistency protocol can be characterized us-
ing two parameters: worst-case staleness and average staleness. We use A(¢)
consistency to bound worst-case staleness. A(¢) consistency ensures that data
returned by a read is never stale by more than ¢ units of time. Specifically,
suppose the most recent update to an object O happened at time 7T'. To sat-
isfy A(¢) consistency, any read after T +¢ must return the new version of
object O. Average staleness is instead expressed in terms of two factors: the
fraction of reads that return stale data and the average amount of time for
which the returned data has been obsolete. For example, a live news site may
want to guarantee that in the worst case it will not supply its clients with
any content that has been obsolete for more than five minutes, while attempt-
ing to provide good average staleness by delivering most updates within a few
seconds.
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The optimal Web consistency protocol is precise expiration. In precise expi-
ration, servers set the expiration time of each object to be the next modification
time. When a cache loads a Web object, the corresponding expiration time is
also passed to the cache via the HTTP header “Expires.” Because in precise
expiration Web objects expire when and only when they are updated, caches
only contact servers to load new versions of Web objects. Unfortunately, servers
generally cannot predict future modification times, and thus precise expiration
is unrealistic. Nevertheless, the performance of precise expiration provides a
benchmark for evaluating other consistency protocols.

Consistency protocols other than precise expiration use two mechanisms to
meet consistency guarantees. First, worst-case guarantees are provided using
some variation of leases [Gray and Cheriton 1989], which place an upper bound
on how long a client can operate on cached data without communicating with
the server. Second, some systems decouple average staleness from the leases’
worst-case guarantees by also providing callbacks [Howard et al. 1988; Nelson
et al. 1988] which allow servers to send invalidation messages to clients when
data is modified.

For example, HTTP’s traditional client polling associates a time to live (TTL)
or an expiration time with each cached object [Mogul 1996]. This TTL can be
regarded as a per-object lease to read the object; in particular, it places an upper
bound on the time that each object may be cached before the client revalidates
the cached version. To revalidate an object whose expiration time has passed,
a client sends a Get-if-modified-since request to the server, and the server
replies with “304 not modified” if the cached version is still valid or with “200
OK” and the new version if the object has changed.

The HTTP polling protocol has several limitations. First, because TTL de-
termines both worst-case staleness and average staleness, they can not be de-
coupled. Second, each object is associated with an individual TTL. After a set
of TTLs expire, each object has to be revalidated individually with the server
to renew its TTL, thereby increasing server load and read latency.

As a result, several researchers [Li and Cheriton 1999; Liu and Cao 1997;
Yin et al. 1998; Yin et al. 1999a; Yu et al. 1999] have proposed server-driven
consistency protocols. These protocols can be understood within the general
framework of volume leases [Yin et al. 1999b]. Volume leases decouple average
staleness from worst-case staleness by maintaining leases on objects as well as
volumes, which are collections of related objects. Whenever a client caches an
object, it requests a lease on the object. The server registers callbacks on object
leases and revokes them when the corresponding objects are updated. Typi-
cally, the length of an object lease is chosen so that the lease will be valid for
as long as the client is interested in the corresponding object (unless, of course,
the object is updated by the server). Thus, object leases allow servers to inform
clients of updates as soon as possible. Worst-case staleness is enforced through
volume leases, which abstract synchronization between clients and servers. A
server grants a client a volume lease only if all previous invalidation messages
have been received by the client, and a client is allowed to read an object only if
it holds both the object lease and the corresponding volume lease. Thus, a vol-
ume lease protocol enforces a staleness bound that is equal to the volume lease
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length. In addition to decoupling average staleness from worst-case staleness,
volume lease protocols can reduce server load and read latency by amortiz-
ing volume lease renewal overheads over many objects in a volume. Moreover,
understanding the relation between consistency semantics and volume lease
mechanisms reveals an opportunity for reducing the number of messages. Since
a client with an expired volume lease cannot read any objects in the volume,
we can delay sending invalidation messages for these objects until the client
renews its volume lease without compromising consistency. This optimization
allows the invalidation messages to piggyback on other messages and thus re-
duces the number of messages. We call this optimization delayed invalidations.

Within this general framework, a wide range of implementations can be re-
lated. Volume leases are either explicitly renewed [Li and Cheriton 1999; Yin et
al. 1998; Yin et al. 1999a] or implicitly renewed via heartbeats [Yu et al. 1999].
Moreover, the implementation details of these protocols differ considerably. Yin
et al. [1998] assume a unicast network infrastructure with an optional hierar-
chy of consistency servers [Yin et al. 1999b] and specify explicit volume lease
renewal messages by clients. Li and Cheriton [1999] assume a per-server reli-
able multicast channel for both invalidation and heartbeat messages. Yu et al.
[1999] assume an unreliable multicast channel, but bundle invalidation mes-
sages with heartbeat messages and thus tie average staleness to the system’s
worst-case guarantees. The implications of these design choices are evaluated
in the next section.

A key problem in caching dynamically generated data is determining how
changes to underlying data affects cached objects. For example, dynamic Web
pages are often constructed from databases, and the correspondence between
the databases and Web pages is not straightforward. Data update propagation
(DUP) [Challenger et al. 1999] uses object dependence graphs to maintain pre-
cise correspondences between cached objects and underlying data. DUP thereby
allows servers to identify the exact set of dynamically generated objects to be
invalidated in response to an update of underlying data. Use of data update
propagation at IBM sporting and event Web sites has resulted in server side
hit rates of close to 100%, compared to about 80% for an earlier version that
didn’t use data update propagation.

3. EVALUATION

In this section we use trace-based simulation to evaluate the benefit and fea-
sibility of server-driven cache consistency for large-scale Web sites. Section 3.1
describes our workloads and simulator. Section 3.2 compares read latency, over-
head, and consistency resulting from server-driven protocols, traditional client-
polling protocols, and a theoretically optimal consistency protocol. Section 3.3
considers two optimizations over traditional client-polling protocols and com-
pares them against server-driven consistency protocols. Section 3.4 examines
how to use prefetch to further reduce read latency in server-driven consis-
tency protocols. Section 3.5 examines the scalability of server-driven consis-
tency protocols. Section 3.6 examines performance of various mechanisms of
server-driven consistency to recover from server, client, and network failures.
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3.1 Methodology

In this section, we describe the workloads and simulator used in our simulation
study.

3.1.1 Workload. We use two workloads with different characteristics to
conduct our study; one is from an online news site, the other an e-commerce
site. The first workload is taken from a major IBM sporting and event Web
site. This site contained about 60,000 objects, and over 60% of the objects were
dynamically generated [Iyengar et al. 1999]. The peak request rate for the IBM
sporting and event site exceeded 56.8 million requests per day. The sporting and
event Web service was hosted on four geographically distributed Web clusters;
each of them served about one-fourth of all requests. We took the server access
log from one of these clusters on February 19th, 1998, and a modification log of
dynamically generated objects for our simulation study. The server access log is
in the Common Log Format (http:/httpd.apache.org/docs/logs.html), recording
the IP address, timestamp, request line, status code, and object size for each
access. This log contains about 9 million entries. The modification log for dy-
namically generated objects contains 20,549 entries. Our second workload is
taken from an e-commerce Web site for a national retail store. This trace con-
tains the Web access logs from March 3, 2000 to March 9, 2000. It indicates
that 177,978 clients accessed 69,608 URLs during the 7-day period. Overall,
9,504,953 requests are logged.

