Solving Very Hard Problems: Cube-and-Conquer, a Hybrid SAT Solving Method

Marijn J.H. Heule

Joint work with Armin Biere, Oliver Kullmann, and Victor W. Marek

Parallel Constraint Reasoning August 6, 2017
Satisfiability (SAT) Solving Has Many Applications

- formal verification
- security
- bioinformatics
- train safety
- planning and scheduling
- automated theorem proving
- exploit generation
- term rewriting termination

There are very hard problems in all these application areas!
Satisfiability (SAT) Solving Has Many Applications

- formal verification
- security
- bioinformatics
- train safety
- planning and scheduling
- automated theorem proving
- exploit generation
- term rewriting termination

There are very hard problems in all these application areas!
Combinatorial Equivalence Checking

Chip makers use SAT to check the correctness of their designs. Equivalence checking involves comparing a specification with an implementation or an optimized with a non-optimized circuit.
Unavoidable Monochromatic Solutions [Schur 1917]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a + b = c$?

$1 + 1 = 2$ $1 + 2 = 3$ $1 + 3 = 4$
$1 + 4 = 5$ $2 + 2 = 4$ $2 + 3 = 5$
Unavoidable Monochromatic Solutions [Schur 1917]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a + b = c$?

\[\begin{align*}
1 + 1 &= 2 \\
1 + 4 &= 5 \\
1 + 2 &= 3 \\
2 + 2 &= 4 \\
1 + 3 &= 4 \\
2 + 3 &= 5 \\
\end{align*} \]
Unavoidable Monochromatic Solutions [Schur 1917]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a + b = c$?

1 + 1 = 2
1 + 2 = 3
1 + 3 = 4
1 + 4 = 5
2 + 2 = 4
2 + 3 = 5
Unavoidable Monochromatic Solutions [Schur 1917]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a + b = c$?

\[
\begin{align*}
1 + 1 &= 2 & 1 + 2 &= 3 & 1 + 3 &= 4 \\
1 + 4 &= 5 & 2 + 2 &= 4 & 2 + 3 &= 5
\end{align*}
\]
Unavoidable Monochromatic Solutions [Schur 1917]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of \(a + b = c \)? Yes

\[
\begin{align*}
1 + 1 &= 2 & 1 + 2 &= 3 & 1 + 3 &= 4 \\
1 + 4 &= 5 & 2 + 2 &= 4 & 2 + 3 &= 5
\end{align*}
\]
Unavoidable Monochromatic Solutions [Schur 1917]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of \(a + b = c \)? Yes

\[
\begin{align*}
1 + 1 &= 2 \\
1 + 4 &= 5 \\
1 + 2 &= 3 \\
2 + 2 &= 4 \\
1 + 3 &= 4 \\
2 + 3 &= 5
\end{align*}
\]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of \(a^3 + b^3 = c^3 \)? No
Unavoidable Monochromatic Solutions [Schur 1917]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a + b = c$? Yes

\[
1 + 1 = 2 \quad 1 + 2 = 3 \quad 1 + 3 = 4 \\
1 + 4 = 5 \quad 2 + 2 = 4 \quad 2 + 3 = 5
\]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a^3 + b^3 = c^3$? No

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a^2 + b^2 = c^2$? Maybe

\[
3^2 + 4^2 = 5^2 \quad 6^2 + 8^2 = 10^2 \quad 5^2 + 12^2 = 13^2 \quad 9^2 + 12^2 = 15^2 \\
8^2 + 15^2 = 17^2 \quad 12^2 + 16^2 = 20^2 \quad 15^2 + 20^2 = 25^2 \quad 7^2 + 24^2 = 25^2 \\
10^2 + 24^2 = 26^2 \quad 20^2 + 21^2 = 29^2 \quad 18^2 + 24^2 = 30^2 \quad 16^2 + 30^2 = 34^2 \\
21^2 + 28^2 = 35^2 \quad 12^2 + 35^2 = 37^2 \quad 15^2 + 36^2 = 39^2 \quad 24^2 + 32^2 = 40^2
\]
Pythagorean Triples Problem [Ronald Graham, early 1980s]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple \(a^2 + b^2 = c^2\)?
Pythagorean Triples Problem [Ronald Graham, early 1980s]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

Best lower bound: a bi-coloring of $[1, 7664]$ s.t. there is no monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].
Pythagorean Triples Problem [Ronald Graham, early 1980s]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

Best lower bound: a bi-coloring of $[1, 7664]$ s.t. there is no monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_i with $i \in \{1, 2, \ldots, n\}$ such that $x_i = 1$ ($= 0$) means that i is colored red (blue). For each Pythagorean Triple $a^2 + b^2 = c^2$, two clauses are added: $(x_a \lor x_b \lor x_c) \land (\neg x_a \lor \neg x_b \lor \neg x_c)$.

Theorem ([Heule, Kullmann, and Marek (2016)]) $[1, 7824]$ can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1, 7825]$.
Pythagorean Triples Problem [Ronald Graham, early 1980s]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

Best lower bound: a bi-coloring of $[1, 7664]$ s.t. there is no monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_i with $i \in \{1, 2, \ldots, n\}$ such that $x_i = 1$ ($= 0$) means that i is colored red (blue). For each Pythagorean Triple $a^2 + b^2 = c^2$, two clauses are added: $(x_a \lor x_b \lor x_c) \land (\neg x_a \lor \neg x_b \lor \neg x_c)$.

