
1

UTCS CS352 Lecture 3 1

Lecture 3: Evaluating Computer Architectures

•  Announcements
 - Reminder: Homework 1 due Thursday 2/2

•  Last Time – technology back ground
–  Computer elements
–  Circuits and timing
–  Virtuous cycle of the past and future?

•  Today
–  What is computer performance?
–  What programs do I care about?
–  Performance equations
–  Amdahl’s Law

✓

Software & Hardware: The Virtuous Cycle?

UTCS CS352 Lecture 3 2

Faster Single
Processor

Frequency Scaling

Larger, More
Capable Software

Managed Languages

More Cores
Multi/Many Core

Scalable Software
Scalable Apps +

Scalable Runtime ?

2

Performance Hype

UTCS CS352 Lecture 3 3

“sometimes more than twice as fast”
“our …. is better or almost as good as …. across the board”

“speedups of 1.2x to 6.4x on a variety of benchmarks”

“our prototype has usable performance”
“…demonstrating high efficiency and scalability”

“can reduce garbage collection time by 50% to 75%”

“speedups…. are very significant (up to 54-fold)”

“speed up by 10-25% in many cases…”
“…about 2x in two cases…”

“…more than 10x in two small benchmarks”

“…improves throughput by up to 41x”

“AMD Performance Preview: Taking Phenom II to 4.2 GHz”
“Intel Core i7…8 processing threads… They are the best

desktop processor family on the planet.”
“With 8 cores, each supporting 4 threads, the UltraSPARC T1 processor

executes 32 simultaneous threads within a design consuming only 72 watts of power.“

What Does this Graph Mean?
Performance Trends on SPEC Int 2000

UTCS CS352 Lecture 3 4

3

UTCS CS352 Lecture 3 5

Computer Performance Evaluation

•  Metric = something we measure
•  Goal: Evaluate how good/bad a design is
•  Examples

–  Clock rate of computer
–  Power consumed by a program
–  Execution time for a program
–  Number of programs executed per second
–  Cycles per program instruction

•  How should we compare two computer systems?

UTCS CS352 Lecture 3 6

Tradeoff: latency vs. throughput

•  Pizza delivery
–  Do you want your pizza hot?

–  Or do you want your pizza to be inexpensive?

–  Two different delivery strategies for pizza company!

This course focuses primarily on latency (hot pizza)

Latency = execution time for a single task
Throughput = number of tasks per unit time

4

UTCS CS352 Lecture 3 7

Two notions of “performance”

° Time to do the task (Execution Time)
 – execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. (Performance)
 – throughput, bandwidth

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
 (pmph)

286,700

178,200

Which has plane higher performance?

Slide courtesy of D. Patterson

UTCS CS352 Lecture 3 8

Definitions

• Performance is in units of things-per-second
– bigger is better

• Response time of a system Y running program Z
performance (Y) = 1

 execution time (Z on Y)
• Throughput of system Y running many programs

performance (Y) = number of programs
 unit time

•  " System X is n times faster than Y" means
 n = performance(X)
 performance(Y)

 Slide courtesy of D. Patterson

5

UTCS CS352 Lecture 3 9

Definitions

• Performance is in units of things-per-second
– bigger is better

• Response time of a system Y running program Z
performance (Y) = 1

 execution time (Z on Y)
• Throughput of system Y running many programs

performance (Y) = number of programs
 unit time

•  " System X is n times faster than Y" means
 n = performance(X)
 performance(Y)

 Slide courtesy of D. Patterson

UTCS CS352 Lecture 3 10

Which Programs Should I Measure?

Slide courtesy of D. Patterson

6

UTCS CS352 Lecture 3 11

Which Programs Should I Measure?

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

Slide courtesy of D. Patterson

UTCS CS352 Lecture 3 12

Which Programs Should I Measure?

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

•  representative
•  very specific
•  non-portable
•  difficult to run, or
 measure
•  hard to identify cause

•  portable
•  widely used
•  improvements
 useful in reality

•  easy to run, early in
 design cycle

•  identify peak
 capability and
 potential bottlenecks

• less representative

•  easy to “fool”

•  “peak” may be a long
 way from application
 performance

Slide courtesy of D. Patterson

7

UTCS CS352 Lecture 3 13

Brief History of Benchmarking

•  Early days (1960s)
–  Single instruction execution

time
–  Average instruction time

[Gibson 1970]
–  Pure MIPS (1/AIT)

•  Simple programs(early 70s)
–  Synthetic benchmarks

(Whetstone, etc.)
–  Kernels (Livermore Loops)

•  Relative Performance (late 70s)
–  VAX 11/780 ≡ 1-MIPS

•  but was it?
–  MFLOPs

•  “Real” Applications (1989-now)
–  SPEC CPU C/Fortran

•  Scientific, Irregular
•  89, 92, 95, 00, 07, ??