We distinguish two classes of data: dynamic data, data generated by server
programs upon users’ requests, and static data. We classify URIs in our work-
loads as static or dynamic, based on whether a URI contains the name of a server
program. We can further divide static objects into image objects and nonimage
objects by examining the suffix of the URIs. In our sporting and event workload,
12% of the requests were made to pages dynamically generated by server pro-
grams. In our e-commerce workload, 6.4% of the requests were to dynamically
generated objects.

We detect updates in two ways. First, the IBM sporting and event server
logged the updates of the dynamically generated data, and the modification log
is available for our simulation study. Second, for the static data, the dynami-
cally generated data in our e-commerce workload, and the subset of dynamic
data in the IBM workload, we use changes of object sizes to infer updates from
our traces of read requests. This method appears reasonably accurate because
two versions of a document are unlikely to have the same size; we can par-
tially confirm this assumption in our workload—we have a modification log of
a subset of objects in the first trace from DUP [Challenger et al. 1999], and
we find that the object size always changes when there is a write for this sub-
set of the workload. We set the time of such inferred writes to immediately
precede the read that detects the change; this approximation of the timing of
writes does not affect our results for read latency, number of messages, or aver-
age staleness. It may slightly overstate server state, since it maximizes delay
on reclaiming server state for callbacks. Finally, it may somewhat affect our
measurements of bursts of load, though we do not anticipate any systematic
biases.
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In our study, all the objects from a Web server form a volume. We expect
this method of volume construction to be used in practice because it is simple
to implement. Moreover, the bigger the volume, the lower the server load and
the read latency, since volume lease renewals are amortized over more objects.
However, it is generally not beneficial to group objects from several servers into
one volume, since these objects can be disconnected from clients independently.
Thus, the ideal volume typically comprises all the objects from a server.

As noted in Section 2, object leases should be long enough to span the pe-
riod of interest of a client in an object. For simplicity, we use infinite-length
object leases in our simulations. By allowing servers to discard some callbacks,
more carefully tuned object lease lengths can further reduce message load [Yin
et al. 1999b] or server callback state [Duvvuri et al. 1999], while only slightly
increasing client response time due to the need to renew expired object leases.

We treat all the reads in our server access logs the same, and we do not
care whether these reads are from a browser or a proxy cache. We assume
consistency proxies deployed in these proxies as described by Yin et al. [1999a]
in our simulation study. Consistency proxies act as servers to clients, act as
clients to origin servers, and are essential for invalidation messages to traverse
firewalls. Thus, consistency proxies that support volume leases interact with
the server in the same way as browsers.

We use the client requests in server access logs to drive our simulation be-
cause these logs are the only workloads that contain requests from all clients
to large-scale popular servers. All client reads to dynamically generated objects
are included in server access logs, since dynamically generated objects are not
cached in the current Web cache scheme. However, some reads to static objects
are not recorded in server access logs because Web access logs are taken while
the clients are running some client-polling protocols. There are two potential
inaccuracies. First, a request is filtered out by the local cache when the TTL
is valid and the cached object is also valid. This read would turn to a cache
hit for both server-driven protocols with long volume leases and client-polling
protocols with long TTLs.? Thus, it affects both server-driven consistency pro-
tocols and client-polling protocols. Second, a client request is filtered out by the
local cache when the TTL is valid and the cached object is invalidated. This
request could result in a cache miss for server-driven protocols, but a cache hit
for long TTLs. Since the role of consistency protocols is to fetch the new data
when data changes, it is preferable to suffer a cache miss to load valid data than
to avoid a load by reading stale data. Moreover, a cache miss would eventually
result in client-polling protocols if the client continues to read the object after
the TTL expires. Thus, our results are conservative estimates of the benefits of
server-driven protocols over client-polling protocols.

3.1.2 Simulator. To study the impact of different design decisions on the
performance of server-driven consistency, we built a simulator that reads a Web

2When the TTL and the volume lease are short, this hidden read is more likely to trigger a TTL
refresh than a volume lease renewal because a volume lease renewal is amortized over many objects.
Thus, we underestimate the cache miss rates more for client polling than for volume lease in this
case.
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access log and a modification log and outputs read latency, server load, and
network bandwidth consumption. Our simulator simulates both cache state
(whether an object is cached) and consistency state (whether TTLs are valid
or expired in client-polling protocols and whether volume leases and object
leases are valid in server-driven protocols). Given a workload, our simulator
processes the Web access log and the modification log in the order of timestamps,
updating cache and consistency state and recording consistency, read load, and
server load information. To estimate server and network load, we only track
the number of messages and total number of bytes in all messages, and we
do not simulate network queuing and round-trip delays. Counting the number
of messages and bytes provides a reasonable approximation to network load,
independent of many detailed network parameters such as packet sizes and
congestion conditions.

3.2 Consistency for Large-Scale Dynamic Workloads

Previous studies have examined the performance characteristics of server-
driven consistency for client cache workloads [Yin et al. 1998], synthetic work-
loads [Yin et al. 1999b], single Web pages [Yu et al. 1999], and proxy workloads
[Li and Cheriton 1999]. In this section, we examine the performance charac-
teristics of server-driven consistency protocols for large-scale dynamic server
workloads. Our goals are (i) to understand the interaction of server-driven con-
sistency with this important class of workloads; and (ii) to provide a baseline
for the more detailed evaluations that we provide later in this article.

Our performance evaluation stresses read latency. To put the read latency
results in perspective, we also examine the network costs of different protocols
in terms of messages transmitted. Read latency is primarily determined by
local miss rate, the fraction of reads that a client cannot serve locally. There are
two conditions under which the system has to contact the server to satisfy a
read. First, the requested object is not cached. We call this a data miss. Second,
even if the requested object is cached locally, the consistency protocol may need
to contact the server to determine whether the cached copy is valid. We call
this a consistency miss. Read latency for consistency misses may be orders
of magnitude higher than that for local hits, especially when the network is
congested or the server is busy. Thus, to a fine approximation, reduction in
miss rates yields proportional reduction in average read latency.

As described in Section 2, the volume lease algorithm has two advantages
over traditional client-polling algorithms. First, it reduces the cost of providing a
given worst-case staleness by amortizing lease renewals across multiple objects
in a volume. In particular, under a standard TTL algorithm, if a client references
a set of objects whose T'TLs have expired, each reference must go to the server to
validate an object. In contrast, under a volume leases algorithm, the first object
reference will trigger a volume lease renewal message to the server, which will
suffice to re-validate all of the cached objects. Second, volume leases provide
the freedom to separate average case staleness from worst-case staleness by
allowing servers to notify clients when objects change.