Theorem ([Heule, Kullmann, and Marek (2016)])

$[1, 7824]$ can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1, 7825]$.
A Monochromatic-Free Coloring of Maximal Size
Enormous Progress in the Last Two Decades

mid '90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key technology of the 21st century”

Donald Knuth: “evidently a killer app, because it is key to the solution of so many other problems”
SAT Solver Paradigms

Conflict-driven clause learning (CDCL):

- Makes fast decisions;
- Converts conflicting assignments into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.
SAT Solver Paradigms

Conflict-driven clause learning (CDCL):

- Makes fast decisions;
- Converts conflicting assignments into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Look-ahead:

- Aims at finding a small binary search-tree;
- Splits the formula by looking ahead.

Strength: Effective on small, hard formulas.

Weakness: Expensive.
Portfolio Solvers

The most commonly used parallel solving paradigm is portfolio:

- Run multiple (typically identical) solvers with different configurations on the same formula; and
- Share clauses among the solvers.

The portfolio approach is effective on large “easy” problems, but has difficulties to solve hard problems (out of memory).
Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere 2011]

The Cube-and-Conquer paradigm has two phases:

Cube First, a look-ahead solver is employed to split the problem—the splitting tree is cut off appropriately.

Conquer At the leaves of the tree, CDCL solvers are employed.

Cube-and-Conquer achieves a near-equal splitting and the sub-problems are scheduled independently (easy parallel CDCL).
The Hidden Strength of Cube-and-Conquer

Let N denote the number of leaves in the cube-phase:
- the case $N = 1$ means pure CDCL,
- and very large N means pure look-ahead.

Consider the total run-time (y-axis) in dependency on N (x-axis):
- typically, first it increases, then
- it decreases, but only for a large number of subproblems!

Example with Schur Triples and 5 colors: a formula with 708 vars and 22608 clauses.

The performance tends to be optimal when the cube and conquer times are comparable.
Variant 1: Concurrent Cube-and-Conquer

The main heuristic challenge is deciding when to cut:

- Cutting too early results in hard subproblems for CDCL, thereby limiting the speed-up by parallelization (and the hidden strength).
- Cutting too late adds redundant lookahead costs.

Idea: Run a CDCL solver in parallel with the look-ahead solver:

- Both solvers work on the same subformula (assignment)
- Lookahead computes a good splitting variable
- Meanwhile CDCL tries to solve the subproblem
- The first solver that finishes determines the next step: A lookahead win \rightarrow split, a CDCL win \rightarrow backtrack.
Variant 2: Cubes on Demand

Only split when CDCL cannot quickly solve a (sub)problem.

▶ Split when a certain limit is reach, say 10,000 conflicts — a dynamic limit works best in practice.
▶ The cores focus on solving the easier subproblems — the smallest formulas after propagating the cube units.

Treengeling by Armin Biere is based on cubes on demand.

▶ Implements splitting by cloning the solver.
▶ Adds two solvers running on the original formula in parallel.

Treengeling won the parallel track of SAT Competition 2016.
Pythagorean Triples Results Summary [Heule et al. 2016]

- Almost **linear speed-ups** even when using 1000s of cores;
- The total computation was about 4 CPU years, but **less than 2 days** in wallclock time using 800 cores;
- If we use all 110 000 cores of TACC’s Stampede cluster, then the problem can be solved in **less than an hour**;
- Reduced the trivial 2^{7825} cases to **roughly 2^{40} cases**.
Pythagorean Triples Results Summary [Heule et al. 2016]

- Almost linear speed-ups even when using 1000s of cores;
- The total computation was about 4 CPU years, but less than 2 days in wallclock time using 800 cores;
- If we use all 110,000 cores of TACC’s Stampede cluster, then the problem can be solved in less than an hour;
- Reduced the trivial 2^{7825} cases to roughly 2^{40} cases.

Comparison with state-of-the-art solver TREENGELING (T) (estimations based on Pythagorean Triples subproblems):
- T requires at least two orders of magnitude more CPU time;
- T’s scaling is not linear: 100x speedup using 1000 cores;
- Using 1000 cores, T would use \(\sim 40,000 \) hours wallclock time.
Motivation for Validating Proofs of Unsatisfiability

SAT solvers may have errors and only return yes/no.

- Documented bugs in SAT, SMT, and QSAT solvers; [Brummayer and Biere, 2009; Brummayer et al., 2010]
- Implementation errors often imply conceptual errors;
- Proofs now mandatory for the annual SAT Competitions;
- Mathematical results require a stronger justification than a simple yes/no by a solver. UNSAT must be verifiable.
Overview of Solving Framework with Proof Verification

1: encode
2: re-encode
3: split
4: solve
5: validate

encoder

original formula
re-encoding proof

re-encoded formula
tautology proof
cubes

cube proofs
Phase 5: Validate Pythagorean Triples Proofs

The size of the merged proof is almost 200 terabyte and has been validated in 16,000 CPU hours.

Proofs can be validated in parallel [Heule and Biere 2015].

The proof has recently been certified using verified checkers.
Conclusions

Parallel SAT solving has been very successful:

- Industry uses SAT for hardware verification tasks;
- Long-standing open math problems can now be solved;
- The results can be certified using highly-trusted systems.

There is a bright future with interesting challenges:

- How to deal with hard software verification problems?
- Can machine learning be used to improve performance?
- How to create a parallel SAT solver with linear time speedups on a wide spectrum of problems using many thousands of cores (working out of the box)?
Solving Very Hard Problems:
Cube-and-Conquer, a Hybrid SAT Solving Method

Marijn J.H. Heule

Joint work with Armin Biere, Oliver Kullmann, and Victor W. Marek

Parallel Constraint Reasoning August 6, 2017