
Statistical Monitoring + Predictable Recovery = Self-*

Armando Fox and Emre Kıcıman, Stanford University
David Patterson, Randy Katz, Michael Jordan, Ion Stoica, Doug Tygar, University of California, Berkeley

March 9, 2004

Abstract

It is by now motherhood-and-apple-pie that complex dis-
tributed Internet services form the basis not only of e-
commerce but increasingly of mission-critical network-
based applications. What is new is that the workload and
internal architecture of three-tier enterprise applications
presents the opportunity for a new approach to keeping
them running in the face of both “natural” failures and ad-
versarial attacks. The core of the approach is anomaly de-
tection and localization based on statistical machine learn-
ing techniques. Unlike previous approaches, we propose
anomaly detection and pattern mining not only for op-
erational statistics such as mean response time, but also
for structural behaviors of the system—what parts of the
system, in what combinations, are being exercised in re-
sponse to different kinds of external stimuli. In addition,
rather than building baseline models a priori, we extract
them by observing the behavior of the system over a short
period of time during normal operation. We explain the
necessary underlying assumptions and why they can be
realized by systems research, report on some early suc-
cesses using the approach, describe benefits of the ap-
proach that make it competitive as a path toward self-
managing systems, and outline some research challenges.
Our hope is that this approach will enable “new science”
in the design of self-managing systems by allowing the
rapid and widespread application of statistical learning
theory techniques (SLT) to problems of system depend-
ability.

1 Recovery as Rapid Adaptation

A “five nines” availability service (99.999% uptime) can
be down only five minutes a year. Putting a human in
the critical path to recovery would expend that entire
budget on a single incident, hence the increasing inter-
est in self-managing or so-called “autonomic” systems.
Although there is extensive literature on statistics-based
change point detection [2], some kinds of partial failures,
or “brown-outs” in which only part of a service malfunc-

tions, cannot be easily detected by such techniques. For
example, one of the authors experienced a bug such that
after clicking to purchase a flight for April, a later visit to
the “flight details” page showed the wrong flight date (in
October) and no flight itinerary details at all. If the oper-
ational statistics such as response time for delivering this
page are within normal thresholds, performance monitor-
ing would not find this problem.

We believe a promising direction is to start thinking not
in terms of normal operation vs. recovery, but in terms
of constant and rapid adaptation to external conditions,
including sudden workload changes, inevitable hardware
and software failures, human operator errors, and in ex-
treme cases, catastrophic failures or malicious attacks.
In particular, we propose the broad application of tech-
niques from statistical learning theory (SLT)—automatic
classification, novelty/anomaly detection, data clustering,
etc.—to observe and track structural behaviors of the sys-
tem, and to detect potential problems such as the example
above.

2 Approach and Assumptions
We assume typical request-reply based Internet services,
with separate session state [11] used to synthesize more
complex interactions from a sequence of otherwise state-
less request-reply pairs. Past approaches to statistical
monitoring of such services have primarily relied on a pri-
ori construction of a system model for fault detection and
analysis; this construction is tedious and error-prone, and
will likely remain so as our services continue to evolve
in the direction of heterogeneous systems of black boxes,
with subsystems such as Web servers, application logic
servers, and databases being supplied by different vendors
and evolving independently. We propose instead to build
and periodically update the baseline model by observing
the system’s own “normal” behavior. The approach can
be summarized as follows:

1. Ensure the system is in a state in which it is mostly
doing the right thing most of the time, according to
simple and well-understood external indicators.

1



2. Collect observations about the system’s behavior
during this time to build one or more baseline models
of behavior. These models may capture either time-
series behaviors of particular parameters or structural
behaviors of the system.

3. If “anomalous” behaviors relative to any of these
models are observed, automatically trigger simple
corrective actions. If repeated simple corrective ac-
tions do not cause the anomaly to go away, notify a
human. Since false positives are a fact of life with
statistical approaches, we also need a strategy for
quantifying and dealing with the cost of acting on
false positives.

