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Abstract. Adding and removing redundant clauses is at the core of
state-of-the-art SAT solving. Crucial is the ability to add short clauses
whose redundancy can be determined in polynomial time. We present a
characterization of the strongest notion of clause redundancy (i.e., ad-
dition of the clause preserves satisfiability) in terms of an implication
relationship. By using a polynomial-time decidable implication relation
based on unit propagation, we thus obtain an efficiently checkable redun-
dancy notion. A proof system based on this notion is surprisingly strong,
even without the introduction of new variables—the key component of
short proofs presented in the proof complexity literature. We demon-
strate this strength on the famous pigeon hole formulas by providing
short clausal proofs without new variables.

1 Introduction

Satisfiability (SAT) solvers are used for determining the correctness of hardware
and software systems [1,2]. It is therefore crucial that these solvers justify their
claims by providing proofs that can be independently verified. This holds also
for various other applications that use SAT solvers. Just recently, long-standing
mathematical problems were solved using SAT, including the Erdős Discrepancy
Problem [3] and the Pythagorean Triples Problem [4]. Especially in such cases,
proofs are at the center of attention, and without them, the result of a solver is
almost worthless. What the mathematical problems and the industrial applica-
tions have in common, is that proofs are often of considerable size—in the case
of the Pythagorean Triples Problem about 200 terabytes. As the size of proofs is
influenced by the strength of the underlying proof system, the search for shorter
proofs goes hand in hand with the search for stronger proof systems.

In this paper, we introduce highly expressive clausal proof systems that are
closely related to state-of-the-art SAT solving. Informally, a clausal proof system
allows the addition of redundant clauses to a formula in conjunctive normal
form (CNF). Here, a clause is considered redundant if its addition preserves
satisfiability. If the repeated addition of clauses allows us finally to add the
empty clause—which is, by definition, unsatisfiable—the unsatisfiability of the
original formula has been established.

? This work has been supported by the National Science Foundation under grant
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Since satisfiability equivalence is not efficiently decidable, practical proof sys-
tems only allow the addition of a clause if it fulfills some efficiently decidable
criterion that ensures redundancy. For instance, the popular DRAT proof sys-
tem [5], which is the de-facto standard in practical SAT solving, only allows the
addition of so-called resolution asymmetric tautologies [6]. Given a formula and
a clause, one can decide in polynomial time whether the clause is a resolution
asymmetric tautology with respect to the formula and therefore the soundness
of DRAT proofs can be efficiently checked.

We present new redundancy criteria by introducing a characterization of
clause redundancy based on a simple implication relationship between formu-
las. By replacing the logical implication relation in this characterization with
stronger notions of implication that are computable in polynomial time, we then
obtain powerful redundancy criteria that are still efficiently decidable. We show
that these redundancy criteria not only generalize earlier ones like the above-
mentioned resolution asymmetric tautologies or set-blocked clauses [7], but that
they are also related to other concepts from the literature, namely autarkies [8],
safe assignments [9], variable instantiation [10], and symmetry breaking [11].

Proof systems based on our new redundancy criteria turn out to be highly
expressive, even without the introduction of new variables. This is in contrast
to resolution, which is considered relatively weak as long as one does not allow
the introduction of new variables via definitions as in the stronger proof system
of extended resolution [12,13]. The introduction of new variables, however, has
a major drawback: the search space of variables and clauses one could possibly
add to a proof is infinite, even when bounding the size of clauses. Finding useful
clauses with new variables is therefore hard in practice, although there have been
a few successes in the past [14,15].

We illustrate the strength of our strongest proof system by providing short
clausal proofs for the famous pigeon hole formulas without introducing new
variables. The size of the proofs is linear in the size of the formulas and the
longest clauses in the proofs have length two. In these proofs, we add redundant
clauses that are similar in nature to symmetry-breaking predicates [11,16]. To
verify the correctness of proofs in our new system, we implemented a proof
checker. The checker is built on top of DRAT-trim [5], the checker used to validate
the unsatisfiability results of the recent SAT competitions [17]. We compare our
proofs with existing proofs of the pigeon hole formulas in other proof systems
and show that our new proofs are much smaller and cheaper to validate.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF), which
are defined as follows. A literal is either a variable x (a positive literal) or the
negation x of a variable x (a negative literal). The complementary literal l of a
literal l is defined as l = x if l = x and l = x if l = x. Accordingly, for a set L
of literals, we define L = {l | l ∈ L}. A clause is a disjunction of literals. If not
stated otherwise, we assume that clauses do not contain complementary literals.
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A formula is a conjunction of clauses. We view clauses as sets of literals and
formulas as sets of clauses. For a set L of literals and a formula F , we define
FL = {C ∈ F | C ∩ L 6= ∅}. We sometimes write Fl to denote F{l}.