Figures 1 through 6 illustrate the impact of different consistency parame-
ters for the IBM sporting and event workload and the e-commerce workload.
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Fig. 1. Local hit rates vs. worst-case staleness bound of volume lease and TTL for the IBM work-
load. Volume Lease(x) represents the volume lease protocol with the volume lease length equal to x
seconds; Poll with TTL(x) represents a client-polling protocol with the TTL equal to x seconds. Note
that in the common case, volume lease caches are invalidated within a few seconds of an update,
independent of worst-case staleness bounds.
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Fig. 2. Local hit rates vs. worst-case staleness bound of volume lease and TTL for the e-commerce
workload.
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In these figures, the x axis represents the worst-case staleness bounds for the
volume lease algorithm; these bounds correspond to the volume lease length
for volume lease algorithms and the TTL for TTL algorithms. The y axes in
these figures show the fraction of local hits, network traffic, stale rate, and
average staleness. The access patterns, such as read frequencies and num-
bers of repeated accesses of Web objects, are quite different for the IBM Web
site and the e-commerce Web site. Thus, hit rates achieved by a given con-
sistency protocol are different for these workloads. We can see that volume
leases consistently provide larger advantages for both workloads, due to the
impact of amortizing lease renewal overheads across volumes. In particular,
for short worst-case staleness bounds, volume lease algorithms achieve signif-
icantly higher hit rates and incur lower server overheads compared to TTL
algorithms.

As indicated in Figures 1 and 3 (and 2 and 4), providing worst-case staleness
bounds of 100 seconds by volume lease is cheaper than providing 10,000-second
worst-case staleness bounds by polling in terms of higher local hit-rate and
fewer network messages. And, as Figures 5 and 6 indicate, this comparison
actually understates the advantages of volume leases because, for polling algo-
rithms, the number of stale reads and their average staleness increase rapidly
as the worst-case bound increases. In contrast, volume lease schemes allow
servers to notify active clients of updates quickly, regardless of the worst-case
staleness guarantees.

Also, notice in Figures 3 and 4 that the server load decreases when volume
lease lengths increase from several seconds to several thousand seconds. In the
IBM workload, load then increases slightly. This increase arises because as vol-
ume lease lengths increase, the number of volume lease renewals decreases, but
the number of invalidation messages increases, since if a client holds a volume
lease, the server sends invalidation messages to the client immediately, instead
of piggy-backing invalidation messages on later volume renewals. When the
volume lease length exceeds several thousand seconds, the effect of increasing
invalidation messages overtakes the effect of reducing volume lease renewals
in the IBM workload. However, server overhead with very long volume leases
is not much higher than that with the volume lease length of several thousand
seconds.

Overall, volume leases increase hit rates by a factor of 1.5-3 compared to
client-polling protocols when the staleness bound is between 10 and 100 sec-
onds. Furthermore when the volume lease length exceeds 1000 seconds, volume
lease achieves the local hit rates that are within 5% of Precise Expiration, the
theoretical optimal protocol for maintaining cache consistency.

In Figures 7 through 9, we examine two key subsets of the requests in the
workloads. We examine the response time and average staleness for the dy-
namically generated pages and the nonimage objects fetched in the workload.
Table I shows that for the IBM workload, the nonimage objects account for
67.6% of all objects, and requests to nonimage objects account for 29.3% of
all requests—while the dynamic objects account for 60.8% of all objects, and
requests to dynamic objects account for 12% of all requests. The fraction of
requests to dynamic data rises to 40.9% when we exclude requests to image
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Fig. 7. Local hit rates vs. staleness bound for TTL for the IBM workload. Note that in the common
case, volume lease caches are invalidated within a few seconds of an update, independent of worst-
case staleness bounds.
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Fig. 8. Stale rate vs. staleness bound for TTL for the IBM workload.
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Fig. 9. Average staleness vs. staleness bound for TTL for the IBM workload.

Table I. Classifying Objects and Requests in the IBM Trace

According to URL Types
Object Request
Number | Percent | Number | Percent
image 9027 32.4 6165803 70.7
non-image 18857 67.6 2553543 29.3
dynamic 16960 60.8 1044712 12.0
other non-image 1897 6.8 1508831 17.3
total 27884 100 8719346 100

Table II. Classifying Objects and Requests in the E-Commerce
Trace According to URL Types

Object Request
Number I Percent | Number I Percent
image 9255 13.3 8004528 84.2
non-image 60353 86.7 1500425 15.8
dynamic 59083 84.9 606073 6.4
other non-image 1270 1.8 894352 9.4
total 69608 100 9504953 100

objects. Table II shows that there are also a significant number of requests to
dynamically generated objects in our e-commerce workload.

The dynamic and other nonimage data are of interest for two reasons. First,
few current systems allow dynamically generated content to be cached. Our
system provides a framework for doing so, and no studies to date have ex-
amined the impact of server-driven consistency on the cachability of dynamic
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data. Several studies have suggested that uncachable data significantly limits
achievable cache performance [Wolman et al. 1999a; 1999b], so reducing un-
cachable data is a key problem. Second, the cache behavior of these subsets
of data may disproportionately affect end-user response time. This is because
dynamically generated pages and nonimage objects may form the bottleneck in
response time, since they must often be fetched before images may be fetched
or rendered. In other words, the overall hit rate data shown in Figure 1 may
not directly bear on end-user response time if a high hit rate to static images
masks a poor hit rate to the HTML pages.

In current systems, a number of factors limit the cachability of dynamically
generated data, including (1) the need to determine which objects must be inval-
idated or updated when underlying data (e.g., databases) change [Challenger
et al. 1999]; (2) the need for an efficient cache consistency protocol; (3) the
inherent limits to caching that arise when data changes rapidly; and (4)
privacy requirements that prevent some dynamic data from being cached
at proxy caches. As a result, most current systems use cache control meta-
data to disable caching for dynamically generated data. Two mechanisms al-
low our system to cache dynamically generated data effectively. First, as de-
tailed in Section 2, our system provides an efficient method for identifying
Web pages that must be invalidated when underlying data changes. Sec-
ond, as Figures 7 through 9 indicate, volume lease strategies can signifi-
cantly increase the hit rate for both dynamic pages and for the “bottleneck”
nonimage pages. Simulations with our e-commerce workload yield similar
results.