4. Periodically, go back to step 2, to update the model.

Each of steps 1–3 corresponds to an assumption, as fol-
lows.

A1. Large number of independent requests. If most
users’ interactions with the service are independent of
each other (as they usually are for Internet services), and
if we assume bugs are the exception rather than the norm,
such a workload gives us the basis to make “law of large
numbers” arguments supporting the use of statistical tech-
niques to extract the model from the behavior of the sys-
tem itself. Also, a large number of users per unit time
means that large fractions of the service’s functionality are
exercised in a relatively short period of wall-clock time,
providing hope that the model can be created and main-
tained online, while the system is running.

A2. Modular architecture for observation points.
To use statistical or data-mining techniques, we need a
representation of the data observations the model will op-
erate on (“concepts” in the terminology of data mining)
and a way to capture those observations. A modular ser-
vice design, such as the componentized design induced by
Java 2 Enterprise Edition (J2EE) or CORBA, allows us to
crisply define a single user’s time-bounded request-reply
interaction with the service as a collection of discrete ser-
vice elements or subsystems that participated in that in-
teraction. For example, in J2EE, the unit of application
modularity is the Enterprise Java Bean (EJB); a particular
codepath through a J2EE application will “touch” some
subset of EJB classes. Note that components themselves
are opaque—we do not see intra-component method calls.
This coarser grain maximizes the likelihood that the num-
ber of “legitimate” code paths through the system is much
smaller than the number of permutations of components,
making anomaly detection appealing. Note also that it
is OK if the behaviors observed at different observation
points are correlated with each other, or completely un-
correlated to any interesting failure: machine learning
techniques called feature-selection algorithms can iden-
tify the subset of features most predictive of anomalies

from a much larger collection of features. Lastly, collect-
ing these observations must not materially interfere with
service performance.

A3. Simple and predictable control points. If the
model’s predictions and analyses are to be used to ef-
fect service repair when an anomaly indicating a poten-
tial failure is detected, there must be a safe, predictable,
and relatively non-disruptive way to do so. Safe means
that correct application semantics are not jeopardized by
actuating the control point. Predictable means that the
cost of actuating the control point must be well known.
Non-disruptive means that the result of activating a con-
trol point will be no worse than a minor and temporary ef-
fect on performance. These properties are particularly im-
portant when statistical techniques are used because those
techniques will inevitably generate false positives. If we
know that the only effect of acting on a false positive is
a temporary and small decrease in performance, we can
quantify the cost of “blindly” acting on false positives;
this enhances the appeal of automated statistical tech-
niques, since many techniques’ sensitivity can be tuned
to trade off false positive rates vs. false negative (miss)
rates.

We now turn to how these assumptions might be sat-
isfied in a real service. Note that A1 is trivially true for
the services in question, whereas A2 and A3 lead to some
interesting systems research.

3 Observation and Control Points
Since modifying every existing application to add obser-
vation and control points is cumbersome and unlikely, we
limit our attention initially to framework-intensive appli-
cations1—those whose total code consists mostly of mid-
dleware (e.g. J2EE runtime services, libraries, etc.) with
a smaller amount of application logic (though even sim-
ple applications typically contain 10K to 100K lines of
such logic). By modifying the middleware, we can pro-
vide application-generic observation points without any
extra work for application programmers. For example,
we modified the source code of the JBoss open-source
application server to collect and report code-path obser-
vations [4].

It is more difficult to add application-generic con-
trol points that are predictable, safe and non-disruptive.
Crashing and rebooting a machine is certainly predictable,
since crashing relies only on a simple external mechanism
(the power switch), but it may be unsafe or disruptive or
both, unless the application is known to be crash-only [3].
An alternative would be machine-level crashes in a system

1By framework we refer to a componentized middleware such as
J2EE or CORBA.

2



designed specifically so that a combination of overprovi-
sioning and fast failover can mask the crash in the form of
slight additional latency, though extra steps might have to
be taken to ensure correctness (i.e. so that affected users
see a performance blip instead of error messages).