An assignment is a partial function from a set of variables to the truth values
1 (true) and 0 (false). An assignment is total w.r.t. a formula if it assigns a truth
value to every variable occurring in the formula. A literal l is satisfied (falsified)
by an assignment α if l is positive and α(var(l)) = 1 (α(var(l)) = 0, respectively)
or if it is negative and α(var(l)) = 0 (α(var(l)) = 1, respectively). We often
denote assignments by the sequences of literals they satisfy. For instance, x y
denotes the assignment that assigns x to 1 and y to 0. A clause is satisfied by
an assignment α if it contains a literal that is satisfied by α. Finally, a formula
is satisfied by an assignment α if all its clauses are satisfied by α. A formula is
satisfiable if there exists an assignment that satisfies it. Two formulas are logically
equivalent if they are satisfied by the same assignments. Two formulas F and F ′

are satisfiability equivalent if F is satisfiable if and only if F ′ is satisfiable.
We denote the empty clause by ⊥ and the satisfied clause by >. Given an

assignment α and a clause C, we define C |α = > if α satisfies C, otherwise C |α
denotes the result of removing from C all the literals falsified by α. Moreover,
for a formula F , we define F |α = {C |α | C ∈ F and C |α 6= >}. We say that
a clause C blocks an assignment α if C = {x | α(x) = 0} ∪ {x | α(x) = 1}. A
unit clause is a clause that contains only one literal. The result of applying the
unit clause rule to a formula F is the formula F |α with α being the assignment
that satisfies exactly the unit clauses in F . The iterated application of the unit
clause rule to a formula, until no unit clauses are left, is called unit propagation.
If unit propagation yields the empty clause ⊥, we say that it derived a conflict.

By F � F ′, we denote that F implies F ′, i.e., all assignments satisfying F
also satisfy F ′. Furthermore, by F `1 F ′ we denote that for every clause C ∈ F ′,
unit propagation of the negated literals of C on F derives a conflict (thereby, the
negated literals of C are viewed as unit clauses). For example, x∧y `1 (x∨z)∧y,
since unit propagation of the unit clauses x and z derives a conflict with x, and
propagation of y derives a conflict with y. Similarly, F `0 F ′ denotes that every
clause in F ′ is subsumed by (i.e., is a superset of) a clause in F . Observe that
F ⊇ F ′ implies F `0 F ′, F `0 F ′ implies F `1 F ′, and F `1 F ′ implies F � F ′.

3 Clause Redundancy and Clausal Proofs

In this section, we introduce a formal notion of clause redundancy and demon-
strate how it provides the basis for clausal proof systems. We start by introducing
clause redundancy [7]:

Definition 1. A clause C is redundant w.r.t. a formula F if F and F ∪ {C}
are satisfiability equivalent.

For instance, the clause C = x ∨ y is redundant w.r.t. F = {x ∨ y} since F and
F ∪{C} are satisfiability equivalent (although they are not logically equivalent).
Since this notion of redundancy allows us to add redundant clauses to a formula
without affecting its satisfiability, it gives rise to clausal proof systems.
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Definition 2. A proof of a clause Cm from a formula F is a sequence of pairs
(C1, ω1), . . . , (Cm, ωm), where each Ci (1 ≤ i ≤ m) is a clause that is redundant
w.r.t. F ∪ {Cj | 1 ≤ j < i}, and this redundancy can be efficiently checked using
the (arbitrary) witness ωi. If Cm = ⊥, the proof is a refutation of F .

Clearly, since every clause-addition step preserves satisfiability, and since the
empty clause is unsatisfiable, a refutation certifies the unsatisfiability of F due
to transitivity. Note that the ωi can be arbitrary witnesses (they can be assign-
ments, or even left out if no explicit witness is needed) that certify the redun-
dancy of Ci w.r.t. F ∪ {Cj | 1 ≤ j < i}, and by requiring that the redundancy
can be efficiently checked, we mean that it can be checked in polynomial time
w.r.t. the size of F ∪ {Cj | 1 ≤ j < i}.

By specifying in detail what kind of redundant clauses—and corresponding
witnesses—one can add to a proof, we obtain concrete proof systems. This is
usually done by defining an efficiently checkable syntactic criterion that guaran-
tees that clauses fulfilling this criterion are redundant. A popular example for
a clausal proof system is DRAT [5], the de-facto standard for unsatisfiability
proofs in practical SAT solving. DRAT allows the addition of a clause if it is a
so-called resolution asymmetric tautology [6] (RAT, defined in the next section).
As it can be efficiently checked whether a clause is a RAT, and since RATs cover
a large portion of redundant clauses, the DRAT proof system is very powerful.

The strength of a clausal proof system depends on the generality of the
underlying redundancy criterion. We say that a redundancy criterion R1 is more
general than a redundancy criterion R2 if, whenever R2 identifies a clause C as
redundant w.r.t. a formula F , then R1 also identifies C as redundant w.r.t. F .
For instance, whenever a clause is subsumed in some formula, it is a RAT w.r.t.
that formula. Therefore, the RAT redundancy criterion is more general than
the subsumption criterion. In the next section, we develop redundancy criteria
that are even more general than RAT. This gives rise to proof systems that are
stronger than DRAT but still closely related to practical SAT solving.

4 Clause Redundancy via Implication

In the following, we introduce a characterization of clause redundancy that re-
duces the question whether a clause is redundant w.r.t. a certain formula to a
simple question of implication. The advantage of this is that we can replace the
logical implication relation by stronger, polynomially decidable implication re-
lations to derive powerful redundancy criteria that are still efficiently checkable.
These redundancy criteria can then be used to obtain highly expressive clausal
proof systems.

Our characterization is based on the observation that a clause in a CNF
formula can be seen as a constraint that blocks those assignments falsifying
the clause. Therefore, a clause can be safely added to a formula if it does not
constrain the formula too much. What we mean by this, is that after adding the
clause, there should still exist other assignments (i.e., assignments not blocked
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by the clause) under which the formula is at least as satisfiable as under the
assignments blocked by the clause. Consider the following example:

Example 1. Let F = {x ∨ y, x ∨ z, x ∨ y ∨ z} and consider the (unit) clause
C = x which blocks all assignments that assign x to 0. The addition of C to F
does not affect satisfiability: Let α = x and ω = x. Then, F |α = {y, z} while
F |ω = {y ∨ z}. Clearly, every satisfying assignment of F |α is also a satisfying
assignment of F |ω (i.e., F |α � F |ω). Thus, F is at least as satisfiable under ω
as it is under α. Moreover, ω satisfies C. The addition of C does therefore not
affect the satisfiability of F . ut

This motivates the characterization of clause redundancy we introduce next.
Note that for a given clause C, “the assignment α blocked by C” can be a partial
assignment, meaning that C actually rules out all assignments that extend α:

Theorem 1. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is redundant w.r.t. F if and only if there exists an assignment ω
such that ω satisfies C and F |α � F |ω.