Finally, the figures quantify the third limitation. One concern about caching
dynamic objects is that dynamic objects may change so quickly that caching
them would be ineffective. This concern appears justified, at least for client-
polling protocols. To reduce stale read rates for dynamic objects in client polling,
clients have to frequently resynchronize with servers by using short TTLs,
which leads to low cache hit rates. As shown in Figures 8 and 9, client polling
leads to high stale hit rates and high average staleness when the TTL exceeds
1000 seconds. However, the cache hit rate is low when the TTL is small. Fortu-
nately, volume leases allow us to eliminate stale reads in the common case and
to achieve high cache hit rates. Hit rates for dynamic objects are lower than for
all objects. However, as many as 25% of reads to dynamically generated data
can be returned locally with long leases, which increases the local hit rate for
nonimage data by up to 10%. Since the local hit rate of nonimage data may de-
termine the actual response time experienced by users, caching dynamic data
with server-driven consistency can improve cache performance by as much as
10%. Further performance improvements can be made by prefetching up-to-
date versions of dynamically generated objects after the cached versions have
been invalidated.

Notice that Figure 7 shows that dynamic pages and nonimage pages are sig-
nificantly more sensitive to short volume lease lengths than average pages. This
sensitivity supports the hypothesis that these pages represent “bottlenecks” to
displaying other images; dynamic pages and nonimage pages are particularly
likely to cause a miss due to volume lease renewal because they are often the
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Fig. 10. Local hit rates of Adaptive TTL, Average TTL, and Volume Lease (900) for the IBM
workload.

first elements fetched when a burst of associated objects is fetched in a group.
In Section 3.4, we examine techniques for reducing the hit rate impact of short
worst-case guarantees.

3.3 Adaptive TTL and Average TTL

In this section, we evaluate the set of client-polling protocols that only intend
to provide low stale read rates. Since these protocols do not provide worst-case
staleness bounds, they are not compared against volume lease in the previous
sections. One such TTL algorithm is adaptive TTL [Cate 1992]. Adaptive TTL is
designed to reduce stale reads by adjusting client-polling frequencies to modifi-
cation frequencies of Web objects. In adaptive TTL, the TTL is set to be propor-
tional to an object’s age, the amount of time since the last modification. We call
this proportion the update threshold of the adaptive TTL. The second algorithm
is Average TTL. In Average TTL, the TTL of an object is set to be the product
of its average life time over the entire trace and the update threshold. Here
an object’s life is defined as the amount of time between two adjacent updates.
Average TTL can be a reasonable approach because researchers have observed
that update patterns of some Web objects can be closely approximated by a
Poisson distribution [Brewington and Cybenko 2000; Cho and Garcia-Molina
2000] with fixed modification frequencies.

As shown in Figures 10 through 12, volume lease with reasonable volume
length can achieve higher local hit rates than average TTL, and adaptive TTL
with higher than 100% of update threshold, while only introducing insignificant
amounts of additional network overhead. While adaptive TTL with higher than
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100% threshold and Average TTL introduce significant stale read rates, volume
lease always returns fresh data in the absence of failures. The results from
simulations with our e-commerce workload are similiar. Thus, volume lease is
attractive even for applications that do not need worst-case staleness bound
guarantees.

3.4 Prefetching/Pushing Lease Renewals

The above experiments assume that when a volume lease expires, the next
request must go to the server to renew it. A potential optimization is to prefetch
or push volume lease renewals to clients before their leases expire. For example,
a client whose volume lease is about to expire might piggy-back a volume lease
renewal request on its next message to the server [Yin et al. 1998], or it might
send an additional volume lease renewal prefetch request even if no requests
for the server are pending. Alternately, servers might periodically push volume
lease renewals to clients via unicast or multicast heartbeat [Yu et al. 1999].

Regardless of whether renewals are prefetched or pushed and whether they
are unicast or multicast, the same fundamental trade-offs apply. More aggres-
sive prefetching keeps clients and servers synchronized for longer periods of
time, increasing cache hit rates, but also increasing network costs, server load,
and client load.

Previous studies assumed extreme positions regarding prefetching volume
lease renewals. Yin et al. [1999b] assumed that volume lease renewals are
piggy-backed on each demand request, but that no additional prefetching is
done; soon after a client becomes idle with respect to a server, its volume lease
expires, and the client has to renew the volume lease in the next request to
the server’s data. Conversely, Li and Cheriton [1999] suggest that to amortize
the cost of joining multicast hierarchies, clients should stay connected to the
multicast heartbeat and invalidation channel from a server for hours or days
at a time.

In Figure 13 and Figure 14, we examine the relationship between pushing
or prefetching renewals, read latency, and network overhead. In interpreting
these graphs, consider that in order to improve read latency by a given amount,
we could increase the volume lease length by a factor of K. Alternatively, we
could get the same improvement in read latency by prefetching the lease K
times as it expires. We would expect that most services would choose the worst-
case staleness guarantee they desire and then add volume lease prefetching if
the improvement in read latency justifies the increase in network overhead.

Asillustrated in Figure 13, volume lease pull or push can achieve higher local
hit rates than basic volume leases for the same freshness bound. In a push-K
algorithm, if a client is idle when a demand-fetched volume lease expires, the
client prefetches or the server pushes to the client up to K —1 successive volume
lease renewals. Thus, if each volume renewal is for length V', the volume lease
remains valid for K - V units of time after a client becomes idle. If a client’s
accesses to the server resume during that period, they are not delayed by the
need for an initial volume lease renewal request.

Both push-2 and push-10 shift the basic volume lease curve upward for short
volume leases, and larger values of K increase these shifts. Also note that the
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benefits are larger for the dynamic elements in the workload, suggesting that
prefetching may improve access to the bottleneck elements of a page.

However, pulling or pushing extra volume lease renewals does increase client
load, server load, and network overhead. This overhead increases with the
number of renewals prefetched after a client’s accesses to a volume cease. For
a given number of renewals, this overhead is lower for long volume leases than
for short ones.

Systems may use multicast or consistency hierarchies to reduce the overhead
of pushing or prefetching renewals. Note that although these architectures may
effectively eliminate the volume renewal load on the server and may signifi-
cantly reduce volume lease renewal overhead in server areas of the network,
they do not affect the volume renewal overhead at clients. Although client re-
newal overhead should not generally be an issue, widespread aggressive volume
lease prefetching or pushing could impose significant client overheads in some
cases. For example, in the traces of the Squid regional proxies taken during
July 2000, these busy caches access tens of thousands of different servers per
day [Chandra et al. 2001].

In general, we conclude that although previous studies have examined ex-
treme assumptions for prefetching [Yu et al. 1999; Li and Cheriton 1999], it
appears that for this workload, modest amounts of prefetching are desirable
for minimizing response time when short volume leases are used, and little
prefetching is needed at all for long volume leases. This is because after a few
hundred seconds of a client not accessing a service, maintaining valid volume
leases at that client has little impact on latency.

3.5 Scalability

Large-scale Web services present several potential challenges to scalability.
First, callback-based systems typically store state that is proportional to the
total number of objects cached by clients. In the worst case, this state could
grow to be proportional to the total number of clients multiplied by the num-
ber of objects. Second, when a set of popular objects is modified, servers in
callback-based systems send callbacks to the clients caching those objects. In
the worst case, such a burst of load could enqueue a number of messages equal
to the number of clients using the service multiplied by the number of objects
simultaneously modified. For both memory consumption and bursts of load, if
uncontrolled, this worst-case behavior could prevent deployment for the IBM
Sporting and Event or the e-commerce service we examined.