4 SLT and Dependability

Having briefly addressed some important systems-
building issues (to which we return shortly in the context
of some concrete examples), we now discuss the core of
our detection and diagnosis strategy. Statistical learning
theory (SLT) provides a framework for the design of al-
gorithms for classification, prediction, feature selection,
clustering, sequential decision-making, novelty detection,
trend analysis, and diagnosis. Its techniques are already
being used in bioinformatics, information retrieval, spam
filtering and intrusion detection. We propose a software
architecture for integrating SLT pervasively into the com-
puting infrastructure, as a tool for evaluating which SLT
techniques are useful at detecting which kinds of prob-
lems. For concreteness, we describe two simple exam-
ples: one based on time-series models and another based
on structural models.

4.1 Time Series Models

Time-series models capture patterns in a service’s tem-
poral behavior that cannot be easily characterized by a
statistic or a small set of parameters. For example, the
memory used by a server-like process typically grows un-
til garbage collection occurs, then falls abruptly. We do
not know the period of this pattern, or indeed whether
it is periodic; but we would expect that multiple servers
running the same logic under reasonable load balancing
should behave about the same—the relative frequencies of
garbage-collection events at various timescales should be
comparable across all the replicas. We successfully used
this method to detect anomalies in replicas of SSM, our
session state management subsystem [11]. Each replica
reports the values of several resource-usage and forward-
progress metrics once per second, and these time series
are fed to the Tarzan algorithm [9], which discretizes the
samples to obtain binary strings and counts the relative
frequencies of all substrings within these strings. Nor-
mally, these relative frequencies are about the same across
all replicas, even if the garbage-collection cycles are out
of phase or their periods vary2. If the relative frequencies
of more than 2/3 of these metrics on some replica differ

2Classical time-series methods are less effective when the signal pe-
riod varies.

Figure 1: Detection rate vs. false positive rate for PCFG-based
path-shape analysis of PetStore 1.3 running on our modified
JBoss server. Relying on HTTP error logs would reduce the
detection rate to about 78%. Compared to the uninstrumented
application, our throughput is 17% less, request latency is about
40ms more, and analysis of several thousand paths takes a few
seconds, suggesting that the approach is feasible as an online
technique.

from those of the other replicas, that replica is immedi-
ately rebooted.

This works because SSM is deliberately optimized for
fast reboot: it does not preserve replica state across re-
boots, and since some overprovisioning due to replication
is inherent in its design, this control action is safe, pre-
dictable and non-disruptive. The net effect is that SSM
as a system has no concept of “recovery” vs “normal” be-
havior; since periodic reboots are normal and incur little
performance cost, the system is “always recovering” by
adapting to changing external conditions through a sim-
ple composition of mechanisms.

4.2 Structural Models

Structural models capture control-flow behavior of an ap-
plication, rather than temporal behavior. One example
of a structural model is a path—the inter-component dy-
namic call tree resulting from a single request-reply in-
teraction. We modified JBoss to dynamically collect such
call trees for all incoming requests; these are then treated
as parse trees generated by a probabilistic context-free
grammar (PCFG) [12]. Later on, when a path is seen
that corresponds to a low-probability parse tree, the cor-
responding user request is flagged as anomalous. In our
initial testing, this approach detects over 90% of various
injected faults with false positive rates around 3% (see
figure 1). While our diagnosis results are not as good,
with our decision trees identifying the correct cause of
the anomaly only 50–60% of the time, it is striking that
the technique performs as well as it does with no prior
knowledge of the application’s structure or semantics.

3



Since there is a nonzero false positive rate, we must
make sure that any action we take is safe, predictable and
non-disruptive. In this case, we respond by selectively
“microrebooting” the suspected-faulty EJB’s [4] without
causing unavailability of the entire application. Although
this work is still in progress, we have demonstrated that
EJB microreboots are predictable and non-disruptive, and
there is reason to believe they are safe because J2EE con-
strains application structure in a way that makes persis-
tent state management explicit—most EJB’s are stateless,
and we are modifying JBoss to externalize the session
state into SSM, which is itself optimized for safe and non-
disruptive fast reboot.