Proof. For the “only if” direction, assume that F and F ∪ {C} are satisfiability
equivalent. If F |α is unsatisfiable, then F |α � F |ω for every ω, hence the
statement trivially holds. Assume now that F |α is satisfiable, implying that F
is satisfiable. Then, since F and F ∪{C} are satisfiability equivalent, there exists
an assignment ω that satisfies both F and C. Since ω satisfies F , it holds that
F |ω = ∅ and so F |α � F |ω.

For the “if” direction, assume that there exists an assignment ω such that
ω satisfies C and F |α � F |ω. Now, let γ be a (total) assignment that satisfies
F and assume it falsifies C. As γ falsifies C, it coincides with α on var(α).
Therefore, since γ satisfies F , it must satisfy F |α and since F |α � F |ω it must
also satisfy F |ω. Now, consider the following assignment γ′:

γ′(x) =

{
ω(x) if x ∈ var(ω),

γ(x) otherwise.

Clearly, since ω satisfies C, γ′ also satisfies C. Moreover, as γ satisfies F |ω and
var(F |ω) ⊆ var(γ) \ var(ω), γ′ satisfies F . Hence, γ′ satisfies F ∪ {C}. ut

This alternative characterization of redundancy allows us to replace the logical
implication relation by stronger polynomially decidable relations. For instance,
we can replace the condition F |α � F |ω by the stronger condition F |α `1 F |ω
(likewise, we could also use relations such as “`0” or “⊇” instead of “ `1”). Now,
if we are given a clause C—which implicitly gives us the blocked assignment α—
and a witnessing assignment ω, then we can check in polynomial time whether
F |α `1 F |ω, implying that C is redundant w.r.t. F . We can therefore use this
implication-based redundancy notion to define proof systems. A proof is then a
sequence (C1, ω1), . . . , (Cm, ωm) where the ωi are the witnessing assignments.
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RAT [6,5]
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F |α `0 ⊥

F |α `1 ⊥

F |α ⊇ F |αL
∗
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F |α `0 F |αl

F |α ⊇ F |αl
∗

F |α � F |ω F |α � ⊥

F |α `1 F |ω

new

satisfiability

equivalence

logical

equivalence

Fig. 1. Landscape of Redundancy Notions. SAT-EQ stands for all redundant clauses
and EQ for implied clauses. A path from X to Y indicates that X is more general
than Y . The asterisk (∗) denotes that the exact characterization implies the shown one,
e.g., for every set-blocked clause, the property F |α ⊇ F |αL holds, but not vice versa.

In the following, we use the propagation-implication relation “ `1” to define
the redundancy criteria of (1) literal-propagation redundancy (LPR), (2) set-
propagation redundancy (SPR), and (3) propagation redundancy (PR). Basically,
the three notions differ in the way we allow the witnessing assignment ω to differ
from the assignment α blocked by a clause. The more freedom we give to ω, the
more general the redundancy notion we obtain. We show that LPR clauses—the
least general of the three—coincide with RAT. For the more general SPR clauses,
we show that they generalize set-blocked clauses (SET) [7], which is not the case
for LPR clauses. Finally, PR clauses are the most general ones. They give rise to
an extremely powerful proof system that is still closely related to CDCL-based
SAT solving. The new landscape of redundancy notions we thereby obtain is
illustrated in Fig. 1. In the figure, RUP stands for the redundancy notion based
on reverse unit propagation [18,19], S stands for subsumed clauses, RS for clauses
with subsumed resolvents [6], and BC for blocked clauses [20,21].

As we will see, when defining proof systems based on LPR (e.g., the DRAT
system) or SPR clauses, we do not need to add the explicit redundancy witnesses
(i.e., the witnessing assignments ω) to a proof. In these two cases, a proof can
thus just be seen as a sequence of clauses. A proof system based on SPR clauses
can therefore have the same syntax as DRAT proofs, which makes it “downwards
compatible”. This is in contrast to a proof system based on PR clauses where, at
least in general, we have to add the witnessing assignments to a proof, otherwise
we cannot check the redundancy of a clause in polynomial time.

We start by introducing LPR clauses. In the following, given a (partial) as-
signment α and a set L of literals, we denote by αL the assignment obtained
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from α by flipping the truth values of the literals in L. If L contains only a single
literal l, then we write αl to denote α{l}.

Definition 3. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is literal-propagation redundant (LPR) w.r.t. F if it contains a
literal l such that F |α `1 F |αl.

Example 2. Let F = {x ∨ y, x ∨ y ∨ z, x ∨ z} and let C be the unit clause x.
Then, α = x is the assignment blocked by C, and αx = x. Now, consider
F |α = {y, y ∨ z} and F |αx = {z}. Clearly, F |α `1 F |αx and therefore C is
literal-propagation redundant w.r.t. F . ut

The LPR definition is quite restrictive, as it requires the witnessing assignment
αl to disagree with α on exactly one variable. Nevertheless, this already suffices
for LPR clauses to coincide with RATs [6]:

Definition 4. Let F be a formula and C a clause. Then, C is a resolution
asymmetric tautology (RAT) w.r.t. F if it contains a literal l such that, for
every clause D ∈ Fl, F `1 C ∪ (D \ {l}).