A wide range of techniques for reducing memory capacity demands or bursts
of load are possible. Some have been evaluated in isolation, while others have
not been explored. There has been no previous direct comparison of these tech-
niques to one another.

— Hierarchy or precise multicast. Using a hierarchy of consistency servers
to flood invalidation messages to caches [Yin et al. 1999b] can reduce bursts
of load at the server. Precise multicast, which distributes invalidations to
clients via multicast and ensures that clients receive invalidations only for
objects they are caching, can accomplish the same thing. Precise multicast
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can be implemented by having separate multicast channels per object or by
filtering multicast distribution on a per-object basis in the network or using
a hierarchy of consistency servers [Yin et al. 1999a]. Note that although a
hierarchy or precise multicast reduces the amount of state at the central
server, the total amount of callback state, and thus the global system cost, is
not directly reduced by a hierarchy.

—Imprecise multicast invalidates. Imprecise multicast invalidation [Li
and Cheriton 1999] combines two ideas. It uses a multicast hierarchy to
flood invalidation messages and imprecise invalidations to reduce state. Im-
precision of invalidations stems from the use of a single unfiltered multicast
channel to transmit invalidations for all objects in a volume. The advantage
of imprecise invalidations is reduced state; state at the server and multicast
hierarchy is proportional to the number of clients subscribed to the volume,
rather than to the number of objects cached across all clients. The disadvan-
tage of imprecise invalidations is increased invalidation message load at the
clients and in the network near the clients.

— Delayed invalidation messages. Rather than sending invalidation mes-
sages immediately, systems may delay when invalidation messages are sent
to reduce bursts of load. There are two variations. Delayed invalidations [Yin
et al. 1998] enqueue invalidation messages to clients whose volume leases
have expired and send the enqueued messages in a group when a client
renews its volume lease. Background invalidations place invalidation mes-
sages in a separate send queue from replies to client requests and send
invalidations only when spare capacity is available. Note that background
invalidations may increase the average staleness of data observed by clients,
while delayed invalidations have no impact on average staleness of data
reads. At the same time, while both techniques reduce bursts of load, back-
ground invalidations also have the ability to impose a hard upper bound on
the maximum load from invalidations.

—Forget idle clients. Two techniques allow servers to drop callbacks on ob-
jects cached by idle clients, and thereby reduce server memory requirements.
First, by issuing short object leases, servers can discard callback state when a
client’s lease on an object expires. Duvvuri et al. [2000] examine techniques
for optimizing the lease lengths of individual objects. Second, servers can
mark clients whose volume leases have expired some amount of time in the
past as “unreachable,” and drop all callback state for unreachable clients [Yin
et al. 1998]. When an unreachable client renews its volume lease, the client
and server must execute a reconnection protocol to synchronize server call-
back state with client cache contents. The next section discusses reconnec-
tion protocols. The fundamental trade-offs for both approaches are the same:
shorter leases reduce memory consumption but also increase consistency
misses and synchronization overhead. Either algorithm can enforce a hard
limit on memory capacity consumed by adaptively shortening leases as space
consumption increases [Duvvuri et al. 1999].

In evaluating this range of options, two factors must be considered.
First, given the potential worst case memory and load behavior of callback
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consistency, a system should enforce a hard worst-case limit on state consump-
tion and bursts of load regardless of the workload. Second, systems should select
techniques that minimize damage to hit rates and overhead for typical loads.

3.5.1 Server Callback State. Figure 15 shows the number of object leases
stored as a function of elapsed time in the trace for a nonhierarchical system
and for the consistency hierarchies (or precise multicast systems) with fan-out
of 10 or 100 children per invalidation server. Note that whether the server holds
an object lease on an object for a client is determined only by whether the client
caches the object, and is independent of volume lease length. For the time period
covered in our trace, server memory consumption increases linearly. Although
for a longer trace, higher hit rates might reduce the rate of growth, for the
Zipf workload distributions common on the Web [Breslau et al. 1998; Wolman
1999a; 1999b], hit rates improve only slowly with increasing trace length, and
a nearly constant fraction of requests will be compulsory cache misses. Nearly
linear growth in state therefore may be expected even over long time scales for
many systems.

Although the near linear growth in state illustrates the need to bound
worst-case consumption, the rate of increase for this workload is modest. After
24 hours, fewer than 5 million leases exist in one of the four Sporting and
Event server clusters even with infinite object leases. Our prototype consumes
62 bytes per object lease, so this workload consumes 310 million bytes per day
under the baseline algorithm for the whole system. This corresponds to 0.4%
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Fig. 16. Distribution of invalidation burstiness for the IBM workload. A point of (x, y) means that
the server generates at least y messages per second during x percentage of time.

of the memory capacity of the 143-processor system that actually served this
workload in a production environment. In other words, this busy server could
keep complete callback information for 10 days and increase its memory re-
quirements by less than 4%.

These results suggest that either of the “forget idle clients” approaches can
limit maximum memory state without significantly hurting hit rates or increas-
ing lease renewal overhead, and that performance will be relatively insensitive
to the detailed parameters of these algorithms. Because systems can keep sev-
eral days of callback state at little cost, further evaluation of these detailed
parameters will require longer traces than we have available to us.

The same conclusion applies to consistency hierarchies or precise multicast.
As Figure 15 indicates, although a consistency hierarchy can reduce server
callback state by orders of magnitude, the total amount of callback state main-
tained by all the machines in a hierarchy increases compared to that of a
nonhierarchical central server.

3.5.2 Bursts of Load. Figure 16 shows the cumulative distribution of
server load, approximated by the number of messages sent and received by
a server with no hierarchy. As we can see from the right edge of this graph,
volume leases with callbacks reduce average server load compared to TTL.
However, as can be seen from the left side of the graph, the peak server load
increases by a factor of 100 for volume leases without delayed invalidations.

This figure shows that delayed invalidations can reduce peak load by a
factor of 76 for short volume lease periods and 15 for long volume lease
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Fig. 17. Distribution of delay of invalidation messages under background invalidations for Volume
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periods, but even with delayed invalidations, peak load is increased by a fac-
tor of 6 for 15 minute volume leases. This increase is smaller for short vol-
ume leases and larger for long volume leases, since delayed invalidations’ ad-
vantage stems from delaying messages to clients whose volume leases have
expired.

Further improvements can be gained by also using background invalida-
tions. In Figure 17, we limit the server message rate to 200 messages per sec-
ond, which is approximately the average load of TTL, and we send invalidation
messages as soon as possible, but only using the spare capacity. Well over 99.9%
of invalidation messages are transmitted during the same second they are cre-
ated, and no messages are delayed more than 11 seconds. Thus, background
invalidation allows the server to place a hard bound on load burstiness without
significantly hurting average staleness.