5 Research Challenges

We have focused on recasting “recovery” as a kind of
rapid adaptation, but a similar argument applies for other
online operations such as resource management. For
example, in a crash-only distributed hash table that we
built [8], online repartitioning can be achieved by tak-
ing one replica offline (which looks like a failure and
does not affect correctness), cloning it, and bringing both
copies back online. Each will then have some stale data,
but to the system, this looks the same as existing fail-
ure cases that are already handled by normal-case mecha-
nisms. Hence no new machinery is required to implement
growing, partitioning, or rebalancing as online operations
analogous to “failure and recovery”.

Most existing implementations of SLT algorithms are
offline; our proposal may motivate SLT practitioners to
focus on online and distributed algorithms. The above
experiments show that even an unoptimized offline im-
plementation of PCFG analysis can process thousands of
paths in a few seconds. This in turn motivates the need
for generic data collection and management architectures
for statistically-monitored systems: even a simple (11K
lines of code) application we instrumented produces up
to 40 observations per user request, with 1,000 to 10,000
requests per second being representative of Internet ser-
vices. Scalable abstractions for sliding data windows,
sampling, fusion of results from different SLT models,
etc. will have to be provided, as well as easy ways to cre-
ate observation and control points without requiring intru-
sive modifications to every application.

Finally, although we have discussed applying SLT ap-
proaches primarily at the application level, we note that
the needed infrastructure is largely in place for applying
it at all levels of functionality all the way down to the
hardware. A legacy of the Active Networking research
agenda [14] is a new generation of user-programmable
network devices for storage virtualization, server load bal-

Recovery synthesis

Client requests

Responses

Datacenter boundary

Collection

Short-term
store

Long-term
store

Online
algo.

Online
algo.

Observations from
other datacenters

Offline
algo.

Offline
algo.

Recovery actions to
other datacenters

Observations to
other datacenters

Application component

Application server

Figure 2: Internal high-level architecture of an intra-datacenter
adaptive system. Application components (circles) export
observation and control points to the SLT algorithms, with
inter-datacenter exchange of observation and control points for
geographically-distributed applications.

ancing, and traffic management, which provide some of
the observation and control points needed by our approach
and allow us to make “law of large numbers” arguments
required by assumption A1. Figure 2 shows a block-
diagram architecture (parts of which we are already pro-
totyping) for distributed network applications that exploit
SLT-based monitoring at multiple levels.

6 Related Work
Anomaly detection has been used to infer errors in sys-
tems code [5], debug Windows Registry problems [15],
detect possible violation of runtime variable assignment
invariants [7], and discover source code bugs by dis-
tributed assertion sampling [10]. The latter is particularly
illustrative of SLT’s ability to mine large quantities of ob-
servations for interesting patterns that can be directly re-
lated to dependability. System parameter tuning and auto-
matic resource provisioning have also been tackled using
PCFG-based approaches [1] and closed-loop control the-
ory [13], although such approaches generally cannot de-
tect functional or structural deviations in system behavior
unless they manifest as performance anomalies.

The Recovery-Oriented Computing project [6] has ar-
gued that fast recovery is good for its own sake, but in the
context of SLT, fast recovery is essential because it gives
us an inexpensive way to deal with false positives. As

4



such, ROC is a key enabler for this approach.

7 Conclusion

Our ability to design and deploy large complex systems
has outpaced our ability to deterministically predict their
behavior except at the coarsest grain. We believe statis-
tical approaches, which can find patterns and detect de-
viations in data whose semantics are initially unknown,
will be a powerful tool not only for monitoring and on-
line adaptation of these systems but for helping us better
understand their structure and behavior. We have argued
that the structure of today’s enterprise services supports
the “many independent samples” assumption required for
SLT to be effective, and that the challenge for systems
research is to provide pervasive observation and control
points that can serve as the “sensors and actuators” con-
nected to the SLT algorithms.

