Lecture 8: Computer Numbers \& Arithmetic

- Last Time
- Role of the Compiler
- Today
- Take QUIZ 5 before 11:59pm today over Chapter 3 readings
- Topics
- Number Representations
- Computer Arithmetic

Computer Arithmetic

- How do we represent and operate on unsigned/signed integers and real numbers in a finite number of bits?
- What is overflow and underflow?
- How do the arithmetic units work?

Unsigned Binary Integers

- Given an n-bit number

$$
x=x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}
$$

- Range: 0 to $+2^{n}-1$
- Example
$00000000000000000000000000001011_{2}$
$=0+\ldots+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$
$=0+\ldots+8+0+2+1=11_{10}$
- Using 32 bits

$$
0 \text { to }+4,294,967,295
$$

- What happens if you add 1 to $4,294,967,295$?

Overflow Detection

- Overflow: the result is too large (or too small) to represent properly
- Example: - $8<=4$-bit binary number $<=7$
- When adding operands with different signs, overflow cannot occur!
- Overflow occurs when adding:
- 2 positive numbers and the sum is negative
- 2 negative numbers and the sum is positive

UTCS 352

4

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
- Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
- Use MIPS add, addi, sub instructions
- On overflow, invoke OS exception handler
- Save PC in exception program counter (EPC) register
- Jump to predefined handler address
- mfc0 (move from coprocessor reg) instruction can retrieve EPC value to an OS reserved register (\$k0) to return after corrective action

What About Signed Integers?

- Say we use one bit for the sign and the lower bits for the numbers?
- Example of an 8 bit signed number in 1's complement:
$00000001=1$
$10000001=-1$
- What is $1-1$?
- What is zero?

Signed Integers: 2s-Complement

- Represents: $-2^{\mathrm{N}-1}$ to $+2^{\mathrm{N}-1}-1$

$$
x=-x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}
$$

- Bit 31 is sign bit
- 1 for negative numbers
- 0 for non-negative numbers
- Positive numbers have the same unsigned and 2 s -complement representation: (0) $2^{n-1}+\ldots$
- Negative numbers are "complement" ($0-11,1->0$) of the positive number + 1: - (1) $2^{\mathrm{N}-1}+\ldots$
- Addition and subtraction need not examine the operand signs! Makes them simpler to implement.

2s-Complement

- Example values for 8-bit two's complement integers (most-significant bit on left)
$01111111=127$
$01111110=126$
$00000010=2$
$00000001=1$
$00000000=0$
$11111111=-1$
$11111110=-2$
$10000001=-127$
$10000000=-128$
- Now, What is 1-1?

Conversion of 16 bit immediates to 32 bits

 for performing arithmaticADD R2, R1, -3

6	5	16	
ADD	R1	R2	-3

11111111111111111111111111111101

This is called "sign extension"

00000000000000000000000000000011

Integer Arithmetic

- Leverages what you learned in grammar school
- Carry adder
- Simple carry over $O(n)$ operations

- Predict carry
- Guess carry and correct

Multiplication

- Start with long-multiplication approach

multiplicand	
	1000
multiplier	$\times 1001$
	1000
	0000
	0000
	1000
product	1001000

- m bits $\times n$ bits $=m+n$ bit product
- Binary makes it easy:
$\begin{array}{lr}\cdot 0 \Rightarrow \text { place } 0 & (0 \times \text { multiplicand) }) \\ -1 \Rightarrow \text { place a copy } & (1 \times \text { multiplicand) } \\ \text { UTCS } 352\end{array}$
Initially 0

UTCS 352 Lecture 8

Multiplication Hardware

UTCS 352
Lecture 8

Optimized Multiplier

- Perform steps in parallel: add/shift

One cycle per partial-product addition
That's ok, if frequency of multiplications is low

Faster Multiplier

- Use multiple adders
- Cost/performance tradeoff

- Can be pipelined

Several multiplications performed in parallel

Floating Point

- Representation for non-integral numbers
- Types float and double in C
- Including very small and very large numbers
- Like scientific notation
$--2.34 \times 10^{56} \longleftarrow$ normalized
- $+0.002 \times 10^{-4}$
$-+987.02 \times 10^{9}$

- In binary
- $\pm 1 . x x x x x x x_{2} \times 2 y y y y$
- IEEE Standard 754-1985
- Developed in response to divergence of representations
- Made scientific codes portable

IEEE Floating-Point Format

single: 8 bits double: 11 bits
single: 23 bits double: 52 bits S Exponent Fraction

$$
x=(-1)^{S} \times(1+\text { Fraction }) \times 2^{\text {(Exponent-Bias) })}
$$

- S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$
- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Double-Precision Range

- Exponents 0000 ... 00 and 1111... 11 reserved
- Smallest value
- Exponent: 00000000001 \Rightarrow actual exponent $=1-1023=-1022$
- Fraction: 000 ... $00 \Rightarrow$ significand $=1.0$
$\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
- Exponent: 11111111110
\Rightarrow actual exponent $=$ 2046-1023 $=+1023$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0 $\pm 2.0 \times 2+1023 \approx \pm 1.8 \times 10^{+308}$

Grammar School Floating-Point Addition

- Consider a 4-digit decimal example

$$
9.999 \times 10^{1}+1.610 \times 10^{-1}
$$

- 1. Align decimal points

Shift number with smaller exponent $9.999 \times 10^{1}+0.016 \times 10^{1}$

- 2. Add significands $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$
- 3. Normalize result \& check for over/underflow 1.0015×10^{2}
- 4. Round and renormalize if necessary 1.002×10^{2}

Computer Floating-Point Addition

- Now consider a 4-digit binary example

$$
1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)
$$

- 1. Align binary points

Shift number with smaller exponent $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

- 2. Add significands

$$
1.0002 \times 2^{-1}+-0.111_{2} \times 2-1=0.001_{2} \times 2^{-1}
$$

- 3. Normalize result \& check for over/underflow $1.000_{2} \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Hardware

- Much more complex than integer operations
- Doing it in one clock cycle would take too long
- Much longer than integer operations
- Slower clock would penalize all instructions
- FP operations usually take several to many cycles
- Can be pipelined

FP Adder Hardware

Floating-Point Precision

- Relative precision
- all fraction bits are significant
- Single: approx 2^{-23}
- Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2^{-52}
- Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Summary

- Computer Numbers \& Arithmetic
- Computers have finite resources, but real numbers are infinite
- Use 2's complement \& IEEE 754 FP conventions to standardized meaning of math on computers
- Optimize data path of add, multiply, and divide to reduce critical path by performing operations in parallel
- Remember: bits have no inherent meaning!
- Next Time
- Homework \#3 is due 2/16
- Exam review bring questions to class!
- Reading: review Chapters 1-3
- No quizzes next week
- In class open book, open note test 2/18