Theorem 2. A clause C is literal-propagation redundant w.r.t. a formula F if
and only if it is a resolution asymmetric tautology w.r.t. F .

Proof. For the “only if” direction, assume that C is LPR w.r.t. F , i.e., it contains
a literal l such that F |α `1 F |αl. Now, let D ∈ Fl. We have to show that

F `1 C ∪ (D \ {l}). First, note that F |α is exactly the result of propagating the
negated literals of C on F (i.e., applying the unit clause rule with the negated
literals of C but not performing further propagations). Moreover, since αl falsifies
l, it follows that D |αl ⊆ (D \ {l}). But then, since F |α `1 D |αl, it must hold
that F `1 C ∪ (D \ {l}), hence C is a RAT w.r.t. F .

For the “ if” direction, assume that C is a RAT w.r.t. F , i.e., it contains
a literal l such that, for every clause D ∈ Fl, F `1 C ∪ (D \ {l}). Now, let
D |αl ∈ F |αl for D ∈ F . We have to show that F |α `1 D |αl. Since αl satisfies
l and α falsifies C, D does neither contain l nor any negations of literals in C
except for possibly l. If D does not contain l, then D |α = D |αl is contained in
F |α and hence the claim immediately follows. Assume therefore that l ∈ D.

As argued in the proof for the other direction, propagating the negated literals
of C (and no other literals) on F yields F |α. Therefore, since F `1 C ∪ (D \{l})
and D\{l} does not contain any negations of literals in C (which could otherwise
be the reason for a unit propagation conflict that only happens because of C
containing a literal whose negation is contained in D \ {l}), it must be the case
that F |α `1 D \ {l}. Now, the only literals of D \ {l} that are not contained in
D |αl are the ones falsified by α, but those are anyhow not contained in F |α. It
follows that F |α `1 D |αl and thus C is LPR w.r.t. F . ut

By allowing the witnessing assignments to disagree with α on more than only one
literal, we obtain the more general notion of set-propagation-redundant clauses:
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Definition 5. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is set-propagation redundant (SPR) w.r.t. F if it contains a
non-empty set L of literals such that F |α `1 F |αL.

Example 3. Let F = {x ∨ y, x ∨ y ∨ z, x ∨ z, x ∨ u, u ∨ x}, C = x ∨ u, and
L = {x, u}. Then, α = x u is the assignment blocked by C, and αL = x u. Now,
consider F |α = {y, y ∨ z} and F |αL = {z}. Clearly, F |α `1 F |αL and so C is
set-propagation redundant w.r.t. F . Note also that C is not literal-propagation
redundant w.r.t. F . ut

Since L is a subset of C, we do not need to add it (or the assignment αL)
explicitly to an SPR proof. By requiring that L must consist of the first literals
of C when adding C to a proof (viewing a clause as a sequence of literals), we
can ensure that the SPR property is efficiently decidable. For instance, when a
proof contains the clause l1 ∨ · · · ∨ ln, we first check whether the SPR property
holds under the assumption that L = {l1}. If not, we proceed by assuming
that L = {l1, l2}, and so on until L = {l1, . . . , ln}. Thereby, only linearly many
candidates for L need to be checked. In contrast to LPR clauses and RATs, the
notion of SPR clauses generalizes set-blocked clauses [7]:

Definition 6. A clause C is set-blocked (SET) by a non-empty set L ⊆ C in a
formula F if, for every clause D ∈ FL, the clause (C \ L) ∪ L ∪D contains two
complementary literals.

To show that set-propagation-redundant clauses generalize set-blocked clauses,
we first characterize them as follows:

Lemma 3. Let F be a clause, C a formula, L ⊆ C a non-empty set of literals,
and α the assignment blocked by C. Then, C is set-blocked by L in F if and only
if, for every D ∈ F , D |α = > implies D |αL = >.

Proof. For the “only if” direction, assume that there exists a clause D ∈ F such
that D |α = > but D |αL 6= >. Then, since α and αL disagree only on literals
in L, it follows that D contains a literal l ∈ L and therefore D ∈ FL. Now, αL

falsifies exactly the literals in (C \L)∪L and since it does not satisfy any of the
literals in D, it follows that there exists no literal l ∈ D such that its complement
l is contained in (C \ L) ∪ L. Therefore, C is not set-blocked by L in F .

For the “if” direction, assume that C is not set-blocked by L in F , i.e., there
exists a clause D ∈ FL such that (C \L)∪L∪D does not contain complementary
literals. Clearly,D |α = > since α falsifies L andD∩L 6= ∅. Now, sinceD contains
no literal l such that l ∈ (C \L) ∪L and since αL falsifies exactly the literals in
(C \ L) ∪ L, it follows that αL does not satisfy D, hence D |αL 6= >. ut

Theorem 4. If a clause C is set-blocked by a set L in a formula F , it is set-
propagation redundant w.r.t. F .

Proof. Assume that C is set-blocked by L in F . We show that F |α ⊇ F |αL,
which implies that F |α `1 F |αL, and therefore that C is set-propagation re-
dundant w.r.t. F . Let D |αL ∈ F |αL. First, note that D cannot be contained
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in FL, for otherwise D |αL = > and thus D |αL /∈ F |αL. Second, observe that
D can also not be contained in FL, since that would imply that D |α = > and
thus, by Lemma 3, D |αL = >. Therefore, D /∈ FL ∪ FL and so D |α = D |αL.
But then, D |αL ∈ F |α. It follows that F |α ⊇ F |αL. ut

We thus know that set-propagation-redundant clauses generalize both resolu-
tion asymmetric tautologies and set-blocked clauses. Since there exist resolution
asymmetric tautologies that are not set-blocked (and vice versa) [7], it follows
that set-propagation-redundant clauses are actually a strict generalization of
these two kinds of clauses.