Figure 5 shows the average staleness for the traditional TTL polling proto-
col. The data in Figure 17 allows us to understand the average staleness that
can be delivered by invalidation with volume leases. Clients may observe stale
data if they read objects between when the objects are updated at the server
and when the updates appear at the client. There are two primary cases to
consider. First, the network connection between the client and server fails. In
that case, the client may not see the invalidation message, and data staleness
will be determined by the worst-case staleness bound from leases. Fortunately,
failures are relatively uncommon, and this case will have little effect on average
staleness. Second, server queuing and message propagation time will leave a
window when clients can observe stale data. The data in Figure 17 suggests
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that this window will likely be at most a few seconds, plus whatever propagation
delays are introduced by the network.

We conclude that delaying invalidation messages makes unicast invalidation
feasible with respect to server load. This is encouraging because it simplifies de-
ployment: systems do not need to rely on hierarchies or multicast to limit server
load. In the long run, hierarchies or multicast are still attractive strategies for
further reducing latency and average load [Yin et al. 1999b; Yu et al. 1999].

3.5.83 Client Issues. Server-driven consistency protocols appear to intro-
duce several challenges for clients. First, a client can interact with a large
number of servers over a long period of time. Thus, a client may need to process
invalidation messages from a large number of servers. However, our analy-
sis suggests that volume lease can manage client overhead effectively. Volume
lease effectively caps the total number of invalidation messages that a client
can receive and the burstiness of the invalidation messages. In volume lease,
servers maintain the callback state of client caches so that invalidation mes-
sages are only sent to the cached objects that have not been invalidated. Thus,
the number of invalidation messages can be no larger than the number of reads
by clients. Moreover, our previous simulation results suggest that volume lease
generally leads to a smaller number of messages between servers and clients
compared to client polling.

Second, in naive server-driven consistency protocols, a client may suffer
bursts of invalidation messages if the cached objects from many servers are
updated at the same time. This issue can be effectively addressed by delayed
invalidation as discussed in the background section. With delayed invalidation,
a server sends invalidation messages to a client only if the client holds the vol-
ume lease from that server. The amount of time that a volume lease is valid
after the time that the client reads an object from the volume is equal to the
volume lease length. Thus at any point in time, a client only receives messages
from the small number of servers that it has accessed within the period of time
that equals the volume lease length.

Third, a server may not always be able to contact a client when it needs to
send invalidation messages. For example, a mobile client can be disconnected
from networks occasionally, or it may choose to power down to save battery
power. We call these scenarios disconnections. Volume lease provides efficient
mechanisms to recover after a disconnection. These mechanisms are discussed
in the next section.

3.6 Resynchronization

In server-driven consistency, servers’ consistency state must be synchronized
with client cache contents to bound staleness for client reads. This synchroniza-
tion can be lost due to failures, which include server crashes, client crashes, and
network partitions. Additionally, to achieve scalability, servers may drop call-
backs of idle clients to limit server state, as discussed in Section 3.5.

These disconnections can be roughly divided into two groups based on
whether the consistency state before a disconnection survives the disconnec-
tion. State-preserving disconnections caused by network partitions preserve
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Fig. 18. Hit rates after recovery for a disconnection of 1 second for the IBM workload.

the consistency state prior to the disconnections. State-losing disconnections
caused by server crashes, client crashes, and deliberate protocol disconnections
result in loss of consistency state. In this section, we systematically study the
design space of resynchronization to recover from all these disconnections.

There are three potential policies to control how aggressively clients resyn-
chronize with servers. At one extreme, demand revalidation marks all cached
objects as potentially stale after reconnection and revalidates each object in-
dividually as it is referenced. At the other extreme, immediate revalidation
revalidates all cached objects immediately after reconnections to reduce the
read latency associated with revalidating each object individually. When the
overhead of revalidating all cached objects is high, immediate revalidation
may delay clients’ access to servers immediately after reconnections. To ad-
dress this problem, background revalidation allows bulk revalidation to be
processed in the background. Some previous studies have assumed that de-
mand revalidation is sufficient [Liu and Cao 1997], while others have assumed
that immediate revalidation is justified [Yin et al. 1999b]. In this study, we
quantitatively evaluate these two options and the middle ground, background
revalidation.

Figures 18 and 19 show that immediate revalidation achieves higher average
local hit rates than demand revalidation. The performance disparity between
immediate revalidation is larger immediately after failures and decreases over
time as more cached objects are accessed and validated in demand revalida-
tion. The local hit rates of background revalidation would range between these
two lines in the graph—they equal those of demand revalidation immediately
after reconnection, and would increase to those of immediate revalidation as
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Fig. 19. Hit rates after recovery for a disconnection of 1000 seconds for the IBM workload.

background revalidation completes. The benefit of immediate and background
revalidation is also affected by disconnection duration. When disconnection
duration is short, the number of cached objects that are invalidated during
disconnections is small. Moreover, because of read locality, the chance of read-
ing these cached objects after recovery is high. Hence, as shown by Figures 18
and 19, the benefit of immediate and background revalidation is significant
for short disconnections. Conversely, when a disconnection duration is long,
demand revalidation may be sufficient.

To implement demand revalidation, systems only need to detect reconnec-
tions and mark all cached objects as potentially stale by dropping all object
leases. Revalidating cached objects in demand revalidation is the same as val-
idating cached objects after the object leases expire. Two additional mecha-
nisms can be added to support immediate or background revalidation. First, in
bulk revalidation, a client simply sends a revalidation message containing re-
quests to revalidate a collection of objects. The server processes each included
request as it would have if it had been sent separately and on demand, ex-
cept that the server replies with a bulk revalidation message containing ob-
ject leases for all unchanged objects and invalidations for objects that have
changed. Second, in delayed invalidation, the server buffers the invalidations
that should be sent to a client when a network partition makes a client un-
reachable from the server or when the server decides to delay sending inval-
idation messages to an idle client to reduce server load. When the server re-
ceives a volume lease request message from the client, the server piggy-backs
the buffered invalidations on the reply message granting the client a volume
lease. The client applies these buffered invalidations to resynchronize with the
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Fig. 20. Resynchronization cost for bulk revalidation and delayed invalidation for the IBM
workload.

server. Note that delayed invalidation may only be used after state-preserving
disconnections.

The overhead of bulk revalidation and delayed invalidation primarily de-
pends on the number of cached objects and on the number of objects invalidated
during the disconnection. In the case of bulk revalidation, server load and net-
work bandwidth are proportional to the number of cached objects; in delayed
invalidation, they are instead determined by the number of invalidated objects.
As Figure 20 shows, bulk revalidation must examine an average of more than
100 objects. For some recovered clients, several thousand objects must be com-
pared during bulk revalidation. Delayed invalidation can be used to reduce
the cost of immediate revalidation for state-preserving disconnections, since
the number of cached objects is two orders of magnitude less than the number
of invalidated objects for disconnections shorter than 1000 seconds. Unfortu-
nately, for state-losing disconnections, delayed invalidation is not an option.
Because bulk revalidation may have to revalidate hundreds or thousands of
objects, the system should support background revalidation, rather than rely-
ing solely on immediate revalidation. These conclusions also apply to the results
from simulations with our e-commerce workload.