As early steps in tackling that challenge, we described
two applications of this technique: application-specific
work on SSM, which has observation points built-in and
allows whole-machine crashing as a control point, and
application-generic work on the JBoss application server,
with observations based on J2EE application paths and
control points based on microreboots. Although our ini-
tial results are promising, in the long view these are just
persuasive proofs-of-concept that invite much deeper ex-
ploration of the approach. A generic platform for perva-
sive integration of SLT methods, themselves the subject
of broad and vigorous research, would hasten the adop-
tion of SLT into dependable systems, which we believe
would in turn provide a new scientific foundation for the
construction of self-managing systems.

Acknowledgments

The ideas in this paper have benefited from advice and
discussion with George Candea, Timothy Chou, Moises
Goldszmidt, Joseph L. Hellerstein, Ben Ling, Matthew
Merzbacher, and Chris Overton.

References
[1] Paul Barham, Rebecca Isaacs, Richard Mortier, and

Dushyanth Narayanan. Magpie: real-time modelling and
performance-aware systems. In Proc. 9th Workshop on Hot
Topics in Operating Systems, Lihue, HI, June 2003.

[2] Michèle Basseville and Igor V. Nikiforov. Detection of
Abrupt Changes—Theory and Application. Prentice-Hall
Inc., Englewood Cliffs, NJ, 1993.

[3] George Candea and Armando Fox. Crash-only software.
In Proc. 9th Workshop on Hot Topics in Operating Sys-
tems, Lihue, HI, June 2003.

[4] George Candea, Pedram Keyani, Emre Kiciman, Steve
Zhang, and Armando Fox. JAGR: An autonomous self-
recovering application server. In Proc. 5th International
Workshop on Active Middleware Services, Seattle, WA,
June 2003.

[5] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,
and Benjamin Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In Proc. 18th
ACM Symposium on Operating Systems Principles, pages
57–72, Lake Louise, Canada, Oct 2001.

[6] David A. Patterson et al. Recovery-Oriented Comput-
ing: motivation, definition, techniques, and case studies.
Technical Report CSD-02-1175, University of California
at Berkeley, 2002.

[7] Sudheendra Hangal and Monica Lam. Tracking down soft-
ware bugs using automatic anomaly detection. In Pro-
ceedings of the International Conference on Software En-
gineering, May 2002.

[8] Andy C. Huang and Armando Fox. A persistent hash table
with cheap recovery: A step towards self-managing state
stores. In preparation.

[9] E. Keogh, S. Lonardi, and W Chiu. Finding surprising
patterns in a time series database in linear time and space.
In In proc. of the 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages
550–556, Edmonton, Alberta, Canada, Jul 2002.

[10] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I.
Jordan. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, San
Diego, California, June 9–11 2003.

[11] Benjamin C. Ling, Emre Kıcıman, and Armando Fox. Ses-
sion state: Beyond soft state. In First USENIX/ACM Sym-
posium on Networked Systems Design and Implementation
(NSDI 04), San Francisco, CA, March 2004.

[12] Christopher D. Manning and Hinrich Shutze. Founda-
tions of Statistical Natural Language Processing. The MIT
Press, Cambridge, MA, 1999.

[13] S Parekh, N Gandhi, JL Hellerstein, D Tilbury, TS Jayram,
and J Bigus. Using control theory to achieve service level
objectives in performance management. Real Time Sys-
tems Journal, 23(1–2), 2002.

[14] David L. Tennenhouse and David J. Wetherall. Towards
an active network architecture. In ACM SIGCOMM ’96
(Computer Communications Review). ACM, 1996.

[15] Yi-Min Wang, Chad Verbowski, and Daniel R. Simon.
Persistent-state checkpoint comparison for troubleshoot-
ing configuration failures. In Proc. International Con-
ference on Dependable Systems and Networks, San Fran-
cisco, CA, June 2003.

5