By giving practically full freedom to the witnessing assignments, i.e., by only
requiring them to satisfy C, we finally arrive at propagation-redundant clauses,
the most general of the three redundancy notions:

Definition 7. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is propagation redundant (PR) w.r.t. F if there exists an assign-
ment ω such that ω satisfies C and F |α `1 F |ω.

Example 4. Let F = {x ∨ y, x ∨ y, x ∨ z}, C = x, and let ω = x z be the wit-
nessing assignment. Then, α = x is the assignment blocked by C. Now, consider
F |α = {y} and F |ω = {y}. Clearly, unit propagation with the negated literal
y of the unit clause y ∈ F |ω derives a conflict on F |α. Therefore, F |α `1 F |ω
and so C is propagation redundant w.r.t. F . Note that C is not set-propagation
redundant because for L = {x}, we have αL = x and so F |αL contains the two
unit clauses y and z, but it does not hold that F |α `1 z. The fact that ω satisfies
z is crucial for ensuring propagation redundancy. ut

Since the witnessing assignments ω are allowed to assign variables that are not
contained in C, we need—at least in general—to add them to a proof to guaran-
tee that redundancy can be efficiently checked. In the next section, we illustrate
the power of a proof system that is based on the addition of PR clauses.

5 Short Proofs of the Pigeon Hole Principle

In a landmark paper, Haken [13] showed that pigeon hole formulas cannot be
refuted by resolution proofs that are of polynomial size w.r.t. the size of the
formulas. In contrast, by using the stronger proof system of extended resolution,
Cook [22] proved that one can actually refute pigeon hole formulas in polynomial
size. What distinguishes extended resolution from general resolution is that it
allows for the introduction of new variables via definitions. Cook showed how
the introduction of such definitions helps to reduce a pigeon hole formula of size
n to a pigeon hole formula of size n − 1 over new variables. The problem with
the introduction of new variables, however, is that the search space of possible
variables—and therefore clauses—that could be added to a proof is infinite.

In this section, we illustrate how a clausal proof system that allows the ad-
dition of PR clauses can yield short proofs of pigeon hole formulas without the
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need for introducing new variables. This shows that a proof system based on PR
clauses is strictly stronger than the resolution calculus, even when we forbid the
introduction of new variables. To recap, a pigeon hole formula PHPn intuitively
encodes that n pigeons have to be assigned to n− 1 holes such that no hole con-
tains more than one pigeon. In the encoding, a variable xi,k intuitively denotes
that pigeon i is assigned to hole k:

PHPn :=
∧

1≤i≤n

(xi,1 ∨ · · · ∨ xi,n−1) ∧
∧

1≤i<j≤n

∧
1≤k≤n−1

(xi,k ∨ xj,k)

Clearly, pigeon hole formulas are unsatisfiable. The main idea behind our ap-
proach is similar to that of Cook, namely to reduce a pigeon hole formula PHPn

to the smaller PHPn−1. The difference is, that in our case, PHPn−1 is still de-
fined on the same variables as PHPn. Therefore, reducing PHPn to PHPn−1
boils down to deriving the clauses xi,1 ∨ · · · ∨ xi,n−2 for 1 ≤ i ≤ n− 1.

Following Haken [13], we use array notation for clauses: Every clause is rep-
resented by an array of n columns and n − 1 rows. An array contains a “ ”
(“ ”) in the i-th column and k-th row if and only if the variable xi,k occurs
positively (negatively, respectively) in the corresponding clause. Representing
PHPn in array notation, we have for every clause xi,1 ∨ · · · ∨ xi,n−1, an array in
which the i-th column is filled with “ ”. Moreover, for every clause xi,k ∨ xj,k,
we have an array that contains two “ ” in row k—one in column i and the other
in column j. For instance, PHP4 is given in array notation as follows:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

. . .

1 2 3 4
1
2
3

. . .

1 2 3 4
1
2
3

1 2 3 4
1
2
3

We illustrate the general idea for reducing a pigeon hole formula PHPn to the
smaller PHPn−1 on the concrete formula PHP4. It should, however, become clear
from our explanation that the procedure works for every n > 1. If we want to
reduce PHP4 to PHP3, we have to obtain the following three clauses:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

We can do so, by removing the “ ” from the last row of every column full of “ ”,
except for the last column, which can be ignored as it is not contained in PHP3.
The key observation is, that a “ ” in the last row of the i-th column can be
removed with the help of so-called “diagonal clauses” of the form xi,n−1 ∨ xn,k
(1 ≤ k ≤ n− 2). We are allowed to add these diagonal clauses since they are, as
we will show, propagation redundant w.r.t. PHPn. The arrays below represent
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the diagonal clauses to remove the “ ” from the last row of the first (left), second
(middle), and third column (right):

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

We next show how exactly these diagonal clauses allow us to remove the bottom
“ ” from a column full of “ ”, or, in other words, how they help us to remove
the literal xi,n−1 from a clause xi,1 ∨ · · · ∨ xi,n−1 (1 ≤ i ≤ n− 1). Consider, for
instance, the clause x2,1 ∨ x2,2 ∨ x2,3 in PHP4. Our aim is to remove the literal
x2,3 from this clause. Before we explain the procedure, we like to remark that
proof systems based on propagation redundancy can easily simulate resolution:
Since every resolvent of clauses in a formula F is implied by F , the assignment
α blocked by the resolvent must falsify F and thus F |α `1 ⊥. We explain our
procedure textually before we illustrate it in array notation:

First, we add the diagonal clauses D1 = x2,3 ∨ x4,1 and D2 = x2,3 ∨ x4,2 to
PHP4. After this, we can derive the unit clause x2,3 by resolving the two diagonal
clauses D1 and D2 with the original pigeon hole clauses P1 = x2,3 ∨ x4,3 and
P2 = x4,1∨x4,2∨x4,3 as follows: We resolve D1 with P2 to obtain x2,3∨x4,2∨x4,3.
Then, we resolve this clause with D2 to obtain x2,3∨x4,3, which we resolve with
P1 to obtain x2,3. Note that our proof system actually allows us to add x2,3
immediately without carrying out all the resolution steps explicitly. Finally, we
resolve x2,3 with x2,1 ∨ x2,2 ∨ x2,3 to obtain the desired clause x2,1 ∨ x2,2.

We next illustrate this procedure in array notation. We start by visualizing
the clauses D1, D2, P1, and P2 that can be resolved to yield the clause x2,3. The
clauses are given in array notation as follows:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

D1 D2 P1 P2 x2,3

We can then resolve x2,3 with x2,1 ∨ x2,2 ∨ x2,3 to obtain x2,1 ∨ x2,2:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

x2,3 x2,1 ∨ x2,2 ∨ x2,3 x2,1 ∨ x2,2

This should illustrate the general idea of how to reduce a clause of the form
xi,1 ∨ . . . xi,n−1 (1 ≤ i ≤ n − 1) to a clause xi,1 ∨ . . . xi,n−2. By repeating this
procedure for every column i with 1 ≤ i ≤ n − 1, we can thus reduce a pigeon
hole formula PHPn to a pigeon hole formula PHPn−1 without introducing new
variables. Note that the last step, in which we resolve the derived unit clause
x2,3 with the clause x2,1 ∨ x2,2 ∨ x2,3, is actually not necessary for a valid PR
proof of a pigeon hole formula, but we added it to simplify the presentation.
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It remains to show that the diagonal clauses are indeed propagation redun-
dant w.r.t. the pigeon hole formula. To do so, we show that for every assignment
α = xi,n−1 xn,k that is blocked by a diagonal clause xi,n−1∨xn,k, it holds that for
the assignment ω = xi,n−1 xn,k xi,k xn,n−1, PHPn |α = PHPn |ω, implying that
PHPn |α `1 PHPn |ω. We also argue why other diagonal and unit clauses can be
ignored when checking whether a new diagonal clause is propagation redundant.

We again illustrate the idea on PHP4. From now on, we use array notation
also for assignments, i.e., a “ ” (“ ”) in column i and row k denotes that the
assignment assigns 1 (0, respectively) to variable xi,k. Consider, for instance, the
diagonal clause D2 = x2,3 ∨ x4,2 that blocks α = x2,3 x4,2. The corresponding
witnessing assignment ω = x2,3 x4,2 x2,2 x4,3 can be seen as a “rectangle” with
two “ ” in the corners of one diagonal and two “ ” in the other corners:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

D2 α ω

To see that PHP4 |α and PHP4 |ω coincide on clauses xi,1 ∨ · · · ∨ xi,n−1,
consider that whenever α and ω assign a variable of such a clause, they both
satisfy the clause (since they both have a “ ” in every column in which they
assign a variable) and so they both remove it from PHP4. For instance, in the
following example, both α and ω satisfy x2,1∨x2,2∨x2,3 while both do not assign
a variable of the clause x3,1 ∨ x3,2 ∨ x3,3:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

x2,1 ∨ x2,2 ∨ x2,3 x3,1 ∨ x3,2 ∨ x3,3 α ω

To see that PHP4 |α and PHP4 |ω coincide on clauses of the form xi,k ∨ xj,k,
consider the following: If α falsifies a literal of xi,k ∨ xj,k, then the resulting
clause is a unit clause for which one of the two literals is not assigned by α
(since α does not assign two variables in the same row). Now, one can show that
the same unit clause is also contained in PHP4 |ω, where it is obtained from
another clause: Consider, for example, again the assignment α = x2,3 x4,2 and
the corresponding witnessing assignment ω = x2,3 x4,2 x2,2 x4,3 from above. The
assignment α turns the clause C = x3,2 ∨ x4,2 into the unit clause C |α = x3,2.
The same clause is contained in PHP4 |ω, as it is obtained from C ′ = x2,2 ∨ x3,2
since C ′ |ω = C |α = x3,2:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

α C C |α = C′ |ω C′ ω
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CNF Formula

x1,1 ∨ x1,2 ∨ x1,3
x2,1 ∨ x2,2 ∨ x2,3
x3,1 ∨ x3,2 ∨ x3,3
x4,1 ∨ x4,2 ∨ x4,3

x1,1 ∨ x2,1
x1,2 ∨ x2,2
x1,3 ∨ x2,3
x1,1 ∨ x3,1
x1,2 ∨ x3,2
x1,3 ∨ x3,3

. . .

DIMACS File

p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0
10 11 12 0

-1 -4 0
-2 -5 0
-3 -6 0
-1 -7 0
-2 -8 0
-3 -9 0
...