In conclusion, server-driven consistency protocols must implement some
resynchronization mechanisms for fault tolerance and scalability. Demand
resynchronization is a good default choice, since it handles all disconnections
and is simple to implement. Background bulk revalidation may be needed to
reduce read latency when recovering from short disconnections, and delayed
invalidation may be desirable to reduce resynchronization overheads for short
state-preserving disconnections.
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4. PROTOTYPE

We have implemented server-driven consistency based on volume leases with
Squid cache version 2.2.5. The consistency module includes a server part, which
sends invalidation messages in response to writes and issues volume and object
leases, and it includes a client part, which manages consistency information on
locally cached objects to satisfy reads. Servers maintain a per-object version
number as well as per-volume and per-object share lists. These lists contain
the set of clients that may hold valid leases on the volumes and objects, respec-
tively, along with the expiration time of each lease. Clients maintain a volume
expiration time as well as per-object version numbers and expiration times.
Objects and volumes are identified by URLSs, and object version numbers are
implemented by HTTP Etag or modification times [Fielding et al. 1999].

On a client request for data, a callback-enabled client includes a
VLease-Request field in the header of its request. This field indicates a net-
work port at the client that may be used to deliver callbacks. A callback-
enabled server includes volume lease and object leases as Volume-Lease-For
and Object-Lease-For headers of replies to client requests. Invalidation and
Invalidation-Ack headers are used to send invalidation messages to clients
and to acknowledge receiving invalidations by clients.

The mechanisms provided by the protocol support either client-pull or server-
push volume lease renewal. At present, we implement the simple policy of
client-pull volume lease renewal. Volume lease requests and replies can use
the same channels used to transfer data or can be exchanged along dedicated
channels.

4.1 Hierarchy

We construct the system to support a hierarchy in which each level grants
leases to the level below and requests leases from the level above [Yin et al.
1999b]. The top-level cache is a reverse proxy that intercepts all requests to
the origin server and caches all replies, including dynamically generated data.
The top-level cache is configured to hold infinite object and volume leases on
all objects and to pass shorter leases to its children. Invalidations are sent to
the top-level cache using the standard invalidation interface used for communi-
cation between parent and child caches. These invalidations can be generated
by systems such as the trigger monitor used at the major Sporting and Event
Web sites hosted by IBM [Challenger et al. 1999]. The trigger monitor main-
tains correspondences between underlying data (e.g., databases) affecting Web
page content and the Web pages themselves. In response to changes to under-
lying data, the trigger monitor determines which cached pages are affected and
propagates invalidation or update messages to the appropriate caches.

The hierarchy provides three benefits. First, it simplifies our prototype by
allowing us to use a single implementation for servers, proxies, and clients.
Second, hierarchies can considerably improve the scalability of lease systems
by forming a distribution tree for invalidations and by serving renewal requests
from lower-level caches [Yin et al. 1999b]. Third, reverse-proxy caching of dy-
namically generated data at the server can achieve high hit rates and can
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dramatically reduce server load [Challenger et al. 1998]. By implementing
our system as a hierarchy, we make it easy to gain these advantages. Fur-
ther, if a multilevel hierarchy is used (such as the Squid regional prox-
ies (http://www.squid-cache.org/) or a cache mesh [Tewari et al. 1999]), we
speculate that nodes higher in the hierarchy will achieve hit rates between
the per-client cache hit rates and the at-server cache hit rates illustrated in
Section 3.

4.2 Reliable Delivery of Invalidations

In order to maintain an upper bound on worst-case staleness, volume lease
systems must maintain the following invariant: a client may not receive a vol-
ume lease renewal unless all of its cached objects that were modified before the
transmission of the volume renewal have been invalidated. If this invariant is
violated, an object may be modified at time 77, and the client may then receive a
volume lease renewal valid until time T > T} + T,. If a network partition then
occurs, the client could access stale cached data longer than T, seconds after it
was modified.

The system must therefore reliably deliver invalidations to clients. It does
so in two ways. First, it uses a delayed invalidation buffer to maintain reli-
able invalidation delivery across different transport-level connections. Second,
it maintains epoch numbers and an unreachable list to allow servers to resyn-
chronize after servers discard or lose client state [Yin et al. 1999b].

We use TCP as our transport layer for transmitting invalidations, but, un-
fortunately, this does not provide the reliability guarantees we require. In par-
ticular, although TCP provides reliable delivery within a connection, it cannot
provide guarantees across connections: If an invalidation is sent on one con-
nection and a volume renewal on another, the volume renewal may be received
and the invalidation may be lost if the first connection breaks. Unfortunately,
a pair of HTTP nodes will use multiple connections to communicate in at least
three circumstances. First, HTTP 1.1 allows a client to open as many as two
simultaneous persistent connections to a given server [Mogul 1996]. Second,
HTTP 1.1 allows a server or client to close a persistent connection after any
message; many modern implementations close connections after short periods
of idleness to save server resources. Third, a network, client, or server fail-
ure may cause a connection to close and a new one to be opened. In addition
to these fundamental limitations of TCP, most implementations of persistent
connection HTTP are designed as performance optimizations, and they do not
provide APIs that make it easy for applications to determine which messages
were sent on which channels.

We therefore implement reliable invalidation delivery that is independent
of transport-layer guarantees. Clients send explicit acknowledgments to inval-
idation messages, and servers maintain lists of unacknowledged invalidation
messages to each client. When a server transmits a volume lease renewal to a
client, it piggy-backs the list of the client’s unacknowledged invalidations us-
ing a Group-Object-Version header field. Clients receiving such a message must
process all invalidations in it before processing the volume lease renewal.
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Three aspects of this protocol are worth noting.

First, the invalidation delivery requirement in volume leases is weaker than
strict reliable in-order delivery, and the system can take advantage of that.
In particular, a system need only retransmit invalidations when it transmits
a volume lease renewal. At one extreme, the system can mark all packets as
volume lease renewals to keep the client’s volume lease fresh, but at the cost
of potentially retransmitting more invalidations than necessary. At the other
extreme, the system can only send periodic heartbeat messages and handle all
retransmission at the end of each volume lease interval [Yu et al. 1999].

Second, the queue of unacknowledged invalidations provides the basis for
an important performance optimization: delayed invalidation [Yin et al. 1998].
Servers can significantly reduce their average and peak load by not transmit-
ting invalidation messages to idle clients whose volume leases have expired.
Instead, servers place these invalidation messages into the idle clients’ un-
acknowledged invalidation buffer (also called the delayed invalidation buffer)
and do not transmit these messages across the network. If a client becomes ac-
tive again, it first asks the server to renew its volume lease, and the server
transmits these invalidations with the volume lease renewal message. The
unacknowledged invalidation list thus provides a simple, fast reconnection
protocol.

