
1

UTCS 352 Lecture 8 1

Lecture 8: Computer Numbers & Arithmetic

•  Last Time
–  Role of the Compiler

•  Today
–  Take QUIZ 5 before 11:59pm today over

Chapter 3 readings
–  Topics

• Number Representations
•  Computer Arithmetic

UTCS 352 Lecture 8 2

Computer Arithmetic

•  How do we represent and operate on
unsigned/signed integers and real numbers
in a finite number of bits?

•  What is overflow and underflow?
•  How do the arithmetic units work?

2

Unsigned Binary Integers

•  Given an n-bit number

  Range: 0 to +2n – 1
  Example

  0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20
= 0 + … + 8 + 0 + 2 + 1 = 1110

  Using 32 bits
  0 to +4,294,967,295

  What happens if you add 1 to 4,294,967,295?

 3 UTCS 352 Lecture 8

Lecture 8 4

Overflow Detection

•  Overflow: the result is too large (or too small) to represent properly
–  Example: - 8 < = 4-bit binary number <= 7

•  When adding operands with different signs, overflow cannot occur!
•  Overflow occurs when adding:

–  2 positive numbers and the sum is negative
–  2 negative numbers and the sum is positive

0 1 1 1

0 0 1 1 +

1 0 1 0

1

1 1 0 0

1 0 1 1 +

0 1 1 1

1 1 0

7
3

1

– 6

–4
– 5

7

0

UTCS 352

3

Dealing with Overflow

•  Some languages (e.g., C) ignore overflow
–  Use MIPS addu, addui, subu instructions

•  Other languages (e.g., Ada, Fortran)
 require raising an exception
–  Use MIPS add, addi, sub instructions
–  On overflow, invoke OS exception handler

•  Save PC in exception program counter (EPC) register
•  Jump to predefined handler address
• mfc0 (move from coprocessor reg) instruction can

 retrieve EPC value to an OS reserved register ($k0)
 to return after corrective action

UTCS 352 5 Lecture 8

What About Signed Integers?
•  Say we use one bit for the sign and the lower bits

 for the numbers?
•  Example of an 8 bit signed number in 1’s

 complement:
0 0 0 0 0 0 0 1 = 1
1 0 0 0 0 0 0 1 = -1

•  What is 1 - 1?

•  What is zero?

 6 UTCS 352 Lecture 8

4

Signed Integers: 2s-Complement
•  Represents: −2N−1 to +2N−1−1

–  Bit 31 is sign bit
•  1 for negative numbers
•  0 for non-negative numbers

–  Positive numbers have the same unsigned and 2s
-complement representation: (0)2n-1 + …

–  Negative numbers are “complement” (0->1, 1->0) of
 the positive number + 1: - (1)2N-1 + …

•  Addition and subtraction need not examine the
 operand signs! Makes them simpler to implement.

 7 UTCS 352 Lecture 8

2s-Complement
•  Example values for 8-bit two’s complement integers

 (most-significant bit on left)
0 1 1 1 1 1 1 1 = 127
0 1 1 1 1 1 1 0 = 126
0 0 0 0 0 0 1 0 = 2
0 0 0 0 0 0 0 1 = 1
0 0 0 0 0 0 0 0 = 0
1 1 1 1 1 1 1 1 = −1
1 1 1 1 1 1 1 0 = −2
1 0 0 0 0 0 0 1 = −127
1 0 0 0 0 0 0 0 = −128

•  Now, What is 1 – 1?
 8 UTCS 352 Lecture 8

5

UTCS 352 Lecture 8 9

Conversion of 16 bit immediates to 32 bits
for performing arithmatic

ADD R1 R2 -3
6 5 5 16

ADD R2, R1, -3

1111111111111101

-3 32 bits

11111111111111111111111111111101

replicate

3

0000000000000011

 3

00000000000000000000000000000011

replicate

This is called “sign extension”