PR Proof File

-3 -10 -3 -10 1 12 0
-3 -11 -3 -11 2 12 0

-3 0
-6 -10 -6 -10 4 12 0
-6 -11 -6 -11 5 12 0

-6 0
-9 -10 -9 -10 7 12 0
-9 -11 -9 -11 8 12 0

-9 0
-2 0
-5 0

0

Lemmas

x1,3 ∨ x4,1
x1,3 ∨ x4,2

x1,3
x2,3 ∨ x4,1
x2,3 ∨ x4,2

x2,3
x3,3 ∨ x4,1
x3,3 ∨ x4,2

x3,3
x1,2
x2,2
⊥

Fig. 2. Left, ten clauses of PHP4 using the notation as elsewhere in this paper and next
to it the equivalent representation of these clauses in the DIMACS format used by SAT
solvers. Right, the full PR refutation consisting of clause-witness pairs. A repetition of
the first literal indicates the start of the optional witness.

Note that diagonal clauses and unit clauses that have been derived earlier
can be ignored when checking whether the current one is propagation redundant.
For instance, assume we are currently reducing PHPn to PHPn−1. Then, the
assignments α and ω under consideration only assign variables in PHPn. In
contrast, the unit and diagonal clauses used for reducing PHPn+1 to PHPn (or
earlier ones) are only defined on variables outside of PHPn. They are therefore
contained in both PHPn |α and PHPn |ω. We can also ignore earlier unit and
diagonal clauses over variables in PHPn, i.e., clauses used for reducing an earlier
column or other diagonal clauses for the current column: Whenever α assigns
one of their variables, then ω satisfies them and so they are not in PHPn |ω.

Finally, we want to mention that one can also construct short SPR proofs
(without new variables) of the pigeon hole formulas by first adding SPR clauses
of the form xi,n−1 ∨ xn,k ∨ xi,k ∨ xn,n−1 and then turning them into diagonal
clauses using resolution. We left these proofs out since they are twice as large as
the PR proofs and their explanation is less intuitive. For DRAT, we consider it
unlikely that such proofs exist.

6 Evaluation

We implemented a PR proof checker4 on top of DRAT-trim [5]. Fig. 3 shows the
pseudo code of the checking algorithm. The first “if” statement is not necessary
but significantly improves the efficiency of the algorithm. The worst-case com-
plexity of the algorithm is O(m3), where m is the number of clauses in a proof.
The reason for this is that there are m iterations of the outer for-loop and for

4 The checker, benchmark formulas, and proofs are available at
http://www.cs.utexas.edu/~marijn/pr/
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PRcheck (CNF formula F ; PR proof (C1, ω1), . . . , (Cm, ωm))

for i ∈ {i, . . . ,m} do
for D ∈ F do

if D |ωi 6= > and (D |αi = > or D |ωi ⊂ D |αi) then

if F |αi 01 D |ωi then return failure

F := F ∪ {Ci}
return success

Fig. 3. Pseudo Code of the PR-Proof Checking Algorithm.

each of these iterations, the inner for-loop is performed |F | times (i.e., once for
every clause in F ). Given that F contains n clauses at the start of the algorithm,
we know that the size of F is bounded by m+n (the original n clauses of F plus
the m clauses of the proof that are added to F by the algorithm). It follows that
the inner for-loop is performed m(m+n) times. Now, there is a unit propagation
test in the inner if-statement: If k is the maximal clause size and m + n is an
upper bound for the size of the formula, then the complexity of unit propagation
is known to be at most k(m + n). Hence, the overall worst-case complexity of
the algorithm is bounded by m(m+ n)k(m+ n) = O(m3).

This complexity is the same as for RAT-proof checking. In fact, the pseudo-
code for RAT-proof checking and PR-proof checking is the same apart from the
first if-statement, which is always true in the worst case, both for RAT and
PR. Although the theoretical worst-case complexity makes proof checking seem
very expensive, it can be done quite efficiently in practice: For the RAT proofs
produced by solvers in the SAT competitions, we observed that the runtime of
proof checking is close to linear with respect to the sizes of the proofs.

Moreover, we want to highlight that verifying the PR property of a clause
is relatively easy as long as a witnessing assignment is given. For an arbitrary
clause without a witnessing assignment, however, we conjecture that it is an NP-
complete problem to decide whether the clause is PR. We therefore believe that in
general, the verification of PR proofs is simpler than the actual solving/proving.

The format of PR proofs is an extension of DRAT proofs: the first numbers
of line i denote the literals in Ci. Positive numbers refer to positive literals, and
negative numbers refer to negative literals. In case a witness ωi is provided, the
first literal in the clause is repeated to denote the start of the witness. Recall that
the witness always has to satisfy the clause. It is therefore guaranteed that the
witness and the clause have at least one literal in common. Our format requires
that such a literal occurs at the first position of the clause and of the witness.
Finally, 0 marks the end of a line. Fig. 2 shows the formula and the PR proof of
our running example PHP4.