–  TPC C: Transaction Processing
–  SPECWeb
–  WinBench: Desktop
–  Graphics C/C++

•  Quake III, Doom 3
•  MediaBench

–  Java: SPECJVM98
•  Problem: Programming Language

–  Parallel?, Java, C#, JavaScript??
–  DaCapo Java Benchmarks 06, 09
–  Parsec: Parallel C/C++, 2008

UTCS CS352 Lecture 3 14

How to Compromise a Comparison:
C programs running on two architectures

8

UTCS CS352 Lecture 3 15

The compiler reorganized the code!

•  Change the memory system performance
–  Matrix multiply cache blocking

Before

After

There are lies, damn lies, and statistics
Desraeli

UTCS CS352 16 Lecture 3

9

There are lies, damn lies, and statistics
Desraeli

benchmarks

✗

UTCS CS352 17 Lecture 3

Benchmarking Java Programs

•  Let’s consider the performance of the DaCapo
 Java Benchmarks

•  What do we need to think about when comparing
 two computers running Java programs?

•  http://dacapo.anu.edu.au/regression/perf
/2006-10-MR2.html

UTCS CS352 Lecture 3 18

10

UTCS CS352 Lecture 3 19

Pay Attention to Benchmarks & System

•  Benchmarks measure the
whole system
–  application
–  compiler, VM, memory

management
–  operating system
–  architecture
–  implementation

•  Popular benchmarks often
reflect yesterday’s
programs
–  what about the programs

people are running today?
–  need to design for

tomorrow’s problems

•  Benchmark timings are
sensitive
–  alignment in cache
–  location of data on disk
–  values of data

•  Danger of inbreeding or
positive feedback
–  if you make an operation

fast (slow) it will be used
more (less) often

•  therefore you make it
faster (slower)

–  and so on, and so on…
–  the optimized NOP

UTCS CS352 Lecture 3 20

Performance Summary so Far

•  Key concepts
–  Throughput and Latency

•  Best benchmarks are real programs
–  DaCapo, Spec, TPC, Doom3

•  Pitfalls
–  Whole system measurement
–  Workload may not match user’s
–  Compiler, VM, memory management

•  Next
–  Amdahl’s Law

11

UTCS CS352 Lecture 3 21

Improving Performance: Fundamentals

•  Suppose we have a machine with two instructions
–  Instruction A executes in 100 cycles
–  Instruction B executes in 2 cycles

•  We want better performance….
–  Which instruction do we improve?

UTCS CS352 Lecture 3 22

Speedup

•  Make a change to an architecture
•  Measure how much faster/slower it is

12

UTCS CS352 Lecture 3 23

Speedup when we know details about the change

•  Performance improvements depend on:
–  how good is enhancement (factor S)
–  how often is it used (fraction p)

•  Speedup due to enhancement E:

€

Speedup(E) = ExTime w/out E
ExTime w/ E

= Perf w/ E
Perf w/out E

UTCS CS352 Lecture 3 24

Amdahl’s Law: Example

•  FP instructions improved by 2x
•  But….only 10% of instructions are FP

•  Amdahl’s Law: Speedup bounded by €

ExTimenew = ExTimeold ∗ 0.9 +
0.1
2

 = 0.95∗ ExTimeold

13

UTCS CS352 Lecture 3 25

How Does Amdahl’s Law Apply to Multicore?

•  Given N cores what is our ideal speedup?

UTCS CS352 Lecture 3 26

How Does Amdahl’s Law Apply to Multicore?

•  Given N cores what is our ideal speedup?

•  Say 90% of the code is parallel and N = 16?
€

ExTimenew = ExTimeold /N

14

UTCS CS352 Lecture 3 27

How Does Amdahl’s Law Apply to Multicore?

•  Given N cores what is our ideal speedup?

•  Say 90% of the code is parallel and N = 16?
€

ExTimenew = ExTimeold /N

€

ExTimenew = ExTimeold ∗ 1− p() +
p
N

€

ExTimenew = ExTimeold ∗ 0.1+
0.9
16

 = 0.15625∗ ExTimeold

€

Speeduptotal =
1

0.15625
= 6.2

UTCS CS352 Lecture 3 28

How Does Amdahl’s Law Apply to Multicore?

15

UTCS CS352 Lecture 3 29

Performance Summary so Far

•  Amdahl’s law: Pay attention to what are you speeding up.

•  Next Time
–  More on Performance

•  Cycles per Instruction
•  Means

–  Start: Instruction Set Architectures (ISA)
–  Read: P&H 2.1 – 2.5
–  Turn in your homework at the beginning of class