Third, the mechanism for transmitting multiple invalidations in a single
message is also useful for atomically invalidating a collection of related objects.
Our protocol for caching dynamic data supports documents that are constructed
of multiple fragments, and atomic invalidation of multiple objects is a key build-
ing block [Challenger et al. 2000].

The system also implements a protocol for resynchronizing client or server
state when a server discards callback state about a client. This occurs after a
server crash or when a server deliberately discards state for idle clients. The
system includes epoch numbers [Yin et al. 1998] in messages to detect loss of
synchronization due to crashes. The servers maintain unreachable lists, lists of
clients whose state has been discarded to detect when such clients reconnect.
If a reply to a client request includes an unexpected epoch number or a header
indicating that the client is on the unreachable list, the client invalidates all
object leases for the volume and renews them on demand. A subject of future
work is to implement a bulk revalidation protocol.

4.3 Evaluation

We evaluate our implementation with a standard benchmark of the
Web caching industry: the first semi-annual web caching bake-off work-
load (http://cacheoff.ircache.net/N01/). Our testbed includes four computers.
Two of them run the workload. The consistency server and the consistency
client, which are the Squid proxies augmented with server-driven consistency,
run on two other machines. The consistency server is placed in front of the
workload server, which delivers data requested by clients after retrieving it
from the workload server. The consistency server also issues leases and sends
invalidation messages.
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Our initial evaluation shows that our implementation of server-driven con-
sistency, compared to the standard Squid cache, increases the load on the con-
sistency server by less than 3% and increases read latency by less than 5%,
while sustaining a throughput of 70 requests per second. In the future, we plan
to implement an architecture that decouples the consistency module from the
other parts of the Web or proxy server that deliver data, and to quantify the
computing resources (CPU, memory) needed to maintain server-driven consis-
tency for the traces examined here.

5. RELATED WORK

Many researchers have observed that Web cache consistency is critical to Web
performance. For example, Padmanabhan and Qiu [2000] examined a large-
scale enterprise Web trace. They concluded that traditional client polling is
unsatisfactory for their workload.

Owing to its significant impact on end-to-end Web performance, Web cache
consistency has generated much interest in the research community. Based
on their simulation study with write traces collected from Web servers and
synthetic read traces, Gwertzman and Seltzer [1996] concluded that adaptive
TTL can provide good performance for applications that can tolerate 4% stale
reads. Evaluating a prototype with real-world traces, Liu and Cao [1997] found
that much of the bandwidth-saving benefit of adaptive TTL is derived from
reading stale data by clients and that server-driven consistency protocols can
improve freshness of client reading without introducing significant overhead.
However, they discovered that there are two challenges in deploying server-
driven consistency protocols: scalability and fault tolerance. In particular, they
point to (i) the bursts of server load caused by invalidations sent when popular
objects are written; (ii) the growth of the state that the server maintains to
track the caches of its clients; and (iii) if partial failures prevent servers from
contacting clients, then clients may continue to return stale data. These three
challenges are addressed in this article.

Several researchers studied how to use multicast to scale server-driven con-
sistency protocols. With multicast, invalidation messages can be delivered pre-
cisely, in which only the set of invalidation messages required by a client are
delivered to the client, or imprecisely, in which extra invalidations are delivered
to a client. Yu et al. [1999] proposed a scalable cache consistency architecture
that integrates the ideas of invalidation, volume lease, and unreliable imprecise
multicast. They used synthetic workloads of single pages and focused their eval-
uation on network performance of server-driven consistency. Li and Cheriton
[1999] proposed using reliable, precise multicast to deliver invalidations and
updates for frequently modified objects. The workloads in their study included
client traces, proxy traces, and synthetic traces.

Other studies examined specific design optimizations to reduce overhead or
read latency. Mogul [1996] independently proposed a notion of grouping files
into volumes to reduce the overhead of client polling. Duvvuri et al. [1999]
examined adapting object leases to reduce server state and messages. These
techniques can also be employed in our protocol to improve scalability. Cohen
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et al. [1998] studied the use of volumes for prefetching and consistency. The
consistency algorithms they examined are best-effort algorithms based on client
polling. Krishnamurthy and Wills [1998] examined ways to improve polling-
based consistency by piggy-backing optional invalidation messages on other
traffic between a client and server. While their study doesn’t provide the worst-
case staleness bounds, several techniques in their study can also be exploited to
improve performance and scalability of server-driven consistency. For example,
our protocol allows servers to send delayed invalidations to clients by piggy-
backing them on top of other traffic between servers and clients. In the same
paper, they also proposed to group related objects into volumes and to send the
invalidations on all objects contained in volumes, instead of just invalidations
on the objects that a client caches. This imprecise unicast idea obviates the need
for the server to track the callback state related to each client, resulting in a
scheme that may be used in some extreme cases by server-driven consistency
protocols to limit server state. Cohen and Kaplan [2001] observed that polling
cached objects when TTLs expire, while the cached objects are still valid, can
significantly increase read latency. Thus they proposed to proactively refresh
TTLs. This technique is similar to the volume lease prefetching we discuss in
Section 3.4, but it effectively prefetches individual object leases rather than
resynchronizing an entire volume with one lease renewal.

Finally, we observe that cache consistency protocols have long been studied
for distributed file systems [Howard et al. 1988; Mogul 1994; Nelson et al.
1988; Sandberg et al. 1985]. In particular, Howard et al. [1988] compared
NFS’s polling to AFS’s callback-based strategy and concluded that polling in-
curs higher server load and stale hit rates. The notion of invalidation and
that of leases for fault tolerance have been examined in this context [Fray and
Cheriton 1989]. Baker studied methods for fast resynchronization of callback
state [Baker 1994] and showed that server-driven recovery can be used to avoid
“recovery storm,” the overwhelming recovery load at a server immediately after
a server reboot. Background revalidation in our framework allows the server to
control the load during revalidation, which has the same spirit as server-driven
recovery.

6. CONCLUSIONS

Although server-driven consistency can provide significant performance advan-
tages over traditional client-polling systems, the feasibility of deploying such
a system depends on the scalability and performance of these server-driven
consistency algorithms over a wide range of applications. Large-scale services
delivering both static and dynamically generated data are an important class of
applications to be considered, since objects served by such applications change
unpredictably and frequently, and the scale of such a service presents many
challenges. In this study we find that server-driven consistency can meet the
scalability, performance, and consistency requirements of these services. First,
we find that we can put a limit on callback state growth with little performance
penalty and that we can smooth out server burstiness introduced by invalida-
tions without significantly increasing average staleness. Second, we find that
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how long servers and clients are kept synchronized can greatly influence perfor-
mance and overhead. However, for these workloads there is little performance
benefit in keeping servers and clients synchronized longer than 1000 seconds
after a read. Third, we find that delayed invalidation is the most efficient fault-
recovery protocol for the most common failures in today’s Internet. Overall,
server-driven consistency can offer excellent performance for both static and
dynamically generated data in large-scale Web services.
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