Table 1 compares our PR proofs with existing DRAT proofs of the pigeon
hole formulas and of formulas from another challenging benchmark suite of the
SAT competition that allow two pigeons per hole. For the latter suite, PR proofs
can be constructed in a similar way as those of the classical pigeon hole formulas.
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Table 1. The sizes (in terms of the number of variables and clauses) of pigeon hole
formulas (top) and two-pigeons-per-hole formulas (bottom) as well as the sizes and
validation times (in seconds) for their PR proofs (as described in Section 5) and their
DRAT proofs (based on symmetry breaking [23]).

input PR proofs DRAT proofs
formula #var #cls #var #cls time #var #cls time

hole10.cnf 110 561 110 385 0.17 440 3,685 0.22
hole11.cnf 132 738 132 506 0.18 572 5,236 0.23
hole12.cnf 156 949 156 650 0.19 728 7,228 0.27
hole13.cnf 182 1,197 182 819 0.21 910 9,737 0.34
hole20.cnf 420 4,221 420 2,870 0.40 3,080 49,420 2.90
hole30.cnf 930 13,981 930 9,455 2.57 99,20 234,205 61.83
hole40.cnf 1,640 32,841 1,640 22,140 13.54 22,960 715,040 623.29
hole50.cnf 2,550 63,801 2,550 42,925 71.72 44,200 1,708,925 3,158.17

tph8.cnf 136 5,457 136 680 0.32 3,520 834,963 5.47
tph12.cnf 300 27,625 300 2,300 1.81 11,376 28,183,301 1,396.92
tph16.cnf 528 87,329 528 5,456 11.16 not available, too large
tph20.cnf 820 213,241 820 10,660 61.69 not available, too large

Notice that the PR proofs do not introduce new variables and that they contain
fewer clauses than their corresponding formulas. The DRAT proof of PHPn

contains a copy of the formula PHPk for each k < n. Checking PR proofs is also
more efficient, as they are more compact.

7 Related Work

In this section, we shortly discuss how the concepts in this paper are related
to variable instantiation [10], autarkies [8], safe assignments [9], and symmetry
breaking [11]. If, for some literal l, it is possible to show F |l � F |l, then variable
instantiation, as described by Andersson et al. [10], allows to assign the literal l
in the formula F to 1. Analogously, we identify the unit clause l as redundant.

As presented by Kleine Büning and Kullmann [8], an assignment ω is an
autarky for a formula F if it satisfies all clauses of F that contain a literal to
which ω assigns a truth value. If an assignment ω is an autarky for a formula F ,
then F is satisfiability equivalent to F |ω. Similarly, propagation redundancy PR
allows us to add all the unit clauses falsified by an autarky, with the autarky
serving as a witness: Let ω be an autarky for some formula F , C = l for a literal
l falsified by ω, and α the assignment blocked by C. Notice that F |α ⊇ F |ω
and thus C is propagation redundant w.r.t. F .

According to Weaver and Franco [9], an assignment ω is considered safe if,
for every assignment α with var(α) = var(ω), it holds that F |α � F |ω. If an
assignment ω is safe, then F |ω is satisfiability equivalent to F . In a similar fash-
ion, our approach allows us to block all the above-mentioned assignments α 6= ω.
Through this, we obtain a formula that is logically equivalent to F |ω. Note that
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safe assignments generalize autarkies and variable instantiation. Moreover, while
safe assignments only allow the application of an assignment ω to a formula F
if F |α � F |ω holds for all assignments α 6= ω, our approach enables us to block
an assignment α as soon as F |α � F |ω.

Finally, symmetry breaking [11] can be expressed in the DRAT proof sys-
tem [23] but existing methods introduce many new variables and duplicate the
input formula multiple times. It might be possible to express symmetry breaking
without new variables in the PR proof system. For one important symmetry, row-
interchangeability [16], the symmetry breaking using PR without new variables
appears similar to the method we presented for the pigeon hole formulas.

8 Conclusion

Based on an implication relation between a formula and itself under different
partial assignments, we obtain a clean and simple characterization of the most
general notion of clause redundancy considered in the literature so far. Replac-
ing the implication relation by stronger notions of implication, e.g., the super-
set relation or implication through unit propagation, gives then rise to various
polynomially checkable redundancy criteria. One variant yields a proof system
that turns out to coincide with the well-known DRAT, while we conjecture the
proof systems produced by the other two variants to be much more powerful.
We showed that these more general variants admit short clausal proofs for the
famous pigeon hole formulas, without the need to introduce new variables. Ex-
periments show that our proofs are much more compact than existing clausal
proofs and also much faster to check. Our new proof systems simulate many
other concepts from the literature very concisely, including autarkies, variable
instantiation, safe assignments, and certain kinds of symmetry reasoning.

Interesting future work includes the separation of our new proof systems
from the DRAT proof system on the lower end and from extended resolution
on the upper end, under the additional restriction that our proof systems and
DRAT do not introduce new variables. The relation to extended resolution is a
particularly interesting aspect from the proof complexity point of view. Other
open questions are related to the space and width bounds of the smallest PR
proofs, again without new variables, for well-known other hard problems such as
Tseitin formulas [12,24] or pebbling games [25]. On the practical side, we want
to implement a formally verified proof checker for PR proofs. Moreover, we want
to pursue some preliminary ideas for automatically generating short PR proofs
during actual SAT solving: Our initial plan is to enumerate unit and binary
clauses and to add them to a formula if they are propagation redundant. We
already have a prototype implementation which is able to find short proofs of
pigeon hole formulas, but we are still searching for efficient heuristics that help
solvers with finding short PR clauses in general formulas.
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Artificial Intelligence 224(C) (July 2015) 103–118

4. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean Triples problem via Cube-and-Conquer. In: Proc. of the 19th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2016). Vol-
ume 9710 of LNCS., Cham, Springer (2016) 228–245

5. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Proc. of the 17th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT 2014). Volume 8561 of
LNCS., Cham, Springer (2014) 422–429

6. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proc. of the 6th Int.
Joint Conference on Automated Reasoning (IJCAR 2012). Volume 7364 of LNCS.,
Heidelberg, Springer (2012) 355–370

7. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: Proc. of the
8th Int. Joint Conference on Automated Reasoning (IJCAR 2016). Volume 9706
of LNCS., Cham, Springer (2016) 45–61
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