Integer Arithmetic

UTCS 352 Lecture 8 10

•  Leverages what you learned in grammar school
•  Carry adder

•  Simple carry over O(n) operations

•  Predict carry
•  Guess carry and correct

6

Multiplication

•  Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000

1001000

multiplicand

multiplier

product

Initially 0

•  m bits x n bits = m+n bit product
•  Binary makes it easy:

• 0 => place 0 (0 x multiplicand)
• 1 => place a copy (1 x multiplicand)
UTCS 352 11 Lecture 8

Multiplication Hardware

Initially 0

UTCS 352 12 Lecture 8

7

Optimized Multiplier

•  Perform steps in parallel: add/shift

One cycle per partial-product addition
 That’s ok, if frequency of multiplications is low

 13 UTCS 352 Lecture 8

Faster Multiplier

•  Use multiple adders
–  Cost/performance tradeoff

  Can be pipelined
  Several multiplications performed in parallel

 14 UTCS 352 Lecture 8

8

Floating Point

•  Representation for non-integral numbers
–  Types float and double in C
–  Including very small and very large numbers

•  Like scientific notation
–  –2.34 × 1056
–  +0.002 × 10–4
–  +987.02 × 109

•  In binary
–  ±1.xxxxxxx2 × 2yyyy

•  IEEE Standard 754-1985
–  Developed in response to divergence of representations
–  Made scientific codes portable

normalized

not normalized

UTCS 352 15 Lecture 8

IEEE Floating-Point Format

•  S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
•  Normalize significand: 1.0 ≤ |significand| < 2.0

–  Always has a leading pre-binary-point 1 bit, so no need to represent
 it explicitly (hidden bit)

–  Significand is Fraction with the “1.” restored
•  Exponent: excess representation: actual exponent + Bias

–  Ensures exponent is unsigned
–  Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

UTCS 352 16 Lecture 8

9

Double-Precision Range

•  Exponents 0000…00 and 1111…11 reserved
•  Smallest value

–  Exponent: 00000000001
 ⇒ actual exponent = 1 – 1023 = –1022

–  Fraction: 000…00 ⇒ significand = 1.0
 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

•  Largest value
–  Exponent: 11111111110
⇒ actual exponent = 2046 – 1023 = +1023

–  Fraction: 111…11 ⇒ significand ≈ 2.0
 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

 17 UTCS 352 Lecture 8

Grammar School Floating-Point Addition

•  Consider a 4-digit decimal example
 9.999 × 101 + 1.610 × 10–1

•  1. Align decimal points
 Shift number with smaller exponent
 9.999 × 101 + 0.016 × 101

•  2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

•  3. Normalize result & check for over/underflow
 1.0015 × 102

•  4. Round and renormalize if necessary
 1.002 × 102

 18 UTCS 352 Lecture 8

10

Computer Floating-Point Addition

•  Now consider a 4-digit binary example
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

•  1. Align binary points
 Shift number with smaller exponent
 1.0002 × 2–1 + –0.1112 × 2–1

•  2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

•  3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

•  4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

 19 UTCS 352 Lecture 8

FP Hardware

•  Much more complex than integer operations
•  Doing it in one clock cycle would take too long

–  Much longer than integer operations
–  Slower clock would penalize all instructions

•  FP operations usually take several to many cycles
–  Can be pipelined

 20 UTCS 352 Lecture 8

11

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

 21 UTCS 352 Lecture 8

Floating-Point Precision

•  Relative precision
–  all fraction bits are significant
–  Single: approx 2–23

•  Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal digits
 of precision

–  Double: approx 2–52

•  Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal digits
 of precision

 22 UTCS 352 Lecture 8

12

UTCS 352 Lecture 8 23

Summary

•  Computer Numbers & Arithmetic
–  Computers have finite resources, but real numbers are infinite
–  Use 2’s complement & IEEE 754 FP conventions to standardized

meaning of math on computers
–  Optimize data path of add, multiply, and divide to reduce

critical path by performing operations in parallel
–  Remember: bits have no inherent meaning!

•  Next Time
–  Homework #3 is due 2/16
–  Exam review bring questions to class!

•  Reading: review Chapters 1-3
–  No quizzes next week
–  In class open book, open note test 2/